Next Article in Journal
Efficient Method to Solve the Monge–Kantarovich Problem Using Wavelet Analysis
Next Article in Special Issue
Some New Estimates of Hermite–Hadamard Inequality with Application
Previous Article in Journal
Editorial: Overview and Some New Directions
Previous Article in Special Issue
Self-Improving Properties of Continuous and Discrete Muckenhoupt Weights: A Unified Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Inequalities for the Windowed Linear Canonical Transform of Complex Functions

1
School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
2
School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(6), 554; https://doi.org/10.3390/axioms12060554
Submission received: 26 April 2023 / Revised: 29 May 2023 / Accepted: 29 May 2023 / Published: 4 June 2023

Abstract

:
In this paper, we generalize the N-dimensional Heisenberg’s inequalities for the windowed linear canonical transform (WLCT) of a complex function. Firstly, the definition for N-dimensional WLCT of a complex function is given. In addition, the N-dimensional Heisenberg’s inequality for the linear canonical transform (LCT) is derived. It shows that the lower bound is related to the covariance and can be achieved by a complex chirp function with a Gaussian function. Finally, the N-dimensional Heisenberg’s inequality for the WLCT is exploited. In special cases, its corollary can be obtained.
MSC:
42A38; 42B10; 94A12; 30E20; 44A30

1. Introduction

Inequalities for the Fourier transform (FT) are widely used in mathematics, physics and engineering [1,2,3,4,5,6]. The classical N-dimensional Heisenberg’s inequality of the FT is given by the following formula [7]:
R N ( t t f ) 2 f ( t ) 2 d t R N ( u u f ) 2 f ^ ( u ) 2 d u ð f L 2 ( R N ) 4 ,
where ð = ( N 4 π ) 2 , t = ( t 1 , t 2 , , t N ) , u = ( u 1 , u 2 , , u N ) . f ^ ( u ) is the FT of any function f L 2 ( R N ) ,
f ^ ( u ) = F { f ( t ) } ( u ) = 1 2 π R N f ( t ) e i t u d t ,
t f = R N t f ( t ) 2 d t ,
u f = R N u f ^ ( u ) 2 d u ,
f L 2 ( R N ) 2 = f 2 = R N | f ( t ) | 2 d t ,
Based on Formula (1), Zhang obtained the N-dimensional Heisenberg’s inequality of the fractional Fourier transform (FRFT) [8].
The windowed linear canonical transform (WLCT) [9,10,11] is a generalized integral transform of the FT [12] and the FRFT [13]. In recent years, inequality of the WLCT has become a hot topic. Many scholars [14,15,16,17] have studied different types of inequalities for the WLCT.
The purpose of this paper is to obtain various kinds of N-dimensional inequalities associated with the WLCT.

2. Preliminary

Let any function f ( t ) = f 1 ( t ) e i ϕ ( t ) L 2 ( R N ) and window function 0 g ( t ) = g 1 ( t ) e i φ ( t ) L 2 ( R N ) .
Definition 1.
([18]). Let A = a b c d be a matrix parameter satisfying a , b , c , d R and a d b c = 1 . For any function f ( t ) , the linear canonical transform (LCT) of f ( t ) is defined as
L A f ( u ) = L A [ f ( t ) ] ( u ) = R N f ( t ) K A ( t , u ) d t , b 0 d e i c d 2 u 2 f ( d u ) ) , b = 0
where
K A ( t , u ) = 1 i 2 π b e i a 2 b t 2 i 1 b tu + i d 2 b u 2 .
Additionally, the paper [19] presented the following properties:
K A * ( t , u ) = K A 1 ( u , t ) ,
2 π δ ( x ) = R N e ± i ux d u ,
where A 1 = d b c a , x = ( x 1 , x 2 , , x N ) .
If b = 0 , then the LCT becomes a kind of scaling and chirp multiplication operations [20]. In this paper, we only consider b 0 .
The inverse formula of the LCT is given by [19]
f ( t ) = R N L A f ( u ) K A 1 ( u , t ) d u .
Definition 2.
([9]). Let A = a b c d be a matrix parameter satisfying a , b , c , d R and a d b c = 1 . The WLCT of function f with respect to g is defined by
W g A f ( t , u ) = R N f ( y ) g * ( y t ) K A ( y , u ) d y = R N f t ( y ) K A ( y , u ) d y ,
where y = ( y 1 , y 2 , , y N ) and f t ( y ) = f ( y ) g * ( y t ) = f 1 ( y ) g 1 * ( y t ) e i ( ϕ ( y ) φ ( y t ) ) .
Next, we will give a lemma.
Lemma 1.
For f L 2 ( R N ) and g L 2 ( R N ) , we have
W g A f ( t , u ) = R N L A f ( k ) Q * ( k | u , t ) d k ,
where A 1 = 0 b 1 b d , 0 b = b R ,
Q * ( k | u , t ) = i 2 π b e i d 2 b ( k u ) 2 L A 1 g ( k u ) * K A ( t , u ) K A * ( t , k ) .
Proof. 
According to Definition 2 and Formula (10), we obtain
W g A f ( t , u ) = R N f ( y ) g ( y t ) ¯ K A ( y , u ) d y = R N L A f ( k ) R N K A 1 ( k , y ) g ( y t ) ¯ K A ( y , u ) d y d k .
Assume that Q * ( k | u , t ) = R N K A 1 ( k , y ) g ( y t ¯ K A ( y , u ) d y and y t = p , then
Q * ( k | u , t ) = R N K A 1 ( k , y ) g ( y t ¯ K A ( y , u ) d y = R N g ( p ) ¯ 1 i 2 π b 1 i 2 π b e i ( u k ) b ( p + t ) + i d 2 b ( u 2 k 2 ) d p = 1 i 2 π b R N 1 i 2 π b g ( p ) ¯ e i 0 2 b p 2 i ( k u ) b p + i d 2 b ( k u ) 2 d p × e i d 2 b ( k u ) 2 + i d 2 b ( u 2 k 2 ) i ( u k ) b t = 1 i 2 π b e i d 2 b ( k u ) 2 L A 1 g ( k u ) * e i ut b + i d 2 b u 2 e i k t b + i d 2 b k 2 = i 2 π b e i d 2 b ( k u ) 2 L A 1 g ( k u ) * K A ( t , u ) K A * ( t , k ) .
Hence the Formula (13) becomes (12). □

3. Inequalities Associated with the WLCT

The aim of this section is to obtain the new inequalities for the WLCT by the precise mathematical formulation.
Definition 3.
Let f L 2 ( R N ) , then we can define [21]
t f = 1 E R N t f ( t ) 2 d t ,
u f = 1 E R N u f ^ ( u ) 2 d u ,
u f A = 1 E R N u L A f ( u ) 2 d u .
Δ f 2 = 1 E R N ( t t f ) 2 f ( t ) 2 d t ,
Λ f 2 = 1 E R N ( u u f ) 2 f ^ ( u ) 2 d u ,
Λ A , f 2 = 1 E R N ( u u f A ) 2 L A f ( u ) 2 d u ,
where
E = R N f ( t ) 2 d t = R N L A f ( u ) 2 d u = R N f ^ ( u ) 2 d u ,
t f = ( t 1 f , t 2 f , , t N f ) ,
t k f = 1 E R N t k f ( t ) 2 d t ,
u f = ( u 1 f , u 2 f , , u N f ) ,
u k f = 1 E R N u k f ^ ( u ) 2 d u .
Zhang [8] has generalized the N-dimensional Heisenberg’s inequality of the FT for complex function. It can be restated as follows:
Lemma 2.
Let f ( t ) = f 1 ( t ) e i ϕ ( t ) L 2 ( R N ) , for any 1 ε N , the classical partial derivatives f t ε , f 1 t ε , ϕ t ε exist at any point t R N , then the inequality of the N-dimensional FT can be obtained:
Δ f 2 Λ f 2 N 2 16 π 2 f 2 + C O V f 2 ,
where
C O V f = R N | t t f | | ϖ t ϕ u f | f 1 2 ( t ) d t ,
and ϖ t ϕ = ( ϕ t 1 , ϕ t 2 , ϕ t N ) . If ϖ t ϕ is continuous and f 1 0 , then the equality holds if and only if f ( t ) is a chirp function, the function is
f ( t ) = e | t t f | 2 2 ϵ + ι e 2 π i 1 2 ϑ κ = 1 N ϱ ( t κ ) | t κ t κ f | 2 + t u f + ι σ = 1 N ϱ ( t σ ) ,
where ϵ , ϑ > 0 and ι , ι σ = 1 N ϱ ( t σ ) R ,
ϱ ( t σ ) = 1 , σ z 1 τ 1 , σ z 2 τ s g n ( t σ t σ f ) , σ z 3 τ s g n ( t σ t σ f ) , σ z 4 τ ,
z 1 τ = { z 11 , z 12 , , z 1 τ } = 1 s N ϕ t s = 1 ϑ ( t s t s f ) + u s f ,
z 2 τ = { z 21 , z 22 , , z 2 τ } = 1 s N ϕ t s = 1 ϑ ( t s t s f ) + u s f ,
z 3 τ = { z 31 , z 32 , , z 3 τ } = 1 s N ϕ t s = 1 ϑ ( t s t s f ) + u s f , t s t s f 1 ϑ ( t s t s f ) + u s f , t s < t s f ,
z 4 τ = { z 41 , z 42 , , z 4 τ } = 1 s N ϕ t s = 1 ϑ ( t s t s f ) + u s f , t s t s f 1 ϑ ( t s t s f ) + u s f , t s < t s f ,
and ρ = 1 4 z ρ τ = { 1 , 2 , , N } , z ρ τ z ρ τ = for ρ ρ .
Theorem 1.
Let f ( t ) = f 1 ( t ) e i ϕ ( t ) L 2 ( R N ) , t f ( t ) L 2 ( R N ) , for any 1 ε N the classical partial derivatives f t ε , f 1 t ε , ϕ t ε exist at any point t R N , E = 1 , then inequality of the N-dimensional LCT can be obtained
Δ f 2 Λ A , f 2 ( b N ) 2 i 16 π 2 f 2 + C O V f , A 2 ,
where
C O V f , A = R N | t t f | | ϖ t ϕ u f A | f 1 2 ( t ) d t ,
ϕ ( t ) = ϕ ( t ) + a 2 b t 2 and ϖ t ϕ = ( ϕ t 1 , ϕ t 2 , ϕ t N ) , If ϖ t ϕ is continuous and f 1 0 , then the equality holds if and only if f ( t ) is a chirp function (28).
Proof. 
According to the Formulas (2) and (6), we have
L A [ f ( t ) ] ( u ) = 1 i b F { f ( t ) e i a 2 b t 2 } u b e i d 2 b u 2 ,
let u = u b and f ( t ) = f ( t ) e i a 2 b t 2 , then
Δ f 2 Λ A , f 2 = R N ( t t f ) 2 f ( t ) 2 d t R N ( u u f A ) 2 L A f ( u ) 2 d u = 1 i b R N ( t t f ) 2 f ( t ) 2 d t R N ( u u f A ) 2 F { f ( t ) } u b 2 d u = b 2 i R N ( t t f ) 2 f ( t ) 2 d t R N ( u u f A ) 2 F { f ( t ) } u 2 d u .
By the Formula (26), we have
Δ f 2 Λ A , f 2 ( b N ) 2 i 16 π 2 f 2 + C O V f , A 2 .
Corollary 1.
When A = 0 1 1 0 , the above theorem can become the Lemma 2.
Corollary 2.
When A = cos α sin α sin α cos α , the above theorem can reduce the N-dimensional Heisenberg’s inequality of the FRFT for complex function [8].
Definition 4.
Let f , g L 2 ( R N ) , then we can give the definition [11]
t A W = 1 W g A f ( t , u ) 2 R N R N t W g A f ( t , u ) 2 d t d u ,
u A W = 1 W g A f ( t , u ) 2 R N R N u W g A f ( t , u ) 2 d t d u ,
Φ A , W 2 = 1 W g A f ( t , u ) 2 R N R N ( t t A W ) 2 W g A f ( t , u ) 2 d t d u ,
Ψ A , W 2 = 1 W g A f ( t , u ) 2 R N R N ( u u A W ) 2 W g A f ( t , u ) 2 d t d u ,
Next, the N-dimensional Heisenberg’s inequality of the WLCT will be obtained.
Theorem 2.
Let A = a b c d be a matrix parameter satisfying a , b , c , d R and a d b c = 1 . For f ( t ) = f 1 ( t ) e i ϕ ( t ) L 2 ( R N ) , g ( t ) = g 1 ( t ) e i φ ( t ) L 2 ( R N ) , t f ( t ) L 2 ( R N ) , we have
Φ A , W 2 Ψ A , W 2 ( b N ) 2 i 16 π 2 f 2 + C O V f , A 2 + ( b N ) 2 i 16 π 2 g 2 + C O V g , A 1 2
+ 2 ( b N ) 2 i 16 π 2 f 2 + C O V f , A 2 ( b N ) 2 i 16 π 2 g 2 + C O V g , A 1 2 1 2 ,
where A 1 = 0 b 1 b d , 0 b = b R , the equality holds if and only if f ( t ) is a chirp function (28).
Proof. 
On the one hand, according to Lemma 1 and the Formula (9), we obtain
W g A f ( t , u ) 2 = R N R N | W g A f ( t , u ) | 2 d t d u = R N R N [ R N L A f ( m ) i 2 π b e i d 2 b ( m u ) 2 × L A 1 g ( m u ) * K A ( t , u ) K A * ( t , m ) d m ] × [ R N L A f ( n ) i 2 π b e i d 2 b ( n u ) 2 × L A 1 g ( n u ) * K A ( t , u ) K A * ( t , n ) d n ] * d t d u = R N R N | L A f ( m ) | 2 | L A 1 g ( m u ) | 2 d m d u .
Let m u = v , then
W g A f ( t , u ) 2 = R N R N | L A f ( m ) | 2 | L A 1 g ( v ) | 2 d m d v = L A f ( m ) 2 L A 1 g ( v ) 2 .
Moreover, we obtain
t A W = 1 W g A f ( t , u ) 2 R N R N t W g A f ( t , u ) 2 d t d u = 1 L A f ( m ) 2 L A 1 g ( v ) 2 R N R N t R N f ( m ) g ( m t ) ¯ K A ( m , u ) d m × R N f ( n ) g ( n t ) ¯ K A ( n , u ) d n * d t d u = 1 L A f ( m ) 2 L A 1 g ( v ) 2 R N R N t | f ( m ) | 2 | g ( m t ) | 2 d m d t .
Let m t = r , then
t A W = 1 L A f ( m ) 2 L A 1 g ( v ) 2 R N R N ( m r ) | f ( m ) | 2 | g ( r ) | 2 d m d r = 1 L A f ( m ) 2 R N m | f ( m ) | 2 | d m 1 L A 1 g ( v ) 2 R N r | g ( r ) | 2 d r = t f t g .
Using the same method, we can obtain
u A W = u f A u g A 1 .
From the Formula (46), then
Ψ A , W 2 = 1 W g A f ( t , u ) 2 R N R N ( u u A W ) 2 W g A f ( t , u ) 2 d t d u = 1 L A f ( m ) 2 R N ( m u f A ) 2 | L A f ( m ) | 2 d m + 1 L A 1 g ( v ) 2 × R N ( v u g A 1 ) 2 | L A 1 g ( v ) | 2 d v 2 1 L A f ( m ) 2 × R N ( m u f A ) | L A f ( m ) | 2 d m 1 L A 1 g ( v ) 2 × R N ( v u g A 1 ) | L A 1 g ( v ) | 2 d v = Λ A , f 2 + Λ A 1 , g 2 .
From the same method, we can obtain
Φ A , W 2 = Δ f 2 + Δ g 2 ,
On the other hand, using the Formulas (48)–(51), we can obtain
Φ A , W 2 Ψ A , W 2 = ( Δ f 2 + Δ g 2 ) ( Λ A , f 2 + Λ A 1 , g 2 ) = Δ f 2 Λ A , f 2 + Δ g 2 Λ A 1 , g 2 + Δ f 2 Λ A 1 , g 2 + Δ g 2 Λ A , f 2 .
According to the fact: n 2 + m 2 2 n m , for n , m R , then
Φ A , W 2 Ψ A , W 2 = Δ f 2 Λ A , f 2 + Δ g 2 Λ A 1 , g 2 + Δ f 2 Λ A 1 , g 2 + Δ g 2 Λ A , f 2 Δ f 2 Λ A , f 2 + Δ g 2 Λ A 1 , g 2 + 2 Δ f 2 Λ A , f 2 Δ g 2 Λ A 1 , g 2 .
From the Formula (34), we can obtain the result. □
Corollary 3.
When A = cos α sin α sin α cos α , the N-dimensional Heisenberg’s inequality of the windowed fractional Fourier transform (WFRFT) [22] for the complex function can be obtained:
Φ α , W 2 Ψ α , W 2 ( sin α N ) 2 i 16 π 2 f 2 + C O V f , α 2 + ( sin α N ) 2 i 16 π 2 g 2 + C O V g , α 1 2
+ 2 ( sin α N ) 2 i 16 π 2 f 2 + C O V f , α 2 ( sin α N ) 2 i 16 π 2 g 2 + C O V g , α 1 2 1 2 ,
where
Φ α , W 2 = 1 W g α f ( t , u ) 2 R N R N ( t t α W ) 2 W g α f ( t , u ) 2 d t d u ,
Ψ α , W 2 = 1 W g α f ( t , u ) 2 R N R N ( u u α W ) 2 W g α f ( t , u ) 2 d t d u ,
t α W = 1 W g α f ( t , u ) 2 R N R N t W g α f ( t , u ) 2 d t d u ,
u α W = 1 W g α f ( t , u ) 2 R N R N u W g α f ( t , u ) 2 d t d u ,
C O V f , α = R N | t t f | | ϖ t ϕ u f , W α | f 1 2 ( t ) d t ,
C O V g , α = R N | t t g | | ϖ t ϕ u g , W α | g 1 2 ( t ) d t ,
u f , W α = 1 E R N u W g α f ( t , u ) 2 d u ,
u g , W α = 1 E R N u W g α f ( t , u ) 2 d u ,
and W g α f ( t , u ) is the WFRFT of complex function
W g α f ( t , u ) = R N f ( y ) g * ( y t ) K α ( y , u ) d y , α n π f ( u ) , α = 2 n π f ( u ) , α = ( 2 n + 1 ) π ,
and K α ( y , u ) = ( 1 i cot α ) N 2 e π i ( | y | 2 + | u | 2 ) cot α 2 π i y u csc α .
Corollary 4.
When A = 0 1 1 0 , the N-dimensional Heisenberg’s inequality of the windowed Fourier transform (WFT) [23] for the complex function can be obtained:
Φ W 2 Ψ W 2 N 2 i 16 π 2 ( f 2 + g 2 ) + C O V f 2 + C O V g 2
+ 2 N 2 i 16 π 2 f 2 + C O V f 2 N 2 i 16 π 2 g 2 + C O V g 2 1 2 ,
where
Φ W 2 = 1 W g f ( t , u ) 2 R N R N ( t t W ) 2 W g f ( t , u ) 2 d t d u ,
Ψ W 2 = 1 W g f ( t , u ) 2 R N R N ( u u W ) 2 W g f ( t , u ) 2 d t d u ,
t W = 1 W g f ( t , u ) 2 R N R N t W g f ( t , u ) 2 d t d u ,
u W = 1 W g f ( t , u ) 2 R N R N u W g f ( t , u ) 2 d t d u ,
C O V f = R N | t t f | | ϖ t ϕ u f , W | f 1 2 ( t ) d t ,
C O V g = R N | t t g | | ϖ t ϕ u g , W | g 1 2 ( t ) d t ,
u f , W = 1 E R N u W g f ( t , u ) 2 d u ,
u g , W = 1 E R N u W g f ( t , u ) 2 d u ,
and W g f ( t , u ) is the WFT of the complex function
W g f ( t , u ) = R N f ( y ) g * ( y t ) e i y u d y , α n π f ( u ) , α = 2 n π f ( u ) , α = ( 2 n + 1 ) π .

4. Conclusions

In this paper, by the N-dimensional Heisenberg’s inequality of the FT, the N-dimensional Heisenberg’s inequalities for the WLCT of a complex function are generalized. Firstly, the definition for N-dimensional WLCT of a complex function is given. In addition, according to the second-order moment of the LCT, the N-dimensional Heisenberg’s inequality for the linear canonical transform (LCT) is derived. It shows that the lower bound is related to the covariance and can be achieved by a complex chirp function with a Gaussian function. Finally, the second-order moment of the WLCT is given, the relationship between the LCT and WLCT is obtained, and the N-dimensional Heisenberg’s inequality for the WLCT is exploited. In special cases, its corollaries can be obtained.

Author Contributions

Writing-original draft, Z.-W.L. and W.-B.G. All authors contributed equally to the writing of the manuscript and read and approved the final version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Osipenko, K.Y. Inequalities for derivatives with the Fourier transform. Appl. Comput. Harmonic. Anal. 2021, 53, 132–150. [Google Scholar] [CrossRef]
  2. Grunbaum, F.A. The Heisenberg inequality for the discrete Fourier transform. Appl. Comput. Harmonic. Anal. 2003, 15, 163–167. [Google Scholar] [CrossRef] [Green Version]
  3. Lian, P. Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 2020, 148, 697–703. [Google Scholar] [CrossRef] [Green Version]
  4. De Carli, L.; Gorbachev, D.; Tikhonov, S. Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 2017, 33, 789–808. [Google Scholar] [CrossRef] [Green Version]
  5. Nicola, F.; Tilli, P. The Faber-Krahn inequality for the short-time Fourier transform. Invent. Math. 2022, 230, 1–30. [Google Scholar] [CrossRef]
  6. Johansen, T.R. Weighted inequalities and uncertainty principles for the (k, a)-generalized Fourier transform. Int. J. Math. 2016, 27, 1650019. [Google Scholar] [CrossRef]
  7. Hardin, D.P.; Northington V, M.C.; Powell, A.M. A sharp balian-low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmonic. Anal. 2018, 44, 294–311. [Google Scholar] [CrossRef] [Green Version]
  8. Zhang, Z.C.; Han, Y.P.; Sun, Y.; Wu, A.Y.; Shi, X.Y.; Qiang, S.Z.; Jiang, X.; Wang, G.; Liu, L.B. Heisenberg’s uncertainty principle for n-dimensional fractional fourier transform of complex-valued functions. Optik 2021, 242, 167052. [Google Scholar] [CrossRef]
  9. Kou, K.I.; Xu, R.H. Windowed linear canonical transform and its applications. Signal Process. 2012, 92, 179–188. [Google Scholar] [CrossRef]
  10. Wei, D.Y.; Hu, H.M. Theory and applications of short-time linear canonical transform. Digit Signal Process. 2021, 118, 103239. [Google Scholar] [CrossRef]
  11. Gao, W.B.; Li, B.Z. Uncertainty principles for the short-time linear canonical transform of complex signals. Digital Signal Process. 2021, 111, 102953. [Google Scholar] [CrossRef]
  12. Atanasova, S.; Maksimovic, S.; Pilipovic, S. Characterization of wave fronts of Ultradistributions using directional short-time Fourier transform. Axioms 2022, 10, 240. [Google Scholar] [CrossRef]
  13. Tao, R.; Deng, B.; Wang, Y. Fractional Fourier Transform and Its Applications; Tsinghua University Press: Beijing, China, 2009. [Google Scholar]
  14. Bahri, M.; Ashino, R. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 2016, 14, 1650015. [Google Scholar] [CrossRef] [Green Version]
  15. Huang, L.; Zhang, K.; Chai, Y.; Xu, S.Q. Computation of the short-time linear canonical transform with dual window. Math. Probl. Eng. 2017, 2017, 4127875. [Google Scholar] [CrossRef] [Green Version]
  16. Kou, K.I.; Xu, R.H.; Zhang, Y.H. Paley-Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 2012, 35, 2122–2132. [Google Scholar] [CrossRef]
  17. Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two-dimensional signals. Adv. Appl. Clifford Algebras 2020, 30, 16. [Google Scholar] [CrossRef]
  18. Kumar, M.; Pradhan, T. A framework of linear canonical transform on pseudo-differential operators and its application. Math. Methods Appl. Sci. 2021, 44, 11425–11443. [Google Scholar] [CrossRef]
  19. Xu, T.Z.; Li, B.Z. Linear Canonical Transform and Its Applications; Science Press: Beijing, China, 2013. [Google Scholar]
  20. Wolf, K.R. Integral Transforms in Science and Engineering; Plenum Press: New York, NY, USA, 1979. [Google Scholar]
  21. Dang, P.; Deng, G.T.; Qian, T. A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 2013, 61, 5153–5164. [Google Scholar] [CrossRef]
  22. Gao, W.B.; Li, B.Z. Convolution theorem involving n-dimensional windowed fractional Fourier transform. Sci. China Inf. Sci. 2021, 64, 169302:1–169302:3. [Google Scholar] [CrossRef]
  23. Gao, W.B.; Li, B.Z. Octonion short-time Fourier transform for time-frequency representation and its applications. IEEE Trans. Signal Process. 2021, 69, 6386–6398. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Z.-W.; Gao, W.-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms 2023, 12, 554. https://doi.org/10.3390/axioms12060554

AMA Style

Li Z-W, Gao W-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms. 2023; 12(6):554. https://doi.org/10.3390/axioms12060554

Chicago/Turabian Style

Li, Zhen-Wei, and Wen-Biao Gao. 2023. "Inequalities for the Windowed Linear Canonical Transform of Complex Functions" Axioms 12, no. 6: 554. https://doi.org/10.3390/axioms12060554

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop