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Abstract: The diagnosis of structural damage usually belongs to a mathematical inverse problem.
This work presents a novel frequency-shift flexibility sensitivity algorithm for structural damage
assessment using only the first-order vibration mode to achieve the goal of successfully identifying
structural damage with fewer modal parameters. The core idea of the proposed method is to make the
first-order vibration mode contribute the most to a structural flexibility matrix through the frequency-
shift operation. A high-precision flexibility matrix can be obtained after the frequency-shift operation,
which only needs the first mode of structural free vibration. Through this special advantage, structural
damage coefficients can be accurately calculated by the frequency-shift flexibility sensitivity equation.
Thus, a reliable identification result can be obtained according to the values of the calculated damage
coefficients. In some engineering applications, another advantage of the proposed method is that
it does not require a complete finite element modeling process, as long as a few lower-frequency
vibration modes of the intact structure are measured. A truss structure and a beam structure are
used as two numerical examples to demonstrate the proposed approach. The results show that the
proposed method has higher calculation accuracy than the ordinary flexibility sensitivity method by
using only the first-order vibration mode. The proposed method can overcome possible misdiagnosis
of the ordinary flexibility sensitivity method. It also has been shown that the proposed method may
have the potential to identify minor damage in a structure. Using the experimental data of a steel
frame structure, the effectiveness and reliability of the proposed method have been further verified.
The proposed method provides a simple way for structural damage identification with only a few
vibration modal data.

Keywords: damage diagnosis; frequency-shift flexibility; sensitivity analysis; vibration mode;
damage parameter

MSC: 65M32

1. Introduction

During the service period, an engineering structure will inevitably be damaged due to
the influence of environmental corrosion or a disaster load. Local damage in a structure may
lead to a sudden collapse of the whole structure, thus causing serious loss of life or property.
In view of this, it is very necessary to conduct timely damage diagnosis for a structure to
avoid catastrophic consequences. Due to the large volume and numerous components of
engineering structures, traditional non-destructive testing techniques such as ultrasound,
radiographic testing, and penetration testing cannot complete defect diagnosis of large
engineering structures. In the past few decades, methods for diagnosing structural damage
using the response parameters of structures under static or dynamic loads have been
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continuously studied in depth. The theoretical basis for this type of method is that faults
in structures can cause changes in structural static and vibration response parameters. In
practice, the response data of structures can be measured through special testing equipment,
and then their changes can be used to diagnose structural fault conditions. In view of this,
many methods based on static or dynamic response parameters have been developed for
structural damage identification [1–3] in recent years. These methods can be mathematically
attributed to an inverse problem.

Among these methods, the flexibility-based approach is favored because of its simple
operation and wide application [4]. It is known that a structural flexibility matrix can be
obtained from both static data and the low-order vibration modes. Pandey and Biswas [5]
used the flexibility matrix change to determine the damage location of the beam structure
without constructing the finite element model (FEM). It was found that the diagonal element
in the flexibility difference matrix can indicate the damage location. Jaishi and Ren [6]
employed the flexibility difference as the objective function to modify the structural FEM
for detecting structural damage. Catbas et al. [7] found that the dynamic test without a
fixed reference measurement position can also be used to generate data for calculating the
modal flexibility. Then, the displacement distribution can be obtained by using the modal
flexibility for damage detection. Duan et al. [8] extended the damage location method
based on flexibility to the case of environmental vibration with incomplete measured
degrees of freedom (DOFs). Tomaszewska [9] discussed the damage detection method
based on the structural dynamic flexibility of the building structure. In order to distinguish
the true and false damage detection results, the absolute damage index was proposed
to constrain the influence of the modal identification errors. Yang [10] proposed a new
damage identification method based on structural flexible disassembly. The scheme has
a unique advantage in that it can accurately calculate the stiffness damage parameters
without any high-order sensitivity analysis or iteration. Maghsoodi et al. [11] proposed a
simple method based on local flexibility to detect, locate, and quantify multiple cracks in
Euler–Bernoulli multi-step beams. The main advantage of their method is that it can detect
a number of unknown cracks.

Weng et al. [12] presented a new substructure method for structural damage detection
by using the substructure dynamic flexibility matrix. The main advantage of their method
is that the substructure characteristic parameters are more sensitive to local damage than
the global characteristic parameters. Using Dempster–Shafer evidence theory, Grande and
Imbimbo [13] proposed a multi-stage flexibility method for damage detection in the case
of multiple damage locations and three-dimensional systems. Hosseinzadeh et al. [14]
developed a damage detection method by introducing an effective objective function based
on modal assurance criteria and modal flexibility. It was found that the proposed method
can only use the data of the first few modes to accurately identify the damage even if the
incomplete noise modal data are taken as the input data. Altunisik et al. [15] used modal
curvature and modal flexibility methods to locate cracks in steel cantilever beams. The
comparison shows that the modal flexibility method is effective in determining the crack
location. Wickramasinghe et al. [16] developed the vertical damage index and transverse
damage index based on the modal flexibility to detect and locate the damage of the main
cable and hanger of a suspension bridge. The results confirm the applicability of the
vertical damage index to accurately detect the damage in the actual suspension bridge by
using only the first few modes. Sarmadi et al. [17] improved the sensitivity function of
modal flexibility and proposed a new iterative regularization method to solve the ill-posed
problem to locate and quantify the damage. It was found that their method is robust enough
to solve the ill-posed problem of damage location and quantification under noise-free and
noisy modal data. Ahmadi-Nedushan and Fathnejat [18] proposed a two-stage structural
damage detection method based on modal flexibility and an improved teaching–learning
optimization algorithm to reduce the influence of measurement noise.

Feng et al. [19] proposed a Bayesian model updating method with modal flexibil-
ity to find the most probable value of the model parameters for damage identification.
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Bernagozzi et al. [20] proposed a data-driven standard for structural type classification,
which can be used in the framework of modal flexibility-based damage identification meth-
ods. Yang and Peng [21] developed a highly efficient model reduction method for structural
damage identification based on the reduced flexibility matrix. Dinh-Cong et al. [22] used
the damage index based on modal flexibility sensitivity to detect damages in functionally
graded beams. The results indicate that when the noise level added to the vibration mode
data is less than 10%, the provided method can correctly locate the position of damaged
components. Darshan et al. [23] developed the damage detection procedure based on strain
energy and a flexibility matrix to detect single and multiple damages in plate structures.
Quqa and Landi [24] proposed a damage identification method based on bridge flexibility
curvature with sparse acceleration measurement. The damage index proposed by them is
particularly sensitive to the damage location and can be successfully applied to the steel
truss bridge with different damage patterns. Nick et al. [25] proposed a damage index
based on modal flexibility and modal strain energy, and a two-stage multi-criteria damage
detection method using an artificial neural network (ANN) to locate and quantify the dam-
age of steel frames. The modal flexibility matrix was obtained by the first three bending
vibration modes. Cuomo et al. [26] proposed a new baseline free method for real-time
structural damage diagnosis during low-speed and high-speed collisions, which is based
on the decomposition of propagation patterns caused by collision events. Aulakh et al. [27]
developed the curvature and coordinated modal assurance criteria based on strain modal
flexibility for structural damage monitoring. They found that strain modal flexibility is
more sensitive to structural damage than displacement mode flexibility.

The limitation of the existing flexibility-based method is that several low-order vi-
bration modes are needed to approximately obtain the dynamic flexibility matrix. This
leads to a large workload of dynamic analysis and a high requirement for analysis accuracy.
To overcome this limitation, this work presents a novel frequency-shift flexibility sensitiv-
ity method for structural damage detection by only using the first-order vibration mode.
Based on the frequency-shift operation, the first-order vibration mode will account for the
majority of the dynamic flexibility of the structure. As a result, the damage coefficients in
structural FEM can be solved accurately through the frequency-shift flexibility sensitivity
equation, which indicates the damage locations and extents. The innovation of this work
mainly lies in two aspects. The first innovation is that the ordinary flexibility sensitivity
method has been improved through the frequency-shift operation for achieving the goal of
identifying structural damage with fewer modal parameters. The second innovation is that
in some engineering applications, the tested modal data can be used to directly compute
the frequency-shift flexibility without the need for a complete finite element modeling
process. Two numerical examples and one experimental example are used to validate the
presented frequency-shift flexibility sensitivity method. It is found that the proportion
of the higher-order vibration modes in the frequency-shift flexibility is greatly reduced.
For this reason, the damage coefficients of the structure can be calculated accurately by
the frequency-shift flexibility sensitivity analysis with only a few modal data. It has been
shown that the proposed method requires fewer modal parameters but has higher calcula-
tion accuracy than the ordinary flexibility sensitivity method. It may be a valuable new
approach to structural damage identification in engineering practice.

2. Theoretical Development

In this section, the ordinary flexibility sensitivity method is first briefly reviewed,
and then a new frequency-shift flexibility sensitivity algorithm is developed for structural
damage detection.

Based on structural FEM, the free vibration eigen-parameters can be computed by
solving the following generalized eigenvalue problem as:

Kφj = λj Mφj (1)
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where K and M are the stiffness and mass matrices of a structure with n DOFs, λj and ϕj are
the j-th eigenvalue and eigenvector (λj and ϕj, also called the j-th eigen-pair), respectively.
Similarly, the eigen-solutions of the damaged structure can be also obtained by

Kdφdj = λdj Mφdj (2)

Kd = K− ∆K (3)

∆K =
N

∑
i=1

εiKi (4)

where Kd is the damaged stiffness matrix, λdj and φdj are the j-th eigenvalue and eigenvector
of the damaged structure, ∆K is the stiffness reduction due to structural damage, εi and
Ki are the damage coefficient and elementary stiffness matrix of the i-th element in FEM,
and N is the total number of the elements in FEM. It is known that the flexibility matrix is
the inverse of the stiffness matrix and can be obtained approximately by several low-order
eigen-pairs as:

F = K−1 ≈
m

∑
j=1

1
λj

φjφ
T
j (5)

Fd = K−1
d ≈

m

∑
j=1

1
λdj

φdjφ
T
dj (6)

where F and Fd are the flexibility matrices of the undamaged and damaged structures, and
m is the number of the measured modes in the vibration testing. Subtracting (5) from (6),
one obtains:

∆F = Fd − F = K−1
d − K−1 (7)

∆F ≈
m

∑
j=1

(
1

λdj
φdjφ

T
dj −

1
λj

φjφ
T
j ) (8)

Equation (8) shows that the flexibility change ∆F can be approximately obtained by the
measured lower eigen-parameters of the structure before and after damage. Substituting
Equation (3) into (7), one obtains:

∆F = (K− ∆K)−1 − K−1 (9)

Using Neumann series expansion, Equation (9) can be further simplified as:

∆F = F · ∆K · F + F · ∆K · F · ∆K · F + · · · (10)

Ignoring the higher-order items in Equation (10) yields:

∆F = F · ∆K · F (11)

Substituting Equation (4) into (11), one obtains:

∆F =
N

∑
i=1

εiΠi (12)

Πi = FKiF (13)

Equation (12) is called the ordinary flexibility sensitivity equation and will be used to
compute the unknown damage coefficients εi ( i = 1 ∼ N) for damage identification. The
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matrix Πi is called the elementary flexibility sensitivity of the i-th element in FEM. The
operation steps of the above flexibility sensitivity method are summarized as follows:

(1) Establish the FEM of the intact structure to obtain the stiffness and mass matrices K
and M.

(2) Conduct dynamic analysis on the structure and measure the lower-order eigen-pairs
of the intact and damaged structures.

(3) Compute the flexibility change ∆F by Equation (8) and compute the elementary
flexibility sensitivity matrix Πi by Equation (13).

(4) Compute the damage coefficients εi ( i = 1 ∼ N) by solving Equation (12). Finally,
the damage locations and extents in the structure can be determined according to the
values of εi ( i = 1 ∼ N).

The advantage of the flexibility sensitivity method is that the calculation formula of
elementary flexibility sensitivity (i.e., Equation (13)) is very simple, especially compared
with the calculation formula of the eigenvector sensitivity [28]. The limitation of the or-
dinary flexibility sensitivity method is that several low-order eigen-pairs are still needed
when applying Equation (8) to calculate the flexibility change ∆F. This leads to a large
workload of dynamic analysis and a high requirement for analysis accuracy. However, only
the first mode of structural vibration, namely the fundamental frequency and mode shape,
is usually measured in practical engineering. This limits the successful application of the
traditional flexibility sensitivity method in actual engineering structural damage identifica-
tion. The method of successfully identifying structural damage using only the fundamental
frequency and mode of structural vibration will be very popular in engineering practice.

To overcome this limitation, a novel frequency-shift flexibility sensitivity method
is proposed in this work to compute the damage coefficients only using the first-order
eigen-pairs. The key idea of the proposed method is to make the first eigenvalue (λ1) of the
new system very close to zero through the frequency-shift operation. This will cause the
reciprocal of the first eigenvalue to be particularly large and far exceed the reciprocals of
other eigenvalues. As a result, the flexibility matrix of the new system can be accurately
calculated by only the first-order eigen-pairs. The specific formulas of the proposed method
are derived as follows. From Equations (1) and (2), the generalized eigenvalue equations of
the intact and damaged systems after frequency shift are expressed as:

Kφj = λj Mφj (14)

Kdφdj = λdj Mφdj (15)

K = K− µM (16)

λj = λj − µ (17)

Kd = Kd − µM (18)

λdj = λdj − µ (19)

where µ denotes the frequency-shift distance, K and Kd denote the stiffness matrices of the
intact and damaged systems after frequency shift, and λj and λdj denote the eigenvalues of
the intact and damaged systems after frequency shift. The frequency-shift operation shown
in Equations (16)–(19) has been shown to be an effective means for quickly calculating the
eigenvalues of large structures. The related content can be referred to in [29,30]. Similar
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to Equations (5) and (6), the intact and damaged flexibility matrices of the systems after
frequency shift can also be obtained approximately by several low-order eigen-pairs as:

F = K−1 ≈
m

∑
j=1

1
λj

φjφ
T
j =

m

∑
j=1

1
λj − µ

φjφ
T
j (20)

Fd = Kd
−1 ≈

m

∑
j=1

1
λdj

φdjφ
T
dj =

m

∑
j=1

1
λdj − µ

φdjφ
T
dj (21)

where F and Fd are the intact and damaged flexibility matrices of the systems after frequency
shift. As can be seen in Equation (20) or (21), the first-order eigen-pairs will contribute
most to the flexibility matrix when the frequency-shift distance µ is close to λ1 or λd1.
The basis for determining the frequency-shift distance µ is that the contribution of the
first mode to the flexibility matrix after the frequency-shift operation exceeds 95% or
more, since the allowable data error level in the engineering field is usually around 5%.
The vibration frequencies of actual engineering structures are all greater than zero and
sorted in ascending order. In view of this, a simple criterion for determining the value
of µ is that the ratio of the first to second frequency after the frequency-shift operation
is less than 5% or more. In most cases, the frequency-shift distance µ can be taken as a
number between 0.90 and 0.99 times the first eigenvalue, which can basically meet the
above requirement. Without loss of generality, taking λ1 = 1, λ2 = 5, and λ3 = 10 as
an example, the reciprocals of these eigenvalues are 1

λ1
= 1, 1

λ2
= 0.2, and 1

λ3
= 0.1.

The ratio of the reciprocal of the first-order eigenvalue to the sum of all reciprocals is
1

1+0.2+0.1 = 76.92%. Letting µ = 0.99 λ1 = 0.99, the eigenvalues of the system after
frequency shift are λ1 = 1− 0.99 = 0.01, λ2 = 5− 0.99 = 4.01, and λ3 = 10− 0.99 = 9.01,
and the corresponding reciprocals are 1

λ1
= 100, 1

λ2
= 0.25, and 1

λ3
= 0.11. The ratio of the

reciprocal of the first-order eigenvalue to the sum of all reciprocals is 100
100+0.25+0.11 = 99.64%.

It is clear that the contribution of the first-order eigen-pairs to the flexibility matrix increased
from 76.92% to 99.64% for the system before and after frequency shift. In other words, the
contribution of the higher-order modes to the flexibility matrix can be greatly reduced by
the frequency-shift operation. As a result, the frequency-shift flexibility change ∆F can be
accurately estimated by only the first-order eigen-pairs as:

∆F =
1

λd1 − µ
φd1φT

d1 −
1

λ1 − µ
φ1φT

1 (22)

On the other hand, the frequency-shift flexibility sensitivity equation can also be
derived by using the similar process from Equation (9) to (13) as:

∆F =
N

∑
i=1

εiΠi (23)

Πi = FKiF (24)

F = K−1
= (K− µM)−1 (25)

Equation (23) is called the frequency-shift flexibility sensitivity equation and will be
used to compute the unknown damage coefficients εi ( i = 1 ∼ N) for damage identification.
The matrix Πi is called the elementary frequency-shift flexibility sensitivity of the i-th
element in FEM.

In the end, the operation steps of the proposed frequency-shift flexibility sensitivity
method are summarized as follows:

(1) Establish the FEM of the intact structure to obtain the stiffness and mass matrices K
and M.
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(2) Conduct dynamic analysis on the structure and measure the first-order eigen-pairs of
the intact and damaged structures.

(3) Compute the frequency-shift flexibility change ∆F by Equation (22) and compute the
elementary frequency-shift flexibility sensitivity matrix Πi by Equation (24).

(4) Compute the damage coefficients εi ( i = 1 ∼ N) by solving Equation (23). Finally,
the damage locations and extents in the structure can be determined according to the
values of εi ( i = 1 ∼ N). To resist the adverse effects of data noise due to measurement
error, the singular-value truncation algorithm [31,32] is used in the process of solving
the linear Equation (23) for achieving stable computational results in engineering
applications. The core idea of the singular-value truncation algorithm is to ignore
small singular values to partially eliminate the impact of data noise on the calculation
results. The main formulas of the singular-value truncation algorithm are briefly
illustrated as follows. Firstly, Equation (23) can be rewritten as a system of linear
equations as:

η = Ω · α (26)

α = (ε1, ε2, · · · , εN)
T (27)

where η is a column vector derived from the matrix ∆F, and Ω is the corresponding
coefficient matrix derived from the matrices Πi ( i = 1 ∼ N). Performing the singular-value
decomposition of Ω yields:

Ω = UΛVT (28)

U = [u1, u2, · · · ] (29)

V = [v1, v2, · · · ] (30)

Λ =

[
Z 0
0 0

]
(31)

Z = diag(σ1, σ2, · · · , σt) (32)

where σ1, σ2, · · · , σt are the nonzero singular values of Ω with σ1 ≥ σ2 ≥ · · · ≥ σt. Based
on Equations (26) and (28), the singular-value truncation solution of the damage coefficient
vector α can be obtained by ignoring a few smaller singular values as:

αsvt = (
z

∑
x=1

σ−1
x vxuT

x )η (33)

where z is the number of remaining singular values. These remaining singular values
σx ( x = 1 ∼ z) all satisfy σx/σmax ≥ ζ (ζ is a predefined threshold value; for example,
ζ = 0.001 is used in the next beam and frame structure examples).

Compared with the ordinary flexibility sensitivity method, the frequency-shift flex-
ibility sensitivity approach greatly reduces the adverse effect of the higher-order modal
truncation on damage identification. Theoretically, the proposed method can accurately
calculate the structural damage parameters only by using the first-order eigen-parameters
of structural free vibration. From Equations (24) and (25), one can find that the system ma-
trices K and M of the undamaged FEM are used in the computation of the frequency-shift
flexibility sensitivity. However, Equation (25) can be approximated by using Equation (20)
with a few lower-frequency vibration modes.

Combining Equations (20) and (24), it can be found that the frequency-shift flexibility
sensitivity equations can also be established by only using the tested vibration modes
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of the intact structure, rather than the system matrices K and M obtained from the FEM
of the intact structure. This advantage makes it possible to conduct structural damage
identification even without finite element modeling. In other words, another advantage
of the proposed method is that it does not require a complete finite element modeling
process, as long as a few lower-frequency vibration modes of the intact structure are
measured. Therefore, the proposed method is simpler in operation compared to other
existing sensitivity methods, as these existing sensitivity methods require the use of the
system matrices K and M of the structural FEM. The case verification of this advantage is
detailed in the following section of the experimental example.

3. Numerical Example
3.1. A Truss Structure

A 23-bar truss structure as shown in Figure 1 is used as the first numerical example to
verify the frequency-shift flexibility sensitivity method. The main parameters of this steel
truss structure are as follows: Young’s modulus is 200 GPa, density is 7800 kg/m3, length
of each bar is 1 m, and cross-sectional area is 1.759 × 10−4 m2. The vibration test data
used were generated through the numerical finite element model of the undamaged and
damaged systems. Note that the data noise was not considered in this example in order to
purely investigate the improvement effect of the frequency-shift process on the solution
accuracy. Three damage scenarios are simulated in this example. The first damage scenario
assumes that the elastic modulus of bar elements 10 and 13 are both reduced by 5%. The
second damage scenario assumes that the elastic modulus of bar elements 9, 10, and 11
are reduced by 10%, 5%, and 5%, respectively. The third damage scenario assumes that
the elastic modulus of bar element 13 is reduced by 2%. Table 1 presents the first natural
frequencies of the undamaged and damage scenarios. In engineering practice, fatigue
and corrosion of materials will lead to a decrease in the elastic modulus. Note that the
proposed method is also applicable to other types of damage such as cracks or notches,
as shown in the next experimental example. Figures 2–4 present the calculation results of
the damage coefficients by the proposed method and the ordinary flexibility sensitivity
method, respectively. Only the first-order eigen-parameters are used in the calculation,
and the frequency-shift distance µ is taken as µ = 0.9λd1, µ = 0.95λd1, and µ = 0.99λd1,
respectively. Tables 2–4 present the comparison between the calculated value and the actual
value of the damage extent for these three damage scenarios. The values in brackets in
these tables represent the relative error between the calculated values and the true values.
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Table 1. The first natural frequencies of the undamaged and damage scenarios.

Case Undamaged Damage
Scenario 1

Damage
Scenario 2

Damage
Scenario 3

Natural
frequencies 56.8522 56.6298 56.6210 56.8516
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Figure 3. Calculation result comparison of the proposed method and the ordinary flexibility sensitiv-
ity method for the second damage scenario.
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Table 2. Comparison between the calculated value and the actual value of the damage coefficient for
the first damage scenario.

Damaged
Element Number

True
Value

Ordinary Flexibility
Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

10 0.05 0.0524
(4.8%) *

0.0526
(4.9%)

0.0585
(14.5%)

0.0928
(46.1%)

13 0.05 −0.0001
(/)

0.0815
(38.7%)

0.0749
(33.2%)

0.0982
(49.1%)

* The values in brackets represent the relative error.

Table 3. Comparison between the calculated value and the actual value of the damage coefficient for
the second damage scenario.

Damaged
Element Number

True
Value

Ordinary
Flexibility Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

9 0.1 0.1787
(44.0%) *

0.1278
(21.8%)

0.1323
(24.4%)

0.2026
(50.6%)

10 0.05 0.0333
(33.4%)

0.0527
(5.1%)

0.0589
(15.1%)

0.0943
(46.9%)

11 0.05 0.0007
(98.6%)

0.029
(42%)

0.0419
(16.2%)

0.0901
(44.5%)

* The values in brackets represent the relative error.

Table 4. Comparison between the calculated value and the actual value of the damage coefficient for
the third damage scenario.

Damaged
Element Number

True
Value

Ordinary Flexibility
Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

13 0.02 0.0003
(98.5%) *

0.0211
(5.5%)

0.0209
(4.3%)

0.0205
(2.4%)

* The values in brackets represent the relative error.

For the first damage scenario, one can find from Figure 2 that the proposed method
can successfully identify elements 10 and 13 as the damaged bars. However, the ordinary
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flexibility sensitivity method can only identify element 10 as the damaged bar, while
element 13 cannot be identified. This indicates that the traditional flexibility sensitivity
method may result in a missed diagnosis, while the proposed frequency-shift flexibility
sensitivity method performs well. When the frequency-shift distance changes, Table 2
shows that the calculation error of the damage coefficient is relatively minimal when
µ = 0.9λd1. However, Figure 2 shows that the accuracy of damage localization is highest
when µ = 0.99λd1, since there is a misjudgment of damage location when µ = 0.9λd1. When
µ = 0.95λd1, a good balance can be achieved between the damage localization and damage
quantification of the frequency-shift flexibility method. For the second damage scenario, it
can be seen from Figure 3 that the proposed method can successfully identify elements 9,
10, and 11 as the damaged bars. Again, the ordinary flexibility sensitivity method failed
since element 11 cannot be identified by it. This once again demonstrates that the proposed
frequency-shift flexibility sensitivity method is more reliable in calculating results than
the traditional flexibility sensitivity method. When the frequency-shift distance changes,
Table 3 shows that the calculation error of the damage coefficient is relatively minimal
when µ = 0.95λd1, and Figure 3 shows that the accuracy of damage localization is highest
when µ = 0.99λd1. For the third damage scenario (minor damage), one can find from
Figure 4 that the proposed method more clearly indicates that element 13 is the damaged
bar than the ordinary flexibility sensitivity method. It has been shown that the proposed
method may have better ability to identify the minor damage than the ordinary flexibility
sensitivity method. When the frequency-shift distance changes, Table 4 and Figure 4 show
that the frequency-shift flexibility algorithm has the best accuracy in damage localization
and quantification when µ = 0.99λd1. Based on the above results, it can be concluded that
the smaller the degree of damage, the larger the frequency-shift distance should be taken.
In summary, the proposed frequency-shift flexibility algorithm is very efficient with only
the first-order modal parameters. This new method can achieve the goal of improving
the accuracy and reliability of the damage identification results through only the simple
frequency-shift operation.

3.2. A Beam Structure

A beam structure with fixed ends (as shown in Figure 5) is used as the second numeri-
cal example to further verify the proposed method. The Young’s modulus and density of
this beam structure are 193 GPa and 7850 kg/m3, respectively. The vibration test data used
were generated through the numerical FEMs of the undamaged and damaged systems. In
this example, a 5% random noise level is added to the first mode shape to simulate the
measurement error as

ϕ′d1 = ϕd1 × [1 + τ · uni f rnd(−1, 1)] (34)

where ϕ′d1 is the contaminated mode shape, τ is the noise level, and uni f rnd(−1, 1) repre-
sents a random number located in the interval of [−1,1].
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Figure 5. A beam structure.

Two fault scenarios are simulated in this example. The first fault scenario assumes
that the elastic modulus of elements 3 and 10 are reduced by 10% and 15%, respectively.
The second fault scenario assumes that the elastic modulus of elements 6, 10, and 14 are
all reduced by 10%. As stated before, the singular-value truncation algorithm is used in
this example to overcome the adverse effects of data noise. Figures 6 and 7 present the
calculation results of the damage coefficients by the proposed method and the ordinary
flexibility sensitivity method, respectively. Note that only the first-order eigen-parameters
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are used in the calculation, and the frequency-shift distance µ is taken as µ = 0.9λd1.
Tables 5 and 6 present the comparison between the calculated value and the actual value
of the damage extent for the two damage scenarios. The values in brackets in these tables
represent the relative error between the calculated values and the true values.
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Figure 6. Calculation result comparison of the proposed method and the ordinary flexibility sensitiv-
ity method when elements 3 and 10 are damaged.
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Figure 7. Calculation result comparison of the proposed method and the ordinary flexibility sensitiv-
ity method when elements 6, 10, and 14 are damaged.

Table 5. Comparison between the calculated value and the actual value of the damage coefficient
when elements 3 and 10 are damaged.

Damaged
Element Number True Value Ordinary Flexibility

Method
Frequency-Shift Flexibility

Method with µ = 0.9λd1

3 0.1 0.021
(79.0%) *

0.1336
(25.1%)

10 0.15 0.1402
(6.5%)

0.1894
(26.3%)

* The values in brackets represent the relative error.
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Table 6. Comparison between the calculated value and the actual value of the damage coefficient
when elements 6, 10, and 14 are damaged.

Damaged
Element Number True Value Ordinary Flexibility

Method
Frequency-Shift Flexibility

Method with µ = 0.9λd1

6 0.1 0.0122
(87.8%) *

0.0696
(30.4%)

10 0.1 0.0745
(25.5%)

0.1055
(5.2%)

14 0.1 0.0393
(60.7%)

0.0916
(8.4%)

* The values in brackets represent the relative error.

For the first fault scenario, one can find from Figure 6 that the proposed method
can successfully identify elements 3 and 10 as the fault locations. However, the ordinary
flexibility sensitivity method can only identify element 10 as the fault location, while
element 3 cannot be identified. This indicates that the traditional flexibility sensitivity
method may result in misdiagnosis, while the proposed frequency-shift flexibility sensitivity
method performs well. For the second fault scenario, it can be seen from Figure 7 that the
proposed method can successfully identify elements 6, 10, and 14 as the damage locations.
Again, the ordinary flexibility sensitivity method failed since element 6 cannot be identified
by it. From Tables 5 and 6, one can find that the proposed frequency-shift flexibility
method achieves better computational accuracy than the ordinary flexibility method. This
once again demonstrates that the proposed method can achieve the goal of improving
the accuracy and reliability of fault identification through only the simple frequency-shift
operation.

4. Validation by the Experimental Data of a Steel Frame Structure

The presented algorithm is further verified by the experimental data obtained from
a three-story steel frame structure from [33]. As shown in Figure 8a, the experimen-
tal structure consists of three steel plates and four rectangular columns. These steel
plates and columns are welded to form a rigid shear system as shown in Figure 8b. De-
tailed descriptions of material physical parameters and testing processes are provided
in [33]. The fault condition is simulated by cutting from 75 mm to 51.3 mm on the first
floor as shown in Figure 9, with a corresponding damage severity of 11.6%. The first
frequency and vibration mode of the undamaged system measured are f1 = 3.369Hz
and ϕ1 = (0.021108, 0.03922, 0.048427)T. The second frequency and vibration mode of
the undamaged system are f2 = 9.704 and ξ2 = (0.048758, 0.02031,−0.03923)T . The
third frequency and vibration mode of the undamaged system are f3 = 14.282 and
ξ3 = (0.037936,−0.04866, 0.022852)T . For the structure with damage, the measured first fre-
quency and vibration mode are fd1 = 3.259Hz and ϕd1 = (0 .022735, 0.039331, 0 .047594)T.
As stated before, the frequency-shift flexibility sensitivity equations in this example are
established by directly using the tested vibration modes of the intact structure, rather than
the system matrices K and M obtained from the FEM of the intact structure. Therefore, this
example does not require a complete finite element modeling process to perform damage
identification. Figure 10 presents the calculation results of the damage coefficients by the
proposed method with the frequency-shift distance µ = 0.9λd1. From Figure 10, one can
find that the proposed method can accurately identify the first floor as the damage location,
and the calculated value of damage degree is 0.22. It has been shown that the proposed
method can also complete the task of damage identification without the need for a complete
finite element modeling process.
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Figure 9. The column width is cut from 75 mm to 51.3 mm to simulate the damage.
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5. Conclusions

In this work, a new frequency-shift flexibility sensitivity technique was developed
for structural damage evaluation using only the first-order mode of structural free vibra-
tion. With the help of the frequency-shift operation, the first-order vibration mode will
contribute the most to the structural flexibility matrix. This results in a significant reduction
in the adverse effect of the higher-order modal truncation on structural damage identifica-
tion. Theoretically, the proposed method can accurately calculate the structural damage
coefficients by using only the first-order modal parameters. As a result, the reliable identifi-
cation results can be achieved according to the values of the calculated damage coefficients.
Another advantage of the proposed method is that it does not require a complete finite
element modeling process, as long as a few lower-frequency vibration modes of the intact
structure are measured. Based on the calculation results of the numerical and experimental
examples, it can be concluded that the proposed method requires fewer modal parameters
but has higher calculation accuracy than the ordinary flexibility sensitivity method. For
the multiple damages case, this new approach can overcome the possible missed diagnosis
of the ordinary flexibility sensitivity method. For the minor damage case, the numerical
results also showed that the proposed algorithm may have the potential to identify the
minor damage in the structure. The proposed method provides a new way for structural
damage identification with only the first-order modal parameters. Note that the proposed
method is only applicable to linear structures, and research on damage identification of
nonlinear structures will be conducted in the future.
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