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Abstract: The paper introduces a novel two-dimensional fractional discrete-time predator–prey
Leslie–Gower model with an Allee effect on the predator population. The model’s nonlinear dy-
namics are explored using various numerical techniques, including phase portraits, bifurcations and
maximum Lyapunov exponent, with consideration given to both commensurate and incommensu-
rate fractional orders. These techniques reveal that the fractional-order predator–prey Leslie–Gower
model exhibits intricate and diverse dynamical characteristics, including stable trajectories, periodic
motion, and chaotic attractors, which are affected by the variance of the system parameters, the
commensurate fractional order, and the incommensurate fractional order. Finally, we employ the
0–1 method, the approximate entropy test and the C0 algorithm to measure complexity and confirm
chaos in the proposed system.

Keywords: chaotic system; discrete predator–prey model; commensurate order; incommensurate
order; chaos; complexity

1. Introduction

Over the past few years, researchers have been giving more and more attention to
biological models, particularly those related to predator–prey interactions. These models
are important in the field of biology and have been extensively explored in both math-
ematical biology and ecology. Through the analysis of these models, researchers have
discovered a range of complex dynamics, including bifurcations, limit cycles, and chaotic
behaviour. While continuous-time systems have been extensively studied, discrete-time
systems have not received as much attention. However, discrete-time models have unique
dynamic properties and can be used to represent several practical issues that occur in the
biological world. Discrete-time systems are particularly useful in cases where the dynamics
of a system change rapidly over time, or where the system is subject to discrete events or
inputs. Due to these characteristics, studying discrete systems is essential and has resulted
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in notable advances in various fields such as mathematics, biology, engineering, ecology
and others.

Discrete fractional calculus is an area of mathematics that looks at discrete fractional
calculus analogs. Fractional calculus is an extension of classical calculus that works with
derivatives and integrals of non-integer orders. It has many uses in different domains
including engineering, physics, and economics, among others. Over the last several years,
it has garnered significant considerable interest as a result of its potential applications in
various fields such as image processing, signal processing, and data analysis. The study of
discrete fractional calculus involves the development of new mathematical tools and tech-
niques for analyzing and manipulating discrete fractional operators, and the investigation
of their properties and applications. In recent times, there has been a surge of publications
addressing the topic of discrete-time fractional calculus. These publications put forth
numerous discrete-time fractional operators, stability analyses, and theoretical results [1–5].
As a consequence of these works, there has been an increase in the development of com-
mensurate and incommensurate fractional discrete chaotic systems, as seen in [6–13] and
references therein. Additionally, various control strategies and synchronization schemes
have been proposed to synchronize different fractional chaotic maps [14–18].

Recently, a considerable number of researchers have investigated the dynamical be-
haviors of discrete models. However, only a limited amount of literature exists that focuses
on analyzing the dynamics of discrete-time predator–prey systems [19–21]. For instance,
the bifurcation analysis and hybrid control of discrete predator–prey model have been
studied by Yuan and Yang in [22]. The chaos control of the discrete modified predator–prey
Leslie–Gower harvesting system has been analyzed by Ajaz et al. in [23]. In [24], the author
has explored the chaos and complexity in a discrete-time prey-predator model. Khan
et al. in [25] discussed the Neimark–Sacker bifurcations and global dynamics in a discrete
prey-predator Leslie model, while Vinoth et al. [26] investigated the dynamic behaviors of
a new Leslie–Gower discrete-time system with the Allee impact in predator populations.
The Allee effect is a biological phenomenon that has been named after Allee, who produced
a comprehensive account of it. This statement indicates the existence of a direct correlation
between the size of a population and its per capita growth rate [27]. Most of the research
above has focused on classical integer-order models. As far as current literature indicates,
there have been no research contributions that specifically analyze the behaviours of a
fractional-order discrete-time predator–prey Leslie–Gower system with the influence of the
Allee effect in predator population. Therefore, the chaotic dynamical behaviours of such
a system that utilizes fractional difference operators possessing both commensurate and
incommensurate orders is an appealing field for further study.

Based on the discussion presented earlier, the objective of this paper is to investigate
and analyze the rich chaotic dynamics of a newly proposed commensurate fractional-
order fractional discrete-time predator–prey Leslie–Gower system and incommensurate
fractional-order fractional discrete-time predator–prey Leslie–Gower system by taking the
Allee parameter as a bifurcation parameter. The basic properties of this fractional model
will be studied using certain theoretical and numerical analyses. Furthermore, we will use
the approximate entropy test and C0 algorithm to measure the complexity and validate
the presence of chaos in the proposed system. Finally, we will conclude the study by
summarizing the most significant findings obtained in the article.

The paper is organized as follows. In Section 2, we provide the mathematical formula-
tion of the model utilizing the Caputo-like operator. In Section 3, we delve the fundamental
properties of the model through numerical theoretical and analyses. In Section 4, we employ
the 0–1 method, the approximate entropy test and C0 algorithm to measure complexity and
confirm the existence of chaos within the suggested model. Finally, the paper concludes by
summarizing the most noteworthy outcomes obtained throughout the study.
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2. Model Description of the Fractional Discrete System

Subject to the continuous predator–prey model of modified Leslie–Gower given
in [28], Vinoth et al. [26] describes the following fractional discrete-time predator–prey
Leslie–Gower system with the influence of the Allee effect in Predator Population:

z1(r + 1) = z1(r)exp
[

δ1 − αz1(r)−
h1z2(r)

z1(r) + b

]
,

z2(r + 1) = z2(r)exp
[

δ2z2(r)
z2(r) + m

− h2z2(r)
z1(r) + c

]
,

(1)

where z1 ≤ 0 and z2 ≤ 0 denote the population sizes. z2(r)
m+z2(r)

is the Allee effect term and
m > 0 represents the severity of Allee effect in the predator population. δ1, δ2, α, h1, h2, b, c
are positive constant parameters. In our work, we intend to use the Caputo-like operator to
obtain a new fractional discrete predator–prey model. First, we formulate the first-order
differences of the fractional discrete-time predator–prey Leslie–Gower model as follows:

∆z1(r) = z1(r)exp
[

δ1 − αz1(r)−
h1z2(r)

z1(r) + b

]
− z1(r),

∆z2(r) = z2(r)exp
[

δ2z2(r)
z2(r) + m

− h2z2(r)
z1(r) + c

]
− z2(r),

(2)

Next, we use the difference operator c∆ϑ
a to produce a novel fractional discrete-time

predator–prey Leslie–Gower model with the Allee effect in predator population. The
formulation of the mathematical form of the system is as follows:

c∆ϑ
a z1(r) = z1(r + ϑ− 1)exp

[
δ1 − αz1(r + ϑ− 1)− h1z2(r + ϑ− 1)

z1(r + ϑ− 1) + b

]
− z1(r + ϑ− 1),

c∆ϑ
a z2(r) = z2(r + ϑ− 1)exp

[
δ2z2(r + ϑ− 1)

z2(r + ϑ− 1) + m
− h2z2(r + ϑ− 1)

z1(r + ϑ− 1) + c

]
− z2(r + ϑ− 1).

(3)

The Caputo-like difference operator C∆ϑ
a can be given by [4]

C∆ϑ
a χ(r) = ∆−(m−ϑ)

a ∆mχ(r). (4)

r ∈ (N)a−ϑ+m and m = dϑe+ 1. ∆−ϑ
a is fractional sum which is defined as [2]

∆−ϑ
a χ(r) =

1
Γ(ϑ)

r−ϑ

∑
k=ϑ

(r− k− 1)(ϑ−1)χ(k), r ∈ (N)m+ϑ, ϑ > 0 (5)

Now, the following theorem will be presented, which will help us to gain the derivation
of the numerical expression for the fractional discrete-time predator–prey Leslie–Gower
system (3):

Theorem 1 ([29]). The solution of the following system{
C∆ϑ

a χ(r) = g(r− 1 + ϑ, χ(r− 1 + ϑ))

∆jχ(a) = χj, m = dϑe+ 1, j = 0, 1, . . . , m− 1,
(6)

is given by

χ(r) = χ0(a) +
1

Γ(ϑ)

r−ϑ

∑
k=d+m−ϑ

(r− k− 1)(ϑ−1)g(k + ϑ− 1, χ(k + ϑ− 1)), r ∈ Na+m, (7)
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where

χ0(a) =
m−1

∑
j=0

(r− a)j

Γ(n + 1)
∆jχ(a). (8)

Remark 1. Take a = 0, m = 1, j = k + ϑ− 1 and (r− k− 1)(ϑ−1) = Γ(r−k)
Γ(r−k−ϑ+1) , the numerical

expression (7) can be written for ϑ ∈ (0, 1] as follows:

χ(r) = χ(0) +
1

Γ(ϑ)

r−1

∑
j=0

Γ(r− n + ϑ− 1)
Γ(r− n)

g(j, χ(j)). (9)

3. Nonlinear Dynamics of the Fractional Discrete-Time Predator–Prey Leslie–Gower Model

This section will analyze the behaviour of the fractional discrete-time predator–prey
Leslie–Gower model with an Allee effect on the predator population. The analysis will
be conducted in two cases: commensurate, incommensurate. Various numerical analysis
techniques, including the display of phase portraits, the plot of bifurcations, and the
estimations of maximum Lyapunov exponents (LEmax), will be utilized. To calculate the
maximum Lyapunov exponents of the model’s attractors, we will use the Jacobian matrix
algorithm introduced in [30].

3.1. Commensurate Order FDNN Model

Here, we will focus on describing the features of a suggested commensurate fractional
discrete-time predator–prey Leslie–Gower model with an Allee effect on the predator
population (3). It is worth noting that a commensurate order system consists of equations
with the same fractional orders. In light of this, we will now provide the numerical formula,
which is derived from Theorem 1, as follows:

z1(r + 1) = z1(0) +
n
∑

k=0

Γ(r−1−k+ϑ)
Γ(ϑ)Γ(r−k)

(
z1(k)exp

[
δ1 − αz1(k)− h1z2(k)

z1(k)+b

]
− z1(k)

)
,

z2(r + 1) = z2(0) +
n
∑

k=0

Γ(r−1−k+ϑ)
Γ(ϑ)Γ(r−k)

(
z2(k)exp

[
δ2z2(k)

z2(k)+m −
h2z2(k)
z1(k)+c

]
− z2(k)

)
, r = 1, 2, · · · .

(10)

where z1(0) and z2(0) are the initial conditions (I.C). Setting the parameters system δ1 = 3.3,
δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5, m = 0.9 and I.C (z1(0), z2(0)) = (1, 2),
The bifurcation diagrams are used to depict the variations in the behaviours of the fractional
discrete predator–prey model (3) as the commensurate order ϑ is varied with step size
∆ϑ = 0.00003. Figure 1 depicts the bifurcation and the (LEmax). The Lyapunov exponents
are estimated by means of the jacobian matrix algorithm (see [30]), which are computed in
a manner similar to that used to determine the states in the fractional discrete system (3).
We define the tangent map Ji as:

Jm =

(
a1(m) a2(m)

b1(m) b2(m)

)
(11)

where
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a1(m) = a1(0) + 1
Γ(ϑ) ∑m−1

j=0
Γ(m−j−1+ϑ)

Γ(m−j)

[ (
a1(j) + z1(j)

(
−αa1(j)− h1b1(j)(z1(j)+b)−h1a1(j)z2(j)

(z1(j)+b)2

))
exp
(

δ1 − αz1(k)− h1z2(k)
z1(k)+b

)
− a1(j)

]
,

a2(m) = a2(0) + 1
Γ(ϑ) ∑m−1

j=0
Γ(m−j−1+ϑ)

Γ(m−j)

[ (
a2(j) + z1(j)

(
−αa2(j)− h1b2(j)(z1(j)+b)−h1a2(j)z2(j)

(z1(j)+b)2

))
exp
(

δ1 − αz1(k)− h1z2(k)
z1(k)+b

)
− a2(j)

]
,

b1(m) = b1(0) + 1
Γ(ϑ) ∑m−1

j=0
Γ(m−j−1+ϑ)

Γ(m−j)

[ (
b1(j) + z2(j)

(
δ2b1(j)m)
(z2(j)+m)2 −

h1b1(j)(z1(j)+c)−h1a1(j)z2(j)
(z1(j)+c)2

))
exp
(

δ2z2(k)
z2(k)+m −

h2z2(k)
z1(k)+c

)
− b1(j)

]
,

b2(m) = b2(0) + 1
Γ(ϑ) ∑m−1

j=0
Γ(m−j−1+ϑ)

Γ(m−j)

[ (
b2(j) + z2(j)

(
δ2b2(j)m)
(z2(j)+m)2 −

h1b2(j)(z1(j)+c)−h1a2(j)z2(j)
(z1(j)+c)2

))
exp
(

δ2z2(k)
z2(k)+m −

h2z2(k)
z1(k)+c

)
− b1(j)

]
,

(12)

with (
a1(0) a2(0)

b1(0) b2(0)

)
=

(
1 0

0 1

)
(13)

Then, the Lyapunov exponents can be given by :

LEκ = lim
m→∞

1
m

ln |λ(m)
κ |, for κ = 1, 2. (14)

where λ
(m)
κ is the eigenvalue of the Jacobian matrix Jm.

Since the inherent complexity of accurate predictions of the system’s behaviour using
analytical methods is challenging, numerical approximations are often necessary. One such
approach involves using MATLAB R2022a software. From Figure 1, we can see that upon
changing the commensurate order ϑ, the system (3) exhibits different dynamics involving
chaos and periodic motion. In particular, when ϑ takes larger values, the trajectories
are chaotic. Moreover, when the commensurate order decreases, periodic windows with
5-period orbits appear and the model becomes stable at ϑ ∈ [0.9945, 0.9956]. If ϑ < 0.9945,
the trajectories of the model lose their stability and the chaotic motions occur again where
LEmax is negative. If ϑ continues to decrease, the transition states are shown and then
the commensurate fractional discrete predator–prey model with an Allee effect on the
predator population converges toward infinity. Next, we generated three bifurcations
of (3) with respect to the varying values of m, as illustrated in Figure 2. The plotted
diagrams correspond to the commensurate values ϑ = 0.99, ϑ = 0.995 and ϑ = 0.998. We
notice that the states of the commensurate fractional discrete-time predator–prey Leslie–
Gower model (3) are affected by the system parameter m and the commensurate fractional
order ϑ. For instance, when the order ϑ increases, the chaotic region shrinks and more
periodic states are observed. For completeness, to have a comprehensive comprehension
of the aforementioned characteristics, Figure 3 portrays the discrete time evolution of
the states z1 and z2 of the proposed commensurate system (3) while Figure 4 depicts
the results of different phase portraits for ϑ = 0.99, ϑ = 0.9947, ϑ = 0.995, ϑ = 0.9956,
ϑ = 0.998 and ϑ = 1. It is clear that the trajectories of the proposed commensurate fractional
discrete model change their motion between chaotic motion and periodic ones when the
commensurate order ϑ varied. These numerical computations indicate that the predator–
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prey discrete-time Leslie–Gower model with commensurate fractional order (3) has various
interesting dynamical characteristics.

(a) (b)
Figure 1. (a) Bifurcation of (3) for ϑ ∈ (0, 1). (b) The corresponding LEmax.

(a) (b)

(c)
Figure 2. Bifurcations of (3) where m ∈ (0, 1) for (a) ϑ = 0.99, (b) ϑ = 0.995, (c) ϑ = 0.998.
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(a) ϑ = 0.99 (b) ϑ = 0.9947

(c) ϑ = 0.995 (d) ϑ = 0.9956

(e) ϑ = 0.998 (f) ϑ = 1
Figure 3. Time evolution of the states of (3) (z1(r) (blue line) and z2(r) (red line)) for δ1 = 3.3, δ2 = 1,
α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5, m = 0.9 and I.C (z1(0), z2(0)) = (1, 2).

(a) ϑ = 0.99 (b) ϑ = 0.9947
Figure 4. Cont.
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(c) ϑ = 0.995 (d) ϑ = 0.9956

(e) ϑ = 0.998 (f) ϑ = 1
Figure 4. Phase portraits of (3) for δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5,
m = 0.9 and I.C (z1(0), z2(0)) = (1, 2).

3.2. Incommensurate Fractional Discrete System

In this section, the focus is on studying the dynamics of a fractional discrete-time
predator–prey Leslie–Gower system with incommensurate fractional orders. An incom-
mensurate order system involves assigning unique fractional values to each equation in the
model. Therefore, the discrete system can be expressed as an incommensurate fractional
discrete predator–prey Leslie–Gower model with an Allee effect on the predator population
as follows:

c∆ϑ1
a z1(r) = z1(r + ϑ1 − 1)exp

[
δ1 − αz1(r + ϑ1 − 1)− h1z2(r + ϑ1 − 1)

z1(r + ϑ1 − 1) + b

]
− z1(r + ϑ1 − 1), r ∈ Na−ϑ1+1

c∆ϑ2
a z2(r) = z2(r + ϑ2 − 1)exp

[
δ2z2(r + ϑ2 − 1)

z2(r + ϑ2 − 1) + m
− h2z2(r + ϑ2 − 1)

z1(r + ϑ2 − 1) + c

]
− z2(r + ϑ2 − 1), r ∈ Na−ϑ2+1.

(15)

The numerical formula of the incommensurate fractional discrete-time predator–prey
Leslie–Gower model (15), using Theorem 1, is described as:

z1(r + 1) = z1(0) +
n
∑

k=0

Γ(r−1−k+ϑ1)
Γ(ϑ1)Γ(r−k)

(
z1(k)exp

[
δ1 − αz1(k)− h1z2(k)

z1(k)+b

]
− z1(k)

)
,

z2(r + 1) = z2(0) +
n
∑

k=0

Γ(r−1−k+ϑ2)
Γ(ϑ2)Γ(r−k)

(
z2(k)exp

[
δ2z2(k)

z2(k)+m −
h2z2(k)
z1(k)+c

]
− z2(k)

)
, r = 1, 2, · · · .

(16)

To illustrate the impact of the incommensurate order on the behaviours of the frac-
tional discrete-time predator–prey Leslie–Gower model (15), we set the system parameters
δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5, m = 0.9 and I.C
(z1(0), z2(0)) = (1, 2), Figure 5 shows the resulting phase plots for different incommensu-
rate order. As can be observed in Figure 5, the system (15) displays periodic behaviour for
(ϑ1ϑ2) = (0.92, 0.15) and it displays chaotic behaviour for chosen fractional incommensu-
rate orders. Still, the shape of the attractors differs from one fractional incommensurate
orders to another and the attractors are extremely different from those obtained in Figure 4.



Axioms 2023, 12, 561 9 of 16

These results prove that the choice of the fractional incommensurate order influences the
shape of the attractors of the system (15).

(a) (ϑ1ϑ2) = (0.92, 0.15) (b) (ϑ1ϑ2) = (0.96, 0.15)

(c) (ϑ1ϑ2) = (0.97, 0.15) (d) (ϑ1ϑ2) = (1, 0.05)

(e) (ϑ1ϑ2) = (1, 0.15) (f) (ϑ1ϑ2) = (1, 0.7)
Figure 5. Phase portraits of (15) for δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5,
m = 0.9 and I.C (z1(0), z2(0)) = (1, 2).

Since the phase plots are not definitive to describe the nature of the dynamics of the
system, we are going to observe the bifurcation and the maximum Lyapunov exponents
plots concerning the parameter m ∈ [0, 1] to give more precise details on the dynamics of
the system (15). We draw bifurcations and its LEmax for three different fractional incom-
mensurate orders (ϑ1, ϑ2) = (0.96, 0.15), (ϑ1, ϑ2) = (1, 0.15), and (ϑ1, ϑ2) = (1, 0.7) and
with the values δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5, m = 0.9
and I.C (z1(0), z2(0)) = (1, 2) as illustrated in Figure 6. When looking at Figure 6, it is easy
to observe that the shape of the bifurcation diagrams is different for the three proposed
incommensurate orders. In addition, when we change the value of the incommensurate
orders ϑ1 and ϑ2, the stability region shrink and the chaotic region expand.
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(a) (b)

(c)
Figure 6. Bifurcation of (15) versus δ for (a) (ϑ1, ϑ2) = (0.96, 0.15) (b) (ϑ1, ϑ2) = (1, 0.15) (c) (ϑ1, ϑ2) =

(1, 0.7).

Furthermore, to gain a more precise understanding of the impact of incommensurate
orders on the dynamics of the discrete predator–prey Leslie–Gower model with an Allee
effect on the predator population (15), we have fixed ϑ1 = 1 and generated a bifurcation
diagram along with a plot of its LEmax when ϑ2 ∈ (0, 1] and using the same parameters
stated earlier. From Figure 7, we can see that when the incommensurate order ϑ2 close to 0,
the trajectories becomes chaotic and the LEmax values are positive. When ϑ2 ∈ [0.138, 0.194],
stable trajectories are obtained with the appearance of the periodic motion with 2, 4 and
8-period orbits. When ϑ2 increases, the trajectories of the suggested incommensurate frac-
tional discrete-time predator–prey Leslie–Gower model (15) gradually evolve from a stable
to a chaotic motion by means of period-doubling bifurcation. In addition, if we continue
increases ϑ2, another smal periodic window are shonw in the interval ϑ2 ∈ [0.32, 0.332] and
when ϑ2 becomes large and close to 1, the incommensurate fractional discrete predator–prey
Leslie–Gower model (15) become totally chaotic and the LEmax takes their highest value.

(a) (b)
Figure 7. (a) Bifurcation of (15) versus ϑ2 for ϑ1 = 1 (b) The corresponding LEmax.
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Next, we draw the bifurcation chart and its LEmax of the proposed new incommensu-
rate fractional discrete predator–prey Leslie–Gower model (15) versus ϑ1 ∈ (0.92, 1] and we
chose the incommensurate orders as ϑ2 = 0.15. From Figure 8, in contrast to the previous
cases, we observe that the trajectories of the incommensurate model are stable when the
order ϑ1 takes larger values and approaches 1 in which the values of LEmax appreoches
0. In addition, when ϑ1 decreases, periodic windows disappears and chaos are observed
where the values of LEmax are positive. If the incommensurate order ϑ1 decrease further,
a transition states are observed and when the order continues to decrease, the trajecto-
ries converge toward infinity. According to these results, varying in the incommensurate
order have an effect on the dynamical properties of a fractional discrete predator–prey
Leslie–Gower model with an Allee effect on the predator population (15) suggesting that
the system’s behaviors can be more precisely depicted by incommensurate order values.

(a) (b)
Figure 8. (a) Bifurcation of (15) versus ϑ1 for ϑ2 = 0.15 (b) The corresponding LEmax.

4. The 0–1 Test for Chaos and the Complexity Analysis of the Model

This section presents an analysis of the complexity of chaotic behaviours as a means
of assessing the dynamical characteristics of chaotic models. Specifically, it is observed
that as the level of complexity increases, the degree of chaos exhibited by the system also
intensifies. The present study assesses the complexity of the proposed predator–prey
discrete-time Leslie–Gower model with an Allee impact on the predator population. This
evaluation is conducted through the utilization of the approximate entropy test and the C0
complexity algorithm. In addition, we will use the 0–1 method to confirm the chaos within
the system.

4.1. The 0–1 Test of the Model

Here, we will employ the 0–1 test approach, which was provided by Gottwald and
Melbourne [31], in order to detect the difference between chaotic and regular behaviors
in dynamic systems. We take the series data as input, and if the dynamics of the model
are chaotic, the output will be close to 1, otherwise, it will be close to 0. Furthermore, we
describe the test as follows:

Firstly, by using the time series (z1(m))m=1,...,N , we establish the translation variables
as follows:

pς(k) =
k

∑
m=1

z1(m)cos(iς) , qς(k) =
k

∑
m=1

z1(m)sin(iς), k = 1, 2, . . . , N. (17)

The (pς− qς) chart is used to detect whether or not chaotic behaviours of the proposed
FDNN model occur. If the trajectories of pς and qς are bounded, the dynamical behaviours
of the model are regular, but if they indicate Brownian-like behaviour, the system’s dy-
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namics are chaotic. Furthermore, we introduce the mean square displacement formula as
follows:

Mς(k) =
1
N

N

∑
m=1

[(
pς(m + k)− pς(m)

)2
+
(
qς(m + k)− qς(m)

)2
]
, k ≤ N

10
. (18)

Finally, we represent the asymptotic growth by:

Kς = lim
k→∞

log Mς

log k
. (19)

The growth rate K = median(Kς) allows the distinction between nonchaotic and
chaotic motions in the proposed commensurate FDNN model (3). If K is closer to 0, this
suggests that the model is not chaotic, whereas if K is closer to 1, the model is chaotic.

To validate the occurrence of chaotic behaviours in the commensurate order fractional
discrete predator–prey Leslie–Gower model with an Allee effect on the predator population
(3) and the incommensurate fractional discrete predator–prey Leslie–Gower model with
an Allee effect on the predator population (15), the results of the p− q plots for different
commensurate and incommensurate values are displayed in Figures 9 and 10, respectively.
The bounded trajectories depicted in Figures 9b,c and 10b serve as clear that the system in
question is periodic. In contrast, Figures 9a and 10a,c display Brownian-like trajectories,
confirming the occurrence of chaotic motions in both the commensurate model (3) and the
incommensurate model (15).

(a) (b) (c)
Figure 9. The (p− q) plots of the commensurate fractional discrete predator–prey Leslie–Gower
model with an Allee effect on the predator population (3) for (a) ϑ = 0.99 (b) ϑ = 0.995 (c) ϑ = 0.998.

(a) (b) (c)
Figure 10. The (p− q) plots of the incommensurate fractional discrete predator–prey Leslie–Gower
model with an Allee effect on the predator population (15) for (a) (ϑ1, ϑ2) = (0.96, 0.15)
(b) (ϑ1, ϑ2) = (1, 0.15) (c) (ϑ1, ϑ2) = (1, 0.7).

4.2. The ApEn of the Model

Next, we describe the complexity of the fractional discrete predator–prey Leslie–Gower
model with an Allee effect on the predator population (3) by using the approximate entropy
(ApEn) algorithm [32]. The ApEn is a measure of the complexity of systems generated by a
time series. Note that a time series with a higher value of ApEn are more complex ones. To
calculate ApEn, we define first n−m + 1 vectors as follows:
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Z(i) = [z(i), . . . , z(i + m− 1)], (20)

for i ∈ [1, n−m + 1] where z(1), z(2), . . . , z(n) is a set of discrete points. In addition, we
describe the following equation:

Cm
i (r) =

K
n−m + 1

, (21)

where K is the number of Z(i) having d(Z(i), Z(j)) ≤ r. Note that the value of the
approximate entropy depends on two important parameters: the similar tolerance r and
the embedding dimension m. Here, we set m = 2 and r = 0.2std(Z) where std(Z) is the
standard deviation of the data Z. Theoretically, the ApEn is calculated as:

ApEn = φm(r)− φm+1(r) (22)

where,

φm(r) =
1

n−m− 1

n−m+1

∑
i=0

log Cm
i (r). (23)

Setting the parameters δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5,
c = 0.5, m = 0.9 and I.C (z1(0), z2(0)) = (1, 2), the approximate entropy test results of the
commensurate fractional discrete predator–prey Leslie–Gower model with an Allee effect
on the predator population (3) and the incommensurate fractional discrete predator–prey
Leslie–Gower model with an Allee effect on the predator population (15) are shown in
Figure 11. It is evident that a time series with greater complexity is necessary to achieve
higher ApEn values. Consequently, these results align with the maximum Lyapunov expo-
nents (LEmax) outcomes that were shown before, which therefore validates the existence of
chaos in the model under consideration.

(a) (b)

(c)
Figure 11. The ApEn of the fractional discrete predator–prey Leslie–Gower model with an Allee
effect on the predator population for δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5,
m = 0.9 and I.C (z1(0), z2(0)) = (1, 2) (a) versus ϑ, (b) versus ϑ1 for ϑ2 = 0.15, (c) versus ϑ2 for
ϑ1 = 1 .
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4.3. The C0 Complexity of the Model

In this part, we use the C0 complexity method based on the inverse Fourier transform
to figure out the complexity of the suggested fractional discrete system. The following is
the description of the algorithm [33,34]:

For a sequence Z(0), . . . , Z(N − 1), the C0 complexity algorithm is given as follows:
1. We compute the Fourier transform of the sequence x(m) by:

ZN(l) =
1
N

N−1

∑
l=0

x(l) exp−2πi( kj
N ), l = 0, 1, . . . , N − 1. (24)

2. We figure out the mean square by: GN = 1
N ∑N−1

l=0 |ZN(l)|2 and we define

Z̄N(l) =

{
ZN(l) if ‖ZN(l)‖2 > rGN ,
0 if ‖ZN(l)‖2 ≤ rGN .

(25)

3. We determine the inverse Fourier transform using the following formula:

ξ(ι) =
1
N

N−1

∑
l=0

z̄N(l) exp2πi( ιl
N ), ι = 0, 1, . . . , N − 1. (26)

4. The complexity of C0 is figured out by using the following formula:

C0 =
∑N−1

ι=0 ‖ξ(ι)− x(ι)‖
∑N−1

ι=0 ‖x(ι)‖2.
(27)

The C0 complexity of the fractional discrete predator–prey Leslie–Gower model with
an Allee effect on the predator population is shown in Figure 12 for δ1 = 3.3, δ2 = 1, α = 3.3,
h1 = 1.2, h2 = 0.525, b = 2.5, c = 0.5, m = 0.9 and I.C (z1(0), z2(0)) = (1, 2) and with
different fractional order values, which confirms that the C0 complexity measure the chaos
effectively since the obtained results are consistent with the results obtained previously.

(a) (b)

(c)
Figure 12. The C0 complexity of the fractional discrete predator–prey Leslie–Gower model with an
Allee effect on the predator population for δ1 = 3.3, δ2 = 1, α = 3.3, h1 = 1.2, h2 = 0.525, b = 2.5,
c = 0.5, m = 0.9 and I.C (z1(0), z2(0)) = (1, 2) (a) versus ϑ, (b) versus ϑ1 for ϑ2 = 0.15, (c) versus ϑ2

for ϑ1 = 1.
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5. Conclusions

In this article, we presented a novel two-dimensional fractional predator–prey Leslie–
Gower model with an Allee effect on the predator population which is dependent on
commensurate and incommensurate orders. The study revealed that the system exhibits
intricate and diverse dynamical characteristics. The commensurate and incommensurate
fractional order cases are examined using various methods such as plotting phase portraits,
creating bifurcation charts, calculating the Lyapunov exponent and using the 0–1 test.
Complexity was measured using the ApEn algorithm and C0 test, which confirmed chaos
in the model. The results indicate that the proposed model produces chaotic behaviours
with a higher complexity degree and a broader range of chaotic regions when fractional
orders are varied. Finally, numerical simulations using MATLAB are conducted to verify
the findings.
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