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Abstract: Intensive research efforts have been dedicated to the extension and development of essential
aspects that resulted in the theory of one complex variable for higher-dimensional spaces. Clifford
analysis was created several decades ago to provide an elegant and powerful generalization of
complex analyses. In this paper, first, we derive a new base of special monogenic polynomials (SMPs)
in Fréchet–Cliffordian modules, named the equivalent base, and examine its convergence properties
for several cases according to certain conditions applied to related constituent bases. Subsequently,
we characterize its effectiveness in various convergence regions, such as closed balls, open balls, at
the origin, and for all entire special monogenic functions (SMFs). Moreover, the upper and lower
bounds of the order of the equivalent base are determined and proved to be attainable. This work
improves and generalizes several existing results in the complex and Clifford context involving the
convergence properties of the product and similar bases.

Keywords: Clifford analysis; special monogenic polynomials; Fréchet modules; bases of polynomials;
growth of bases; effectiveness
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1. Introduction

The development of the theory of bases in Clifford analysis has indicated its growing
relevance in various mathematics and mathematical physics fields. The concept of basic
sets (bases) in one complex variable was initially discovered by Whittaker [1,2], and the
effectiveness terminology was proposed. In this context, a significant contribution was
made by Cannon [3,4], who proved the necessary and sufficient conditions for a base to
possess a finite radius of regularity and to generate entire functions. In [5], Boas introduced
several effectiveness criteria for entire functions.

Despite the fact that our current study has a theoretical framework, the theory of
basic sets finds its utility in applications and, in particular, to solve differential equations
for real-life phenomena, as indicated in [6–8]. Several approaches have been pursued
in generalizing the theory of classical complex functions. Among these generalizations
are the theory of several complex variables and the matrix approach [9–11]. The crucial
development of the hypercomplex theory derived from higher-dimensional analysis in-
volving Clifford algebra is called Clifford analysis. In the last decades, Clifford analysis has
proved to have substantial influence as an elegant and powerful extension of the theory of
holomorphic functions in one complex variable to the Euclidean space of more than two
dimensions. The theory of monogenic functions created a solution for a Dirac equation or s
generalized Cauchy–Riemann system, both of which are related to Riesz systems [12]. In a
complex setting, holomorphic functions can be described by their differentiability or series
expansion for approximations. Accordingly, exploring such representations of monogenic
functions in higher-dimensional space is critical. Abul-Ez and Constales [13] initiated the
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study of extending Whittaker’s base of polynomials in complex analysis into the context
of Clifford analysis as a base of SMPs, which is a Hamel basis of linear space for all SMPs
with Clifford-valued coefficients. In [13,14], the authors proved that the basic set is effective
in the convergence domain when an SMF, f , can be represented in terms of a set of SMPs
with some conditions. The characterization of the effectiveness property (Clifford–Cannon
theorem) was determined for closed balls [13]. Locally representing a monogenic function
in terms of a base of monogenic polynomials is a subject of great interest. Accordingly,
the problem of replacing such a base without changing the radius of convergence restricts
the class of monogenic functions to the so-called SMFs. Although straightforward gener-
alizations may seem possible, the proof of the Cannon theorem regarding effectiveness
(see [13]) in an n-dimensional domain is quite complicated. Abul-Ez and Constales [13,14]
narrowed the study of the representation of monogenic functions to axially symmetric
domains, which they called axially (special) monogenic functions.

A rich treatment of polynomial bases combining the functional and Clifford analyses
was proposed [15], where a criterion of a general type for the effectiveness of bases in
Fréchet modules was constructed in various regions. Accordingly, these authors of [15]
studied effectiveness in open and closed balls and offered a remarkable method of appli-
cation of approximation theory to expand some Clifford-valued functions in terms of an
infinite series of Cannon sets of SMPs. A new extension of the well-known Ruscheweyh
derivative operator was introduced in [16], where the representation of certain special
monogenic functions in different regions of convergence was investigated in Fréchet mod-
ules. The previously mentioned treatment generalizes the results in the complex and
Clifford settings given in [10,13,17]. In [18], the authors established an expansion of a partic-
ular monogenic function in terms of generalized monogenic Bessel polynomials (GMBPs).
Additionally, they proved that the GMBPs are solutions of second-order homogeneous
differential equations.

As is the case in complex analyses, it is of great importance to examine when the
product of special monogenic polynomials is effective in the theory of bases in Clifford
analysis. It is not very surprising that the product of two effective bases does not maintain
effectiveness, as shown in [19], where the authors studied the effectiveness of the product
of simple bases. Recently, in [20], a generalization of the product base for functions with
bounded radii of convergence was investigated. The inverse of an effective base does
not need to be effective [21]. Consequently, it is interesting to derive a new base of SMPs
from given bases and examine how the convergence properties (region of effectiveness)
of the derived base and the original bases are related. In alignment with this approach,
researchers have studied the effectiveness of various constructed bases of SMPs, such as
the inverse base [21], Hadamard product base [22], Bernoulli and Euler bases [23], general
Bessel base [18], and Chebyshev base [24]. Numerous results concerning the polynomial
bases in one complex variable were generalized to the Clifford context [16,25]. The notion of
the mode of increase of special monogenic functions was initially introduced in [13]. In [26],
the authors determined the order and type of the coefficients in the Taylor expansion of
entire axially monogenic functions. Related contributions to the investigation of the order
of bases can be found in [27,28].

Motivated by the previous discussion, this paper defines a new base of polynomials:
the equivalent base in the Clifford setting in the sense of Fréchet modules. After construct-
ing this base in terms of three constituents (the factors), we characterize the convergence
properties of the equivalent base in closed balls, open balls, at the origin, and for all entire
SMFs by considering specific types of constituent bases, such as simple monic bases, sim-
ple bases, and nonsimple bases, with some restrictions on the coefficients. Furthermore,
knowing the orders of the constituent bases, the upper and lower bounds of the equivalent
base are assessed, and two examples demonstrating the attainability of these bounds are
provided. We establish the Tρ property of the equivalent base of SMPs.

The structure of the paper is organized as follows. Section 2 provides the essential
definitions and results on Clifford algebra and SMPs in Fréchet modules. The concept of
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equivalent bases is defined and constructed in Section 3. Section 4 details the effectiveness
properties of the equivalent base. We study the effectiveness when the constituent bases
are simple monic bases, simple bases with normalizing conditions, nonsimple bases with
restrictions on the degree of the bases, or algebraic bases. The upper and lower bounds of
the order of the equivalent base are determined and proved attainable in Section 5. Section 6
deals with the Tρ property of the equivalent base of SMPs in open balls. We conclude the
paper by summarizing the results and suggesting open problems for further study.

2. Preliminaries

This section collects several notations and results for Clifford analyses and functional
analyses, which are essential throughout the paper. More details can be found in [13,15,29]
and the references therein.

The real Clifford algebra Am is a real algebra of dimension 2m, which is freely gener-
ated by the orthogonal basis (e0, e1, . . . , em) in Rm+1 according to the non-commutativity
property eiej + ejei = −2δij, where e0 = 1 for 1 ≤ i 6= j ≤ m (for details on the main
concepts of Am, see [30]). The space Rm+11 is embedded in Am. Let x ∈ Am; then, Rex
refers to the real part of x, which represents the e0 component of x and Im x := x− (Re x)e0.
The conjugate of x is x̄, where ē0 = e0 and ēi = −ei for 1 ≤ i ≤ m. The relationship xy = ȳx̄
holds for all x, y ∈ Am. Note thatAm is equipped with the Euclidean norm | x |2:= Re (xx̄).
As Am is isomorphic to R2m

, we have, for any a, b ∈ Am, | ab |≤ 2
m
2 | a || b | and

|ab| = |a||b| if aa ∈ R or bb ∈ R, where a = ∑A⊆M aAeA and M = {1, 2, . . . , m}.
An Am-valued function f is called left (resp. right)-monogenic in an open set

Ω ⊂ Rm+1 if it satisfies D f = 0 (resp. f D = 0) in Ω where

D =
m

∑
i=0

ei
∂

∂xi

is the generalized Cauchy–Riemann operator. Furthermore, a polynomial P(x) is specially
monogenic if and only if DP(x) = 0 (so P(x) is monogenic) and there exists ai,j ∈ Am,
for which

P(x) =
f inite

∑
i,j

xixjai,j.

Definition 1. Suppose that Ω is a connected open subset of Rm+1 containing 0 and f is monogenic
in Ω. Then, f is called special monogenic in Ω if and only if its Taylor series near zero (which exists)

has the form f (x) =
∞

∑
n=0

Pn(x)an for certain SMPs, specifically Pn(x) and an ∈ Am.

The space of all SMPs denoted by Am[x] is the right Am module defined by

Am[x] = spanAm
{Pn(x) : n ∈ N},

where Pn(x) was defined by Abul-Ez and Constales [13] in the form

Pn(x) =
n!

(m)n
∑

r+s=n

(m−1
2 )r(

m+1
2 )s

r!s!
xrxs, (1)

where for b ∈ R, (b)l = b(b + 1) . . . (b + l − 1) is the Pochhamer symbol. Observe that
Rm+1 is identified with a subset of Am.

Let Pn(x) be a homogeneous SMP of degree n in x and Pn(x) = Pn(x) α, where α ∈ Am
is a Clifford constant (see [13]). Consequently, we obtain

‖Pn‖R = sup
B(R)
|Pn(x)| = Rn.
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Now, we state the definition of a Fréchet module (F-module) as follows.

Definition 2. An F-module E over Am satisfies the following properties:

(i) E is a Hausdorff space,
(ii) E is a topology induced by a countable set of a proper system of semi-norms P = {‖.‖k}k≥0

such that k < l ⇒ ‖g‖k ≤ ‖g‖l ; (g ∈ E). This implies that V ⊂ E is open if and only if for
all g ∈ V, there exists ε > 0, N ≥ 0 such that { f ∈ E : ‖g− f ‖k) ≤ ε} ⊂ V, ∀k ≤ N.

(iii) E is complete with respect to a countable set of a proper system of semi-norms.

Definition 3. A sequence {gn} in an F-module E converges to f in E if and only if

lim
n→∞

‖gn − f ‖k = 0

for all ‖.‖k ∈ P.

Remark 1. In the following Table 1, each indicated space represents an F-module depending on the
countable set of a proper system of associated semi-norms.

Table 1. F-modules examples.

Notation Space The Associated Semi-Norms

H[B(R)] The space of SMFs in the open ball B(R) ‖g‖r = supB(r) |g(x)|, x ∈ Rm+1, ∀r < R, g ∈ H[B(R)]

H[B(R)] The space of SMFs in the closed ball B(R) ‖g‖R = supB(R) |g(x)|, x ∈ Rm+1∀g ∈ H[B(R)]

H[B+(R)]
The space of SMFs in B+(R), where B+(R) is any open

ball enclosing the closed ball B(R) ‖g‖r = supB(r) |g(x)|, x ∈ Rm+1∀R < r, g ∈ H[B+(R)]

H[∞] The space of entire SMFs on the whole of Rm+1 ‖g‖n = supB(n) |g(x)|, x ∈ Rm+1, n < ∞ ∀g ∈ H[∞]

H[0+ ] The space of SMFs at the origin ‖g‖ε = supB(ε) |g(x)|, x ∈ Rm+1, ε > 0 ∀g ∈ H[0+ ]

Definition 4. A sequence {Pn(x)} of an F-module E is said to form a base if Pn(x) admits a right
Am-unique representation of the form

Pn(x) =
∞

∑
k=0

Pk(x) P̃n,k, P̃n,k ∈ Am. (2)

The Clifford matrix P̃ = (P̃n,k) is the operator’s matrix of the base {Pn(x)}. The base {Pn(x)}
can be written as follows:

Pn(x) =
∞

∑
k=0
Pn(x) Pn,k, Pn,k ∈ Am. (3)

The Clifford matrix P = (Pn,k) is called the coefficient matrix of the base {Pn(x)}. According
to [13], the set {Pn(x)} will be a base if and only if

PP̃ = P̃P = I, (4)

where I denotes the unit matrix.

Let g(x) =
∞

∑
n=0
Pn(x) an(g) be any SMF of an F-module E. Substituting for Pn(x) from

(2), we obtain the basic series

g(x) ∼
∞

∑
n=0

Pn(x) Πn(g), (5)
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where

Πn(g) =
∞

∑
k=0

P̃k,n ak(g) . (6)

Remark 2. Representation (5) is the most important series in Clifford analysis because, as we shall
see, their sums are SMFs, and every SMF can be represented by basic series. Basic series generalize
Taylor series, where Pn(x) in (5) can be Legendre, Laguerre, Chebychev, Hermite, Bessel, Bernoulli,
or Euler polynomials [18,23].

Definition 5. A base {Pn(x)} is effective for an F-module E if the basic series (5) converges
normally to every element g(x) ∈ E.

Applying Definition 5, we can take the F-module E to be the space H[B(R)]. Thus, the
base {Pn(x)} will be effective for H[B(R)] if the basic series converges normally to every
SMF g(x) ∈ H[B(R)] that is specially monogenic in B(R). A similar inclusion criteria can
be applied for the spaces H[B(R)] and H[B+(R)]. When R tends to infinity in H[B(R)], the
definition of effectiveness yields effectiveness for H[∞], which means that the basic series
converges normally to every complete SMF g(x) ∈ H[∞] on the whole space Rm+1. More-
over, when R tends to zero in H[B+(R)], the definition of effectiveness yields effectiveness
for H[0+ ], which means that the basic series converges normally to every SMF g(x) ∈ H[0+ ]
that is specially monogenic there.

Results concerning the study of the effectiveness properties of bases in the F-modules
E were presented in [15]. We can write

‖Pn‖R = sup
B(R)
|Pn(x)|, (7)

ωn(R) = ∑
k
‖Pk P̃n,k‖R, (8)

where

‖Pk P̃n,k‖R = sup
B(R)
|Pk(x) P̃n,k|.

Then, the convergence properties of a base are totally determined by the value of

λ(R) = lim sup
n→∞

{ωn(R)}
1
n , (9)

where ωn(R) is the Cannon sum and λ(R) is the Cannon function.

Theorem 1. A necessary and sufficient condition for a base {Pn(x)} to be

1. Effective for H[B(R)] is that λ(R) = R;
2. Effective for H[B(R)] is that λ(r) < R ∀ r < R;
3. Effective for H[B+(R)] is that λ(R+) = R;
4. Effective for H[∞] is that λ(R) < ∞ ∀ R < ∞;
5. Effective for H[0+ ] is that λ(0+) = 0.

The Cauchy inequality for the base in (3) is defined as [15]

|Pn,k| ≤
‖Pn‖R

Rk . (10)
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Definition 6. When {Pn(x)} is a base of polynomials, then Representation (2) is finite. If the
number of non-zero terms N(n) in (2) is such that

lim sup
n→∞

{N(n)}
1
n = 1, (11)

the base {Pn(x)} is called a Cannon base of polynomials. Moreover, when lim supn→∞{N(n)} 1
n =

a > 1, then the base {Pn(x)} is said to be a general base.

Definition 7. A base {Pn(x)} of polynomials is called a simple base if the polynomial Pn(x) is of
degree n. A simple base is called a simple monic base if Pn,n = 1 ∀ n ∈ N.

Definition 8. The order of a base {Pn(x} in a Clifford setting was defined in [13,14] by

ρ = lim
R→∞

lim sup
n→∞

log ωn(R)
n log n

. (12)

Determining the order of a base allows us to realize that if the base {Pn(x)} has a finite
order, ω, then it represents every complete SMF of an order less than 1

ω in any finite ball.

3. Equivalent Bases of SMPs

Employing the definition of the product base of polynomials in the context of the
Clifford analysis introduced in [19], the equivalent base of SMPs can be defined as follows.

Definition 9. Let {P(`)
n (x)} and ` = 1, 2, 3 be three bases of polynomials, where x is a Clifford

variable. Define
{En(x)} = {P̃(3)

n (x)}{P(2)
n (x)}{P(1)

n (x)} (13)

where {P̃(3)
n (x)} is the inverse base of {P(3)

n (x)}. The base {En(x)} is called the equivalent base to
the base {P(2)

n (x)} .

Let P(`), ` = 1, 2, 3, and E be the matrices of coefficients of the bases {P(`)
n (x)},

` = 1, 2, 3, and {En(x)}, respectively. Then, (13) leads to

En(x) = ∑
k
Pk(x)En,k, (14)

where
En,k = ∑

i,j
P̃(3)

i,k P(2)
j,i P(1)

n,j ,

where P̃(3) is the inverse matrix of the matrix P(3).

Remark 3. Note that if {En(x)} is the equivalent base of {P(2)
n (x)}, then the base

{P(2)
n (x)} = {P(3)

n (x)}{En(x)}{P̃(1)
n (x)} (15)

is the equivalent base of {En(x)}.

According to (13), we can write

E = P̃(3)P(2)P(1).

Suppose Ẽ is a matrix given by P̃(1)P̃(2)P(3). It can be easily observed that

EẼ = P̃(3)P(2)P(1) · P̃(1)P̃(2)P(3) = I,
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and
ẼE = P̃(1)P̃(2)P(3)P(2)P(1) = I,

where I is the unit matrix. Thus, the matrix Ẽ is a unique inverse of E. This implies that the
set {En(x)} is indeed a base.

4. Effectiveness of the Equivalent Base
4.1. Effectiveness with Simple Monic Constituents

We begin by considering the three bases {P`
n(x)}, where ` = 1, 2, 3, as simple monic

bases to attain the following result.

Theorem 2. Let {P(`)
n (x)} where ` = 1, 2, 3 be three simple monic bases of polynomials, and

suppose that the bases {P(1)
n (x)} and {P(3)

n (x)} are effective for H[B̄(r)]. Then, the equivalent base

{En(x)} is effective for H[B̄(r)] if and only if {P(2)
n (x)} is effective in the same space.

Proof. Suppose that the three bases {P`
n(x)}, where ` = 1, 2, 3, are effective for H[B̄(r)].

Owing to [19,21], it follows directly that the base {En(x)} is effective for H[B̄(r)].

Conversely, suppose that the bases {P(1)
n (x)}, {P(3)

n (x)}, and {En(x)} are effective
for H[B̄(r)]. Using Equation (15), as we mentioned previously, we deduce that the base

{P(2)
n (x)} is effective for H[B̄(r)].

Effectiveness with Boas Conditions

In the following, we consider the case for which each base of the constituent bases
{P(`)

n (x)}, where ` = 1, 2, 3, of the equivalent base has the Boas conditions [31] in the form

|P(`)
n,k | ≤ M`an−k

` , 0 ≤ k ≤ n− 1, (16)

where a` and M` are any finite positive numbers.

Theorem 3. Suppose that {P(`)
n (x)}, where ` = 1, 2, 3, are three simple monic bases of SMPs

and satisfy the Boas conditions (16). Then, the equivalent base {En(x)} is effective for H[B̄(r)] for
r ≥ max{a`(1 + M`), where ` = 1, 2, 3}.

Proof. Using the product P(`)P̃(`) = I, where P(`) denotes the matrix of coefficients of the
base {P`(x)}, P̃(`) is its inverse, and I is the unit matrix, it follows that

∑
j

P̃(`)
j,k P(`)

n,j = δn
k . (17)

Since each of {P(`)
n (x)}, where ` = 1, 2, 3, is simple, then the relationship (17) can be

written in the form

P̃(`)
n,n+kP(`)

n+k,n+k = −
k−1

∑
j=0

P̃(`)
n,n+jP

(`)
n+j,n+k. (18)

Owing to (16) and (18), we obtain

|P̃(`)
n,k | ≤ [a`(1 + M`)]

n−k, 0 ≤ k ≤ n− 1. (19)



Axioms 2023, 12, 544 8 of 20

Using (14), (16) and (19), we have

‖En‖r ≤ 2
m
2 ∑

k
‖Pk‖r |En,k|

≤ 2
3m
2 ∑

k
rk ∑

i,j
|P̃(3)

i,k ||P
(2)
j,i ||P

(1)
n,j |

≤ 2
3m
2 M1M2rn ∑

k

[
a3(1 + M3)

r

]i−k

∑
i

( a2

r

)j−i
∑

j

( a1

r

)n−j

≤ 2
3m
2 M1M2rn(n + 1)3 (20)

for r ≥ max{a1, a2, a3(1 + M3)}.
Employing the relationships (16), (19), and (20) in the Cannon sum of {En(x)} leads to

Ωn(r) ≤ 2
m
2 ∑

k
‖Ek‖r |Ẽn,k|

≤ 2
3m
2 ∑

k
‖Ek‖r ∑

i,j
|P̃(1)

i,k ||P̃
(2)
j,i ||P

(3)
n,j |

≤ 2
3m
2 M3rn ∑

k

[
a1(1 + M1)

r

]i−k

∑
i

[
a2(1 + M2)

r

]j−i

∑
j

[ a3

r

]n−j

≤ 2
3m
2 M3(n + 1)3rn

for r ≥ max{a1(1 + M1), a2(1 + M2), a3}.
Therefore, the Cannon function of the equivalent base {En(x)} gives

λE(r) = lim sup
n→∞

{Ωn(r)}
1
n ≤ r, (21)

for r ≥ max{a`(1 + M`), ` = 1, 2, 3}. According to [15,16], the equivalent base is effective
for H[B̄(r)], as desired.

4.2. Effectiveness of Simple Bases with Normalizing Conditions

In this subsection, we study the convergence properties of the equivalent base whose
constituent bases {P`

n(x)}, where ` = 1, 2, 3, are simple bases for which the diagonal
coefficients satisfy Halim’s condition [25]

lim
n→∞

|P(`)
n,n |

1
n = 1.

For the sake of shortening notations, we write

‖P(`)
n ‖R = sup

B̄(R)
|P(`)

n (x)|.

We will use K to denote a constant that needs not be the same as it is used.

Theorem 4. Suppose that the simple bases {P`
n(x)}, where ` = 1, 2, 3, are effective for H[B̄(r)] and

satisfy the two conditions

(i) P(`)
n,n P̄(`)

n,n ∈ R;

(ii) lim
n→∞

|P(`)
n,n |

1
n = 1.

Then, the equivalent base {En(x)} is effective for H[B̄(r)].
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Proof. Since the three bases {P`
n(x)}, where ` = 1, 2, 3, satisfy the condition lim

n→∞
|P(`)

n,n |
1
n = 1,

it follows that for all n ∈ N, the following relationship holds:

K(1− ε)n < |P(`)
n,n | < K(1 + ε)n. (22)

Moreover,

1
K(1 + ε)n < |P̃(`)

n,n | <
1

K(1− ε)n , (23)

where P(`)
n,n P̃(`)

n,n = 1.
Since {P`

n(x)} are simple bases and effective for H[B̄(r)], then they are effective for
H[B̄(R)] for all R ≥ r (see [25]), which implies that

λ(`)(R) = R, ∀R ≥ r. (24)

Hence, for an increasing sequence rj+1 > rj > r, j = 1, 2, . . . 7, it follows that

ω
(`)
n (rj) < k rn

j+1 ∀n ≥ 0. (25)

Since
P(`)

k (x) = ∑
j
Pj(x)P(`)

k,j , (26)

it follows that
P(`)

k (x) · P̃(`)
n,k = ∑

j
Pj(x)P(`)

k,j · P̃
(`)
n,k . (27)

Thus, by applying Cauchy’s inequality as stated in (10), we obtain

|P(`)
k,j P̃(`)

n,k | ≤
‖P(`)

k P̃(`)
n,k ‖r

rj . (28)

We set k = n in (28) to obtain

|P(`)
n,j P̃(`)

n,n | ≤
‖P(`)

n P̃(`)
n,n‖R

Rj . (29)

Then, in view of (22) and the condition (i), we have

|P(`)
n,k | ≤

ω
(`)
n (rj)

rk
j
|P(`)

n,n | <
K[(1 + ε)rj+1]

n

rk
j

. (30)

Putting j = k in (28) implies that

|P(`)
k,k P̃(`)

n,k | ≤
‖P(`)

k P̃(`)
n,k ‖r

rk . (31)

Thus, using (23) and the condition in (i) again, we can write

|P̃(`)
n,k | ≤

ω
(`)
n (rj)

rk
j
|P̃(`)

n,n | <
rk

j+1

K[(1− ε)rj+1]n
. (32)
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Now, relying on the relationships (14), (30) and (32), one can obtain

‖En‖r1 ≤ 2
m
2 ∑

k
‖Pk‖r1 |En,k|

≤ 2
3m
2 ∑

k
rk

1 ∑
i,j
|P̃(3)

i,k ||P
(2)
j,i ||P

(1)
n,j |

< K2
3m
2 ∑

k
rk

1 ∑
i,j

ri
2

[(1− ε)r1]k
[(1 + ε)r3]

j

ri
2

[(1 + ε)r4]
n

rj
3

< K2
3m
2
(1 + ε)2n

(1− ε)n (n + 1)3rn
4 . (33)

Using the relationships (30), (32) and (33), the Cannon sum Ωn(r1) of the equivalent
base satisfies

Ωn(r1) ≤ 2
m
2 ∑

k
‖Ek‖r1 |Ẽn,k|

≤ 2
3m
2 ∑

k
‖Ek‖r1 ∑

i,j
|P̃(1)

i,k ||P̃
(2)
j,i ||P

(3)
n,j |

≤ K23m ∑
k

(1 + ε)2k

(1− ε)k (k + 1)3rk
4 ∑

i,j

rj
5

[(1− ε)r4]k
rj

6
[(1− ε)r5]k

[(1 + ε)r7]
n

rj
6

< K23m(n + 1)6
(

1 + ε

1− ε

)3n
rn

7 .

Therefore, the Cannon function of the equivalent base {En(x)} is

λE(r1) = lim sup
n→∞

{Ωn(r1)}
1
n ≤ r7.

Since r7 can be chosen arbitrarily close to r, it follows that λE(r) ≤ r; however, it
is proved in [15,16] that λE(r) ≥ r. This implies that λE(r) = r, which means that the
equivalent base {En(x)} is effective for H[B̄(r)].

Next, we consider non-simple bases for which there are some restrictions on the degree
of the bases. Let d(`)n and d̃(`)n , where ` = 1, 2, 3, denote the degrees of the bases {P(`)

n (x)}
and {P̃(`)

n (x)}, respectively, and satisfy the following conditions:

d(`)n = O(n) and d̃(`)n = O(n); ` = 1, 2, 3. (34)

Thus, there exist positive numbers α` and β` such that

d(`)n ≤ α`n and d̃(`)n ≤ β`n. (35)

Furthermore, suppose the bases {P(`)
n (x)} satisfy the following equality, which is

recognized as Newns’ condition [32]:

µ`(r) = µ̃`(r) = r, (36)

where

µ`(r) = lim sup
n→∞

{‖P(`)
n ‖r}

1
n ,

µ̃`(r) = lim sup
n→∞

{‖P̃(`)
n ‖r}

1
n .

Obeying these conditions, we can state and prove the following result.
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Theorem 5. If each of the bases {P(`)
n (x)} satisfy Equations (35) and (36), then the equivalent

base {En(x)} is effective for H[B̄(r)].

Proof. According to Equation (36), it follows that

‖P(`)
n ‖r ≤ ‖P(`)

n ‖ri < Krn
i+1 (37)

and
‖P̃(`)

n ‖r ≤ ‖P̃(`)
n ‖ri < Krn

i+1. (38)

Owing to Cauchy’s inequality and the relationship (35), we obtain

‖P(3)
n ‖r12 = sup

B̄(r12)

|P(3)
n (x)|

≤ 2
m
2

d(3)n

∑
i=0
‖Pi‖r12 |P

(3)
n,i |

≤ 2
m
2 ‖P(3)

n ‖r

d(3)n

∑
i=0

( r12

r

)i

≤ 2
m
2 ‖P(3)

n ‖r

( r12

r

)α3n
(1 + α3n). (39)

Moreover, using the relationships (37) and (38) and applying Cauchy’s inequality
imply that

‖En‖r ≤ 2m ∑
i,j
‖P̃(3)

i ‖r|P(2)
j,i ||P

(1)
n,j |

< K2m ∑
i,j

ri
3

‖P(2)
j ‖r4

ri
4

‖P(1)
n ‖r6

rj
6

< K2mrn
7 ∑

i,j

(
r3

r4

)i( r5

r6

)j

< K2mrn
7 (1 + α1α2n). (40)

Substituting (37)–(40) in the Cannon sum and using Cauchy’s inequality, we obtain

Ωn(r) ≤ 2
m
2 ∑

k
‖Ek‖r|Ẽn,k|

≤ 2m ∑
k

rk
7(1 + α1α2k)∑

i,j
|P̃(1)

i,k ||P̃
(2)
j,i ||P

(3)
n,j |

≤ 2m ∑
k

rk
7(1 + α1α2k)∑

i,j

‖P̃(1)
i ‖r8

rk
8

‖P̃(2)
j ‖r10

ri
10

‖P̃(3)
n ‖r12

rj
12

< 2m‖P(3)
n ‖r12 ∑

i,j,k

(
r9

r10

)i( r11

r12

)j( r7

r8

)k
(1 + α1α2k)

< 2
3m
2 ‖P(3)

n ‖r

( r12

r

)α3n
(1 + α3n)(1 + α1α2α3β1β2n).

Taking the n-th root and making n tend to infinity, the Cannon function of the equiva-
lent base {En(x)} satisfies that

λE(r) ≤ µ3(r)(
r12

r
)α3 .
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Since r12 can be arbitrarily chosen near to r (36), we conclude that λE(r) ≤ r, but
λE(r) ≥ r; then, by applying Theorem 1, we obtain that λE(r) = r, which means that
{En(x)} is indeed effective for H[B̄(r)].

4.3. Effectiveness with Algebraic Property

In the following case, the bases {P(`)
n (x)} are considered to be algebraic, satisfying the

conditions [22]
µ`(r+) ≤ r, ` = 1, 2, 3 (41)

where
µ`(r+) = lim sup

n→∞
{‖P(`)

n ‖r+}.

For this consideration, we first provide the following result.

Lemma 1. Let {P(`)
n (x)}, where ` = 1, 2, 3, be three algebraic bases of polynomials satisfying

Equation (41). Then, the equivalent base {En(x)} satisfies the condition

µ(r+) ≤ r. (42)

Proof. Since each of the three bases {P(`)
n (x)} is algebraic according to [22], the matrices of

coefficients P(`) and their powers (P(`))(t), where t = 1, 2, . . . , N < ∞, satisfy the following
relationship:

P̃(`)
n,k =

N

∑
t=0

γt(P(`)
n,k )

(t) (43)

where γt are constants.
Using Equation (41) and Theorem 1 in [22], we obtain

‖P(`)
n ‖ri < Krn

i+1 (44)

and

‖
(

P(`)
n

)(t)
‖ri < Krn

i+1. (45)

By inserting (45) in (43) and then applying Cauchy’s inequality, it follows that

|P̃(`)
n,k | < Kγ(N + 1)

rn
i+1

rk
i

, n 6= k (46)

where
γ = sup

0≤i≤t
|γi|.

From (44)–(46), and by using Cauchy’s inequality, we obtain

‖En‖r1 ≤ 2m ∑
k

rk
1 ∑

i,j
|P̃(3)

i,k |P
(2)
ji ||P

(1)
n,j |

< K2mγ(N + 1)‖P(1)
n ‖r6 ∑

k
rk

1 ∑
i,j

ri
3

rk
2

‖P(2)
j ‖r4

ri
4rj

6

= K2mγ(N + 1)‖P(1)
n ‖r6 ∑

i,j,k

(
r3

r4

)i( r5

r6

)j( r1

r2

)k

< K2mγ(N + 1) rn
7 .
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We can take the upper limit as n → ∞ and make r7 → r+ imply that µ(r+) ≤ r,
which means that the equivalent base {En(x)} satisfies Equation (42) whenever the three
constituent bases are algebraic. Therefore, the lemma is established.

The effectiveness of the equivalent bases of polynomials for H[B+(r)] holds without
any restrictions on the constituent bases to be effective in the same space as indicated in the
following result.

Theorem 6. If the three algebraic bases {P(`)
n (x)} satisfy the normalizing condition (42), then the

equivalent base {En(x)} is effective for H[B+(r)].

Proof. Suppose that the three bases {P(`)
n (x)} for ` = 1, 2, 3 are algebraic and satisfy (42).

Substituting from (44) and (46) in the Cannon sum of the equivalent base, it follows that

Ωn(r1) ≤ 2
3m
2 ∑

k
‖Ek‖r1 ∑

i,j
|P̃(1)

i,k ||P̃
(2)
j,i ||P

(1)
n,j |

< K2
3m
2 γ2(N + 1)2rn

13 ∑
i,j,k

(
r9

r10

)i( r11

r12

)j( r7

r8

)k

< K2
3m
2 γ2(N + 1)2rn

13.

from which we can deduce as before that λE(r1) ≤ r13. By taking r13 → r+, we obtain
λE(r+) ≤ r, but λE(r+) ≥ r. Therefore, λE(r+) = r, which implies that the equivalent base
{En(x)} is effective for H[B+(r)].

Now, letting r → 0 in Theorem 6, Equation (42) will be replaced by the equation

µ`(0
+) = 0, ` = 1, 2, 3. (47)

Thus, the following result follows.

Corollary 1. Let {P(`)
n (x)} where ` = 1, 2, 3 be three algebraic bases satisfying Equation (47).

Then, the equivalent base {En(x)} is effective for H[0+ ].

Concerning the effectiveness of the equivalent base for H[B(R)], let {P(`)
n (x)} be bases

of polynomials that satisfy the conditions

µ`(r) < R, ∀r < R,

µ̃`(r) < R, ∀r < R.
(48)

We can similarly proceed as in the proof of Theorem 6 to conclude the following.

Theorem 7. Let {P(`)
n (x)}, where ` = 1, 2, 3, be three bases of polynomials satisfying Equa-

tion (48). Then, the equivalent base {En(x)} is effective for H[B(R)].

Now, by letting R→ ∞ exist in Theorem 7, Equation (48) will be replaced by

µ`(r) < ∞,

µ̃`(r) < ∞, ∀r < ∞.
(49)

Consequently, the effectiveness of the equivalent base for the space of a complete
special function, H[∞], is established as follows.

Corollary 2. Let {P(`)
n (x)}where ` = 1, 2, 3 be three bases of polynomials satisfying Equation (49).

Then, the equivalent base {En(x)} is effective for H[∞].
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5. The Order of the Equivalent Base

In this section, we determine the order ρ of the equivalent base {En(x)} in relation to
the orders ρ` where ` = 1, 2, 3 of the constituent bases {P(`)

n (x)}, where

ρ` = lim
r→∞

lim sup
n→∞

log ω
(`)
n (r)

n log n
. (50)

This relationship is formulated in the following.

Theorem 8. Let {P(`)
n (x)} be a simple monic base of polynomials of the receptive order ρ`, where

` = 1, 2, 3. Then, the order of the equivalent base {En(x)} satisfies the inequality

1
2
(ρ2 − 2ρ1 − 2ρ3) ≤ ρ ≤ ρ1 + 2ρ2 + 2ρ3, (51)

and these bounds are attainable.

Proof. Since the three bases {P(`)
n (x)} are simple monic bases of the orders ρ`, ` = 1, 2, 3,

then Equation (50) yields

1 < rn < ‖P(`)
n ‖r < Ω(`)

n (r) < Knσ`n, n ≥ 1, σ` > ρ`, (52)

and
‖P̃(`)

n ‖r < Ω(`)
n (r) < Knσ`n. (53)

By multiplying P(1)
k (x) = ∑

j
Pj(x)P(1)

k,j by P(1)
s,k and using Cauchy’s inequality (see [13]),

it follows that

|P(1)
k,j P̃(1)

s,k | ≤
‖P(1)

k (x)P̃(1)
s,k ‖

rj ≤ ω
(1)
k (r). (54)

Owing to Equations (40) and (52)–(54), the Cannon sum Ωn(r) of the equivalent base
satisfies

Ωn(r) ≤ 2m ∑
k

∑
i
‖P̃(3)

i ‖r ∑
j,s,t
|P(2)

j,i ||P
(1)
k,j P̃(1)

s,k ||P̃
(2)
t,s ||P

(3)
n,t |

≤ 2m ∑
k

∑
i
‖P̃(3)

i ‖r ∑
j,s,t

‖P(2)
j ‖r

rj ω
(1)
k (r)

‖P̃(2)
t ‖r

rs
‖P(3)

n ‖r

rt

< K2mnσ1+2σ2+2σ3+5.

Since σ` can be chosen as near as possible to ρ`, where ` = 1, 2, 3, an upper bound of
the order ρ of the equivalent base {En(x)} is given by

ρ = lim
r→∞

lim sup
n→∞

log ωn(r)
n log n

≤ ρ1 + 2ρ2 + 2ρ3. (55)

Now, we estimate the lower bound of the order of the equivalent base. According to
Theorem 3 in [21], the order ρ̃1 of the inverse base {P̃(1)

n (x)} is

ρ̃1 ≤ 2ρ1 (56)

Using Equations (15) and (56), it follows that

ρ2 ≤ ρ̃1 + 2ρ + 2ρ3

≤ 2ρ1 + 2ρ + 2ρ3.
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Therefore,

ρ ≥ 1
2
(ρ2 − 2ρ1 − 2ρ3), (57)

and the result is established.

The upper and lower bounds of the order of the equivalent base are attainable. This
fact is illustrated by the following two examples.

Example 1. Consider the three bases of SMPs {P(`)
n (x)} where ` = 1, 2, 3 as follows:

P(1)
n (x) =

{
Pn(x) + αnPn−1(x), n is odd
Pn(x), n is even

P(2)
n (x) =

{
Pn(x) + βnPn−1(x), n is even
Pn(x), n is odd

and

P(3)
n (x) =

{
Pn(x) + γnPn−1(x), n is odd
Pn(x), n is even

where αn = nαn, βn = nβn, and γn = nγn.

It is easy to see that ρ1 = α, ρ2 = β, and ρ3 = γ.

Now, we construct the equivalent base as follows:

En(x) =

{
Pn(x) + (γn + αn)Pn−1(x) + αnβn−1(Pn−2(x) + γn−2Pn−3(x)), n is odd
Pn(x) + βn(Pn−1(x) + γn−1Pn−2(x)), n is even.

Hence,

Pn(x) =

{
En(x)− (αn + γn)En−1(x) + γnβn−1En−2(x)− γnβn−1En−3(x), n is odd
En(x)− βnEn−1(x) + βnαn−1En−2(x), n is even

Thus, the Cannon sum of the base {En(x)} is

Ωn(r) = rn + 2(αn + γn)rn−1 + 2((αn + γn)βn−1 + γn)rn−2

+ 2(αnβn−1γn−2 + γnβn−1γn−2 + γnβn−1αn−2βn−1)rn−3

+ 2γnβn−1αn−2βn−3(rn−4 + γn−4rn−5), when n is odd.

which means that

lim
n→∞

log Ω2n+1(r)
(2n + 1) log(2n + 1)

= α + 2β + 2γ.

Now, we observe that

Ωn(r) = rn + 2βnRn−1 + 2(βnγn−1 + βnαn−1)rn−2

+ 2βnαn−1βn−2rn−3 + 2βnαn−1βn−2γn−3rn−4, when n is even.

In this case,

lim
n→∞

log Ω2n(r)
2n log 2n

= α + 2β + γ.

Therefore, the order ρ of the equivalent base is given by



Axioms 2023, 12, 544 16 of 20

ρ = lim
r→∞

lim sup
n→∞

log Ωn(r)
n log n

= α + 2β + 2γ.

Example 2. Let {P(`)
n (x)} be three simple monic bases of SMPs such that

P(1)
n (x) =

{
Pn(x) + αn(Pn−1(x) + Pn−2), n is even
Pn(x) + Pn−1(x), n is odd

P(2)
n (x) =



Pn(x) + δnPn−1(x) + (γn−1δn − γn−1 + αn−1)Pn−2(x)

+ (γn−1δn + αn−1δn−2 + αn−1 − γn−1)Pn−3(x)

+ αn−1γn−3δn−2(Pn−4(x) + Pn−5(x)), n is odd
Pn(x) + (γn − αn)Pn−1(x) + (γn − αn − αnδn−1)Pn−2(x)

− αnγn−2δn−1(Pn−3(x) + Pn−4(x)), n is even,

and

P(3)
n (x) =

{
Pn(x) + γn(Pn−1(x) + Pn−2(x)), n is even,
Pn(x) + Pn−1(x), n is odd,

where αn = nαn, δn = n(β−2α+2γ)n and γn = nγn.
In this case, the equivalent base is given in the form

En(x) =

{
Pn(x) + δnPn−1(x), n is odd,
Pn(x), n is even.

We can proceed in a similar procedure as in Example 1 to prove that the orders of the bases
{P(1)

n (x)}, {P(2)
n (x)}, and {P(3)

n (x)} are α, β, and γ, respectively. In this case, the order of the
equivalent set is ρ = 1

2 (β− 2α− 2γ), as required.

6. The Tρ Property of the Equivalent Base of SMPs

In this section, we construct the Tρ property of equivalent bases of special monogenic
polynomials in the open ball B(R). First, we recall the definition of the Tρ property as given
in [27], as follows.

Definition 10. Let 0 < ρ < ∞. Then, a base {Pn(x)} has the Tρ property in an open ball B(R) if
it represents all entire special monogenic functions of an order less than ρ in B(R).

Let

ω(r) = lim sup
n→∞

log ωn(r)
n log n

.

The restriction placed on the base {Pn(x)} of SMPs to satisfy the Tρ property in the open
ball B(R) [27] is stated as follows.

Theorem 9. Let {Pn(x)} be a base of special monogenic polynomials and suppose that the function
f (x) is an entire SMF of an order less than ρ. Then, the necessary and sufficient conditions for the
base {Pn(x)} to have the property Tρ in B(R) are ω(r) ≤ 1

ρ ∀r < R.

In this regard, we state and prove the following result.

Theorem 10. If the simple monic bases {P(`)
n (x)} have a Tρ` property in B(R), where R > 0 and

ρ ≤ min{ρ1, ρ2, ρ3}, then the equivalent base {En(x)} will have a Tρ
5

property in B(R).
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Proof. Since the bases {P(`)
n (x)} have the Tρ` property where ` = 1, 2, 3 in B(R) for R > 0,

then, according to Theorem 9, we have

ω(`)(r) ≤ 1
ρ`
∀r < R, where ` = 1, 2, 3.

Since ρ ≤ min{ρ1, ρ2, ρ3}, then

ω
(`)
n (r) < K n

n
ρ , n ≥ 1. (58)

Since the bases {P(`)
n (x)} are simple monic, it follows that

1 < rn < ‖P(`)
n ‖r < ω

(`)
n (r) < K n

n
ρ , (59)

and
‖P̃(`)

n ‖r < ω
(`)
n (r) < K n

n
ρ . (60)

Using (58)–(60), and Cauchy’s inequality, the Cannon sum for the equivalent base
{En(x)} is

Ωn(r) = ∑
k
‖EkẼn,k‖r

≤ 2m ∑
k

∑
i
‖P̃(3)

i ‖r ∑
j,s,t

‖P(2)
j ‖r

rj ω
(1)
k (r)

‖P̃(2)
t ‖r

rs
‖P(3)

n ‖r

rt

< K 2mn
5n
ρ +5.

Taking the upper limit, we obtain the function Ω(r) for the equivalent base {En(x)}
in the form

Ω(r) = lim sup
n→∞

log Ωn(r)
n log n

≤ 1
( ρ

5 )
∀r < R,

which leads to the fact that the equivalent base has the property Tρ
5

in B(R), as required.

Example 3. Consider the three simple monic bases of polynomials {P(`)
n (x)} where ` = 1, 2, 3 as

follows:

P(1)
n (x) =

{
Pn(x) + n

n
2Pn−1(x), n is even

Pn(x), n is odd

P(2)
n (x) =

{
Pn(x) + n

n
3Pn−1(x), n is even

Pn(x), n is odd

P(3)
n (x) =

{
Pn(x) + n

n
4Pn−1(x), n is odd

Pn(x), n is even

It is easily seen that ω(1)(r) = 1
2 , ω(2)(r) = 1

3 , and ω(3)(r) = 1
4 .

Therefore, the bases {P(`)
n (x)} have a T2 property, T3 property, and T4 property in B(R) for

`l = 1, 2, and 3, respectively.
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Now, we construct the equivalent base as follows:

En(x) =

{
Pn(x) + (n

n
2 − n

n
4 )Pn−1(x) + n

n
2 (n− 1)

n−1
3 (Pn−2(x)− (n− 2)

n−2
4 Pn−3(x)), n is odd

Pn(x) + n
n
3 (Pn−1(x)− (n− 1)

n−1
4 Pn−2(x)), n is even.

Hence,

Ω(r) = lim sup
n→∞

log Ωn(r)
n log n

≤ 1
( 2

5 )
,

i.e., the equivalent base has a T2
5

property in B(R).

7. Conclusions and Future Work

This paper employs the definition of the product base of SMPs to construct a new
base called the equivalent base in Fréchet modules in the Clifford setting. The convergence
properties of the derived base were treated for different classes of bases. Within this study,
we indicate which type of restrictions we should consider on the coefficients to justify the
effectiveness properties of the equivalent base in various regions of convergence, such as
open balls, closed balls, at the origin, and for all entire SMFs. Furthermore, given the orders
of the constituent bases, we determined the lower and upper bounds of the order of the
equivalent base. Moreover, the Tρ property of the equivalent base is determined in the
case of simple monic bases, which are promising for characterizing this property for more
general bases.

Looking back to our constructed base,

{En(x)} = {P̃(3)
n (x)}{P(2)

n (x)}{P(1)
n (x)}

and by taking {P(3)
n (x)} = {P(1)

n (x)}, a similar base {Sn(x)} can be considered a special
case of the equivalent base {En(x)}, reflecting that the results in the current study generalize
the corresponding results in [33].

This study encourages the provision of answers to other open problems regarding
the representations of entire functions in several complex variables. We believe that the
results in this study are likely to hold in the setting of several complex matrices in different
convergence regions, such as hyperspherical, polycylindrical, and hyperelliptical regions.

Recently, the authors of [18] proved that the Bessel special monogenic polynomials
are effective for the space H[B̄(r)], and the authors of [24] proved that the Chebychey poly-
nomials is effective for the space H[B̄(1)]. The Bernoulli special monogenic polynomials
are proved to have an order of 1 and a type 1

2π , while the Euler special monogenic poly-
nomials have an order of 1 and a type 1

π (see [23]). Demonstrating how the convergence
properties involve the effectiveness, order, and type of the different constructed bases we
have mentioned above, as well as the corresponding aspects of the original bases and, in
particular, the well-known special polynomial bases, is one of the most challenging subjects
to explore. The proposed methodological weakness is that the work lacks practical applica-
tion. However, in upcoming research, it will be interesting to study concrete applications
of mathematical physics problems, such as Legendre polynomials and their relation to
solutions of the Dirac equation and its other formulation as the spinor functions, as well as
in curved space–time, which has many applications in quantum mechanics.
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