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Abstract: This article focuses on solving the order quantity allocation problem for retailers. It
considers factors such as quality constraints, nonlinear quantity discounts, and price-dependent
demand. By formulating it as a nonlinear maximization problem, the article aims to find the best
combination of suppliers and order quantity out of infinite solutions to maximize the retailer’s profit.
The main contribution of this research is a new mathematical model that can solve the problem
of quality constraint and demand in a single step. This problem is complex due to the number of
equations, their nonlinear nature, and the various trade-offs given by the market. Additionally, this
research considers demand as output and includes price-dependent demand, which is more realistic
for retailers. The proposed model was tested using an example from the recent literature and showed
better results than the previously published best solution regarding profit maximization.

Keywords: perfect rate; inventory management; supply chain; order quantity

1. Introduction

Efficient inventory management is crucial for large companies and retailers as it
directly affects profitability [1,2]. A retailer’s profits rely on factors such as the cost of pur-
chasing items, the selling price, and the number of items sold in a given period. Therefore,
to maximize profits, retailers can increase the number of items sold, the difference between
the purchasing and selling costs, or both.

This study focuses on the Economic Order Quantity (EOQ) problem, which involves
choosing the appropriate supplier, selecting the order size or percentage of total demand,
and determining the order cycle. The EOQ problem can optimize two problems: mini-
mizing costs for manufacturing companies with predetermined production quantities or
maximizing profits for final retailers with unpredictable demand. This article belongs to the
second group, where the selling price is determined in a single step during problem-solving.
This approach is ideal for elastic markets where demand is price-sensitive.

These types of problems can be complex due to various factors, including the number
of equations, the nonlinear nature of the problem, and market trade-offs. For example, a
single supplier may suffice if supplier capacity exceeds demand, resulting in a relatively
simple solution. However, multiple suppliers may be required if demand exceeds capacity,
leading to a more complex optimization model. Additionally, discounts offered by suppliers
for purchasing larger quantities can add complexity to the problem.

When making decisions, quality is a crucial factor to consider. A study by Mendoza
and Ventura [3] defined quality as the “perfect rate”, which is the percentage of items from
a supplier that meet all quality standards. For example, a supplier with a perfect rate of
0.98 means that two out of every one hundred items supplied are non-conforming. This
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affects the total cost, as high-quality suppliers may have higher prices. However, sometimes
suppliers with lower perfect rates may be preferred if the cost per item offsets the losses.
It is important to note that how defective items are handled may differ from company to
company, and this article assumes that the retailer must absorb the cost of defective items
without any refunds.

Purchasing is a vital but complicated part of the supply chain. It involves selecting
suppliers, determining the number of items to order from each supplier, and deciding
how long the order cycle should be. A new mathematical model was introduced in [4]
that addresses these challenges recently. This model, referred to as the previous model,
considers the demand as output and considers the selling price.

Numerous investigations have been conducted to enhance inventory management.
Some of these studies factor in demand as a variable that relies on other parameters or
variables. For instance, stock-dependent demand [5,6] assumes that many customers are
enticed by the availability of large stock quantities with a wide range of diversity. This
can be applied to supermarkets or super-shops. On the other hand, alternative studies
postulate that customers are attracted by lower selling prices, which applies to retailers
specializing in particular products. Our work belongs to this second category, where
demand is price-dependent.

The relationship between demand and selling price can be explained as a trade-off.
Retailers have some freedom to choose the selling price. While selling items at a high
price may seem logical to make a significant profit, the retailers may not be able to sell the
products if the price is too high. There has been research on the mathematical relationship
between demand and selling price in the literature [7–10].

This paper assumes that the retailer buys and sells the same number of items each
month, which is crucial for planning and avoiding losses. If the retailer purchases more
items than they sell, they can compensate by buying fewer items the following month,
but this incurs a stock cost and does not change the average monthly demand. On the
other hand, if the retailer fails to meet demand due to purchasing fewer items from the
supplier(s), it causes losses and is unacceptable in the decision-making process.

This study examines the impact of a quality constraint, nonlinear quantity discounts
on purchasing cost, and a nonlinear price-dependent demand on a retailer’s profit. The
demand equation used is the same as in a previous study for easy comparison. The goal is
to propose a new mathematical model that improves the retailer’s profit compared to the
previously published solution. The problem is formulated as a nonlinear maximization
problem that aims to maximize a retailer’s profit by choosing a combination of suppliers and
ordering quantities. The article’s main contribution is a new mathematical model that solves
the quality constraint and demand in a single step, which is a significant advancement.
The problem is complex due to several factors, including nonlinear equations, market
trade-offs, and price-dependent demand. Furthermore, unlike previous research, demand
is considered an output rather than a given parameter. The proposed model was tested
against a recent example from the literature and resulted in a better profit-maximizing
solution than the previously published best solution.

The proposed model is solved in MATLAB with the particle swarm optimization (PSO)
algorithm because commercial software such as Lingo may not be efficient for such complex
problems. To simplify the comparison of results, the numerical example was taken from
the state-of-the-art literature. The results showed that the proposed model satisfactorily
maximized the benefits while meeting all constraints.

This article is organized as follows: Section 2 provides a literature review on how other
works have addressed demand and its relationship to the selling price. Section 3 introduces
the problem and its feasibility conditions. Section 4 presents the proposed model and
the metaheuristic used to solve the problem. Section 5 analyzes the results, and Section 6
presents the conclusions.
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2. Literature Review

This topic has been studied extensively by various authors. Whitin [11] first connected
inventory theory and economic price theory by examining how demand is affected by
product price. He found that suppliers can offer price discounts to incentivize larger orders.
References [12,13] explored how suppliers can offer optimal quantities with quantity
discounts. Later, models were developed to determine lot size and optimal price for
purchasing a product with all-unit quantity discounts [12,13]. Other researchers have
extended the relationship between demand and selling price to include time in their
analysis [14,15]. Additionally, supplier selection has been studied with uncertain demand,
quantity discounts, and fixed costs [16].

Pricing policies and optimal replenishment schedules have also been explored [17]. Maiti
and Giri [18] looked at this topic in a two-echelon supply chain, while others have examined
it as a means of coordinating supplier selection and order quantity allocation [19–21].

Finally, some researchers have analyzed lot-sizing decisions with price-sensitive
demand, including exploring all-quantity discounts to generate an optimal lot-sizing
decision [22–25]. Recent studies have also looked at product demand sensitivity variations
using discounts and price patterns [26–30].

3. Description of the Problem and Its Analysis

This section will discuss the problem under study and provide some parameters for
a numerical example. Our goal is to help retailers maximize their profits by focusing on
a single item that can be purchased from various suppliers. It is worth noting that the
optimization algorithm can be run multiple times, depending on the number of items being
considered.

Table 1 shows the notation that will be used to describe the problem.

Table 1. Notation of variables and parameters of the problem.

Parameters

ci Maximum monthly capacity of supplier i (given in units per month)

ki Ordering or setup cost of supplier i (given in dollars per order), ∀ i = 1, . . . , n.

r Storage or holding cost rate (given in dollars per item per month)

qi Perfect rate of supplier i, ∀ i = 1, . . . , n.

qa Minimum required perfect rate

vi Per unit cost (depends on the order quantity assigned Qi)

M The maximum number of orders assigned per cycle

Decision Variables

ji The number of orders assigned to supplier i per order cycle (∑j Jij), ∀ i = 1, . . . , n.

Qi Ordered quantity assigned to supplier i (in units), ∀ i = 1, . . . , n.

P Selling price

Additional Variables

Tc Order cycle period (in months)

Ri
The total number of items ordered to supplier i during the order cycle period
(Ri = jiQi), ∀ i = 1, . . . , n.

d Demand per time unit

As a retailer, it is important to maintain inventory levels without any shortages.
Therefore, the decision maker must purchase a specific type of item and can choose to
buy it from one or more of the n suppliers available. Each supplier has its own setup
cost (ki), perfect rate (qi), and capacity (ci), ∀ i = 1, . . . , n. It is also essential to establish a
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minimum perfect rate (qa). Please refer to Table 1 for a summary of all the parameters and
decision variables.

The cost per unit of the item from different suppliers is based on a quantity discount
structure. Three suppliers are considered in this example, and their costs are presented
in Tables 2–4, respectively. The discount structure for each supplier is shown in their
respective tables.

Table 2. The per-unit cost of items—Supplier 1.

Supplier 1

Interval Bound (Units) Unit Cost (USD)

1 0–50 v1= 9

2 50–100 v1 = 8.9

3 100–150 v1 = 8.8

4 150–200 v1 = 8.7

5 200–∞ v1 = 8.6

Table 3. The per-unit cost of items—Supplier 2.

Supplier 2

Interval Bound (Units) Unit Price (USD)

1 0–75 v2 = 9.8

2 75–150 v2 = 9.6

3 150–225 v2 = 9.4

4 225–∞ v2 = 9.2

Table 4. The per-unit cost of items—Supplier 3.

Supplier 3

Interval Bound (Units) Unit Price (USD)

1 0–100 v3 = 10.5

2 100–200 v3 = 10.4

3 200–∞ v3 = 10.3

Please refer to Table 2 for the pricing information. If the retailer purchases less than
50 items from Supplier 1, the cost is 9 per item. The setup costs for the three suppliers are
as follows: Supplier 1 is $500, Supplier 2 is $250, and Supplier 3 is $450. The perfect rates
for each supplier are q1 = 0.92, q2 = 0.95, and q3 = 0.98. Suppose the setup or order cost of
$500 is dominant for purchases of a few items. In that case, the average cost can be reduced
for purchases of larger quantities due to the volume discount offered by the supplier.

After analyzing the suppliers, we found that supplier 1 has the lowest per-unit costs,
but their setup cost is the highest. This is because they prefer to sell in larger quantities. On
the other hand, Supplier 3 has the most expensive items, and their setup cost is not low
either, but they have the highest perfect rate.

Moving on, we express the relationship between selling price and demand through
the function in Equation (1):

D = αP−e, (1)

where α and e are the scaling factor and price elasticity index, respectively. For this article’s
numerical example, α is equal to 3,375,000 and e is equal to 3.
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3.1. The Previous Model

The total average (monthly) profit is formulated using a mixed-integer nonlinear
model and depends upon the order quantity assigned to the selected suppliers. This section
briefly explains the model introduced by [4], called hereafter the reference model. The
solution to the problem consists of finding the number of orders assigned to each supplier
ji during the order cycle and the order size for each supplier Qi.

First, the order cycle period is defined as follows:

Tc =

r
∑

i=1
Ri

d
=

r
∑

i=1
Ri

αP−e =
R

αP−e . (2)

Therefore, the complete mixed-integer nonlinear programming model used as our
reference model is as follows:

(Reference Model)

Max Z = αP1−e − 1
R

[
αP−e

n

∑
i=1

jiki +
1
2

r
n

∑
i=1

R2
i jivi + αP−e

n

∑
i=1

Rivi

]
. (3)

Subject to:

R ≤
n

∑
i=1

Qi ji, (4)

αP−e
n
∑
i

Qi ji

R
≤ ci, ∀i = 1 . . . n (5)

n

∑
i=1

Qi(qi − qa)ji ≥ 0, (6)

Qi ≤
ai

∑
j=1

uijYij, ∀i = 1 . . . n and ∀j = 1 . . . ai (7)

Qi ≥
ai

∑
j=1

ui,j−1Yij, ∀i = 1 . . . n and ∀j = 1 . . . ai (8)

ai

∑
j=1

Yij ≤ 1, ∀i = 1 . . . n (9)

n

∑
i=1

ji = M, (10)

ji ≤ M, ∀i = 1 . . . n (11)

ji ≥ 0, integer, ∀i = 1 . . . n (12)

P ≥ 0, (13)

Qi ≥ 0, ∀i = 1 . . . n (14)

Yij ∈ (0, 1), ∀i = 1 . . . n and ∀j = 1 . . . ai. (15)

Constraint (4) represents the sum of the total ordered quantities considering all selected
suppliers. Constraint (5) confirms that the order quantity per supplier does not exceed the



Axioms 2023, 12, 547 6 of 15

supplier’s capacity. Constraint (6) ensures that the supplier’s average quality level is greater
than the minimum acceptable quality of the retailer. Constraints (7) and (8) guarantee that
the order quantity per selected supplier is within the correct quantity discount interval.
Constraint (9) ensures that an interval per selected supplier is selected. Constraint (10)
establishes the maximum number of orders per cycle that can be assigned. Constraint (11)
ensures that each selected supplier has a total assigned order less than or equal to the total
orders per cycle. Constraint (12) ensures that the total number of orders per supplier is an
integer. Constraints (13) and (14) help to control non-negative conditions, and constraint (15)
establishes the requirements for the binary variable.

The objective of the Reference Model is to maximize the profit function per time unit.
The total profit equals the total sales per time unit, αP(1−e), minus the total cost per time
unit. The profit function considers the ordering cost per time unit, holding cost per time
unit, and purchasing cost per time unit.

The total ordering cost per time unit is calculated as follows:

Ordering cost =
1
Tc

n

∑
i=1

jiki. (16)

The holding cost per time unit from supplier i is calculated by multiplying the holding
cost r by the average inventory level, expressed as

Average inventory level =
1
Tc

(
Qi ji

2

)
. (17)

To incorporate it into the objective function, the average inventory cost is calculated as
follows:

Inventory cost =
1
R

(
1
2

r
n

∑
i=1

R2
i jivi

)
. (18)

Finally, the purchasing cost per time unit is calculated as follows:

Purchasing cost =
1
Tc

(
n

∑
i=1

Qi jivi

)
. (19)

3.2. Reference Model’s Analysis: The Feasibility of the Solution Considering a New Focus on the
Quality Parameters

To analyze the reference model, we need to measure the demand based on the number
of pieces without defects. We can define the demand for perfect items, the number of
perfect items required considering the demand, and it can be expressed as the demand
multiplied by the minimum perfect rate of the retailer (see Equation (20)):

Da = αP−eqa. (20)

The solution will provide the following:

(i) The number of orders and the order quantity assigned to each supplier. The number
of orders to supplier i is called ji; it is assumed that all orders assigned to a specific
supplier are of the same size, and the size of the order assigned to supplier i is referred
to as Qi.

(ii) The order cycle period is in months. This, along with the number of orders and order
quantity, determines how many items are purchased each month or each order cycle
(the order cycle is expressed in months, it does not need to be an integer). In other
words, this can be used to calculate the demand. Then, it is not necessary to provide
the demand explicitly. Notice that the percentage of the demand covered by each
supplier is not explicitly provided but can also be calculated.
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(iii) The selling price. This is also implicit since the demand can be calculated, and the
selling price can be determined from Equation (1). Still, it is an important variable. In
this work, we will consider it to be part of the solution to the problem.

There are countless solutions available, especially if there are no limits to the order
cycle or the number of orders. However, some solutions may lead to lower profits or even
losses if the selling price is too low. Before we delve into those details, we must differentiate
between feasible and infeasible solutions. An infeasible solution is one where the perfect
demand is not met or there is a planned shortage. To avoid this, we must set the selling
price based on the demand, ensuring that it matches the established demand and minimum
perfect rate. If these values do not match up, it will reduce expected profits, which is
essentially the same as a shortage.

To meet the demand, you must purchase a quantity of items that is at least equal to
the monthly demand multiplied by the order cycle in months:

r

∑
i=1

jiQi ≥ dTC. (21)

To meet the retailer’s minimum perfect rate, we need a second equation. In other
words, the demand can be covered by low-quality suppliers, but we must not only ensure
that all the items are in demand but also consider that some items will be defective. We can
compensate for this by purchasing more items or shortening the order cycle. Equation (22)
tells us no planned shortage will be caused by the quality of items:

r

∑
i=1

Riqi ≥ dqaTC. (22)

It is important to ensure that the solutions do not exceed the suppliers’
monthly capacity:

Ri
TC
≤ ci. (23)

A solution is feasible if it meets the requirements of Equations (21)–(23), regardless of
the method used to arrive at it or the mathematical model. The monthly profits are another
parameter that needs to be assessed.

4. The Proposed Model
4.1. Model Analysis

We have presented a revised version of the reference model in Section 3.2. This
update aims to expand the range of solutions that can be examined using the reference
model, potentially leading to improved outcomes, as evidenced in the results section. It is
important to note that the original reference model only accounted for the traditional order
cycle period Tc:

Tc =
n

∑
i=1

Qi ji
αP−e . (24)

Additionally, the reference model is subject to several constraints. Recall the quality
constraint is as follows:

n

∑
i=1

Qi(qi − qa)ji ≥ 0. (25)

This formulation ensures that the quality of selected suppliers is greater than or equal
to the minimum acceptable quality of the retailer qa.

The perfect rate from each supplier (Equation (25)) presents a lack of possibility of
finding a solution in scenarios when the perfect rates of suppliers will be less than the
minimum acceptable quality. For instance, let us consider the suppliers in the numerical
example with perfect rates of 0.92, 0.95, and 0.98, respectively. However, let us consider
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that the retailer establishes 0.99 (instead of 0.95) as a minimum acceptable quality and
the order quantity per supplier is 1000 units within one order. A feasible solution cannot
be found:

Q1 j1(0.92− 0.99) + Q2 j2(0.95− 0.99) + Q3 j3(0.98− 0.99) ≥ 0. (26)

Since Qi and ji are positive numbers, no combination can satisfy Equation (26). Since
this situation (low perfect rate situation) might be possible in real life, it is highly desirable
that models can deal with it. An intuitive solution would be to shorten the order cycle to
have more items to compensate for the number of imperfect items and satisfy the demand.
Then, a new equation to calculate the order cycle may be required.

If the model allows purchasing more (or the same quantity in a shorter time), the
lack of perfect items can be compensated. For example, if a retailer requires 1000 pieces a
month and establishes a 0.99 minimum acceptable quality, the company needs 990 perfect
pieces each month. Even the lower perfect rate supplier can provide them if 1077 pieces are
ordered with a perfect rate of 0.92, resulting in 990.84 perfect parts.

One of the main differences in this article is the reformulation of the order cycle,
considering the perfect rate. Let us consider the order quantity per supplier with the
required quality as Qijiqi, and the total ordered quantity from supplier i as follows:

R =
n

∑
i=1

Qi jiqi. (27)

Demand is calculated as shown in Equation (28), where the minimum acceptable
quality of the retailer is considered:

Dqa = αP−eqa. (28)

Then, the order cycle can be formulated as follows:

Tc =

n
∑

i=1
Qi jiqi

αP−eqa
. (29)

One of the key components of this work is the reformulation of the order cycle process.
Quality parameters are now included in the calculation of the order cycle, rather than
being treated solely as constraints. Our proposed model has been shown to yield higher
profits than the reference model. Table 5 provides a comparison of various works on the
EOQ/EPQ problem using traditional order cycle calculations.

Table 5. Comparison with other works in the literature.

Reference EPQ/EOQ Discounts Demand Depends on Methodology Considering Quality

Moon I. et al. [31] EPQ No Production cost Geometric
programming No

Kugele ASH. et al. [32] Smart No N.A. Geometric
programming No

Pando et al. [33] EOQ No stock Analytic No

Pando et al. [34] EOQ No stock Analytic No

Cárdenas-Barrón et al. [35] EOQ No stock Analytic No

Ventura et al. [9] EOQ No price Analytic No

Venegas et al. [2] EOQ All units price Game theoretic model No

Adeinat and Ventura [4] EOQ All units price Analytic Yes

This study EOQ All units price Metaheuristic Yes
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In Table 6, a comparison is made between works using traditional order cycle calcula-
tion and quality parameters. All the works listed in Tables 5 and 6 use nonlinear models,
with most of them considering demand as a dependent function based on production cost,
stock, or price. Specific works consider all quantity discounts in purchasing costs. Analytic
methods and geometric programming are used to find solutions in many works, but this
paper explores the use of metaheuristic methods as a fast and efficient alternative. The
novelty of this work lies in considering quality parameters as part of the order cycle and
demand as a function of price, as shown in Tables 5 and 6.

Table 6. Comparison with works that used quality parameters.

Reference Quality Parameters Are
Considered as Demand Depends on Parameters of the Order Cycle

Mendoza A. et al. [3] Quality constraint Constant Demand, order quantity, number of orders

Subramanian P. et al. [36] Quality constraint Constant Demand, order quantity, number of orders

Mendoza A. et al. [37] Quality constraint Constant Demand, order quantity, number of orders

Adeinat and Ventura [4] Quality constraint Price Demand, order quantity, number of orders

This study Part of the order cycle Price Demand, order quantity, number of orders, quality parameters

4.2. Reformulated Model

After incorporating the redefinition of the order cycle into the reference model, the
reformulated model is as follows:

Max Z = αP1−e − 1
n
∑

i=1
Qi jiqi

[
αP−eqa

n

∑
i=1

jiki +
1
2

r
n

∑
i=1

R2
i jivi + αP−eqa

n

∑
i=1

Rivi

]
. (30)

Subject to:

αP−eqa
n
∑
i

Qi ji

R
≤ ci, ∀i = 1 . . . n (31)

Qi ≤
ai

∑
j=1

uijYij, ∀i = 1 . . . n and ∀j = 1 . . . ai (32)

Qi ≥
ai

∑
j=1

ui,j−1Yij, ∀i = 1 . . . n and ∀j = 1 . . . ai (33)

ai

∑
j=1

Yij ≤ 1, ∀i = 1 . . . n (34)

n

∑
i=1

ji = M, (35)

ji ≤ M, ∀i = 1 . . . n (36)

ji ≥ 0, integer, ∀i = 1 . . . n (37)

P ≥ 0, (38)

Qi ≥ 0, ∀i = 1 . . . n (39)
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Yij ∈ (0, 1), ∀i = 1 . . . n and ∀j = 1 . . . ai. (40)

The profit function considers the ordering, holding, and purchasing costs per time unit.
The order cycle is calculated using Equation (29). The total ordering cost is expressed as

Total ordering cost =
1
Tc

n

∑
i=1

jiki. (41)

The holding cost per time unit from supplier i is calculated by multiplying the holding
cost r by the average inventory level:

Average inventory level =
1
Tc

(
Qi ji

2

)
. (42)

To calculate the objective function, this is incorporated as

Inventory cost =
1
R

(
1
2

r
n

∑
i=1

R2
i jivi

)
. (43)

Finally, the purchasing cost per cycle is

Average purchasing cost =
1
Tc

(
n

∑
i=1

Qi jivi

)
. (44)

Constraint (31) ensures that the order quantity per supplier does not exceed the
supplier’s capacity. Constraints (4) and (6) are unnecessary in this formulation.
Equations (32) to (40) are the same as in the reference model.

4.3. Particle Swarm Optimization (PSO)

The PSO algorithm is used to improve possible solutions by optimizing a function
iteratively. This is achieved by adjusting the position and velocity parameters of particles
within a search space. The algorithm simulates the behavior of birds and begins by
initializing a population of random particles, each representing a possible solution. At each
iteration, the particles evolve, and their velocity is updated. The PSO process is further
explained using a presentation of the pseudocode.

Pseudocode. Particle Swarm Optimization

P = Po; /*Generating the initial population*/
t = 0;
Repeat
Update (pk

i and gk);
Update velocity (vk+1

i );
Update position (xk+1

i );
t = t + 1
Until /*Stopping criteria*/
Output/*Best solution so far*/

4.3.1. Initialization

The algorithm starts by initializing the population. The population represents all the
solutions as particles. Decision variables establish particles and are randomly initialized and
distributed over the search space of the objective function, following uniform probability
distribution. When particles (solutions) are initialized, this decision vector is evaluated
in the objective function, and the algorithm calculates the local and global particles. The
velocity and position are updated, and particles are modified over iterations.
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4.3.2. Velocity of Particles

In order to obtain a new solution vector, the velocity of particles must be updated.
This process is based on the local and global influence of the best particles and the last
velocity value. The new velocity can be adjusted using the cognitive (c1) and social (c2)
factors. The velocity vk

i of each particle or decision vector xk
i is updated by employing

Equation (45):
vk+1

i = vk
i + c1(rk

1(pk
i − xk

i )) + c2(rk
2(gk − xk

i )), (45)

where the velocity vector of the particle xk
i for the next iteration k + 1 is denoted by vk+1

i . vk
i

is the current velocity, gk is the global best current particle so far, and pk
i is the best local so

far (up to the current iteration). Additionally, rk
1 and rk

2 are random uniform values usually
in the interval [0, 1].

4.3.3. Movement of Particles

The particles are changed to their new position. This action allows the exploration of
new candidate solutions in the search space. The new position is calculated as shown in
Equation (46):

xk+1
i = xk

i + vk+1
i , (46)

where xk+1
i is the updated position of the particle xk

i with its new velocity vk+1
i .

After the particles are updated, they are evaluated in the objective function. The
local and global solutions are updated. The entire process is repeated until the maximum
number of iterations is reached.

5. Solution of the Numerical Example

Table 7 introduces the parameters for an illustrative numerical example. Tables 2–4
show the item’s per-unit cost from each supplier, respectively.

Table 7. Parameters of the instance.

Variable Numerical Example Data

r 3 suppliers

r 0.3 per month

ki k1 = 500, k2 = 250, k3 = 450, dollars per order

qi q1 = 0.92, q2 = 0.95, q3 = 0.98

qa 0.95

ci c1 = 300, c2 = 350, c3 = 250, units a month

α 3,375,000

e 3

The experiments are implemented using MATLAB R2017a in a computer with a
processor Intel(R) core(TM)i5-4200ucpu@1.60GHz2.30GHz.

The reference solution is the best solution presented in [4], in which several solutions
have been presented, but the best of them is j1 = 4, j2 = 9, j3 = 5, Q1 = 608.68, Q2 = 378.74,
Q3 = 486.95, and P = 15.84. This solution led to a monthly profit of $4179.91.

To solve the proposed model, we utilized the Particle Swarm Optimization (PSO)
algorithm. Our population consisted of 200 individuals (m = 200), and we limited the
number of iterations to 300 (kmax = 300). By balancing the number of individuals and
iterations, we were able to conduct a thorough search for solutions within a reasonable
timeframe. The problem involved nine decision variables, which means that it had nine
dimensions (n = 9). Our cognitive and social factors were set at c1 = 2 and c2 = 2, respectively.
To ensure accuracy and consistency, we repeated the optimization process 30 times for
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each metaheuristic algorithm. PSO yielded a total of 30 results, and we have provided a
summary of the top 10 in Table 8.

Table 8. Results using Particle Swarm Optimization in the proposed model.

j1 j2 j3 Q1 Q2 Q3 P Profit Tc

5 10 0 625.2024 357.5136 0 17.48964 $4195.2628 10.4658

5 10 0 460.4654 263.152 0 17.48778 $4195.5702 7.7031

10 10 5 447.4173 507.6502 399.8 16.40596 $4199.647 15.0089

4 9 0 618.4156 317.4855 0 17.47399 $4200.1496 8.3043

9 10 0 395.3861 415.1201 0 17.419 $4200.6401 11.8975

7 10 0 481.8841 397.9198 0 17.46638 $4211.5892 11.3869

6 10 0 517.472 372.3754 0 17.48854 $4212.0876 10.6669

7 10 0 438.2362 361.4035 0 17.46361 $4213.3668 10.3913

5 10 2 668.2426 387.1903 409.3942 16.84653 $4219.4276 11.2654

6 10 0 491.0763 346.7467 0 17.43933 $4223.2641 9.9333

3 5 1 566.374 394.1614 352.0102 16.89048 $4236.1505 5.6816

Table 9 shows three solutions to the problem, two of them obtained using the proposed
model and the third is the solution presented along with the reference model.

Table 9. Best results using both the previous and the proposed model.

Method j1 j2 j3 Q1 Q2 Q3 P Profit Tc

Proposed 6 10 0 491.0763 346.7467 0 17.43933 $4223.26 9.93

Proposed 3 5 1 566.374 394.1614 352.0102 16.89048 $4236.1505 5.68

Reference 4 9 5 608.6800 378.7400 486.9500 15.8400 $4179.91 9.74

The solutions for the reference model obtained through the PSO strategy to solve the
problem are listed in Table 10. It is important to mention that these results are not as good
as the ones obtained by the proposed model.

Table 10. Results using the PSO algorithm in the previous model.

j1 j2 j3 Q1 Q2 Q3 P Profit Tc

3 10 2 611.43482 302.2221 1000 16.422054 $3991.35 8.9973

2 4 2 603.3485 549.5823 631.8927 17.07176 $3998.97 6.8828

2 5 2 447.7809 252.1053 547.7207 16.58173 $4016.19 4.3924

3 10 5 1000 397.1731 603.42911 16.259653 $4045.13 12.7226

4 10 10 1000 598.94822 401.12309 16.079424 $4046.64 17.246

4 10 10 781.919 500.231 357.0862 16.27514 $4066.50 14.9458

4 9 5 703.4059 377.2035 570.511 16.5024 $4070.85 12.0655

6 9 7 446.8211 507.0697 464.7826 16.34089 $4085.31 13.5725

6 10 10 599.3858 521.8324 370.7003 15.91724 $4133.20 14.9621

6 10 8 462.4226 416.3043 368.7471 15.98633 $4134.55 11.9691

Figure 1 shows that the reference model yields results ranging from $4000 to around
$4130, while the new reformulation (see Figure 2) generates results ranging from $4197 to
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approximately $4235. It is worth noting that all solutions obtained through the proposed
model are superior to those obtained through the reference model.
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6. Conclusions

This article explores the problem of selecting suppliers and allocating order quantities
to maximize profit while considering the effect of the selling price on demand. Previous
studies have focused on minimizing inventory costs. Still, this article presents a new
mathematical model that includes quality constraints, nonlinear quantity discounts, price-
dependent demand, and supplier capacity constraints. The model differs from previous
ones in that it considers the perfect rate of suppliers in the order cycle calculation equation
and solves the quality constraint in a single step. The Particle Swarm Optimization (PSO)
algorithm was used on a numerical example from the literature to test the model. The
proposed model outperformed the previous model, leading to a higher profit.

Author Contributions: A.A.-R. and A.M. contributed to the conceptualization of the article;
A.A.-R., E.C. and M.A.-R. contributed with the optimization methodology; M.A.-R., E.C. and A.A.-R.
contributed with the software and validation; A.A.-R. and A.M. contributed with the formal analysis;
A.A.-R. and A.M. wrote the draft and manuscript preparation. All authors have read and agreed to
the published version of the manuscript.
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