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Abstract: The Sagnac effect and related twin paradox with a rotating disc are analyzed. It may seem
that the special theory of relativity gives an easy and exhaustive treatment here. However, such
consideration is deceptive since the principles of special relativity are originally established only
for the inertial frames of reference, whereas the Sagnac experiment and the twin paradox exist in a
noninertial one. We introduce an additional group of motions related to the rotation with uniform
angular speed and show that these transformations leave the Minkowski metric invariant. Thus, we
can give a firm mathematical ground to a usual easy consideration of the Sagnac effect. It should be
noted that the presented result is true for a special case of motions; general coordinate transformations
into accelerating frames of reference do not preserve the metric.
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1. Introduction

Along with the Michelson–Morley experiment, the Sagnac effect [1] is one of the most
important fundamental experiments in relativity theory. One can recall that the essence of
the Sagnac effect (SE) is as follows. Four mirrors are mounted at the corners of a square on
a platform. The angles of their relative position are such that a beam of light emitted from
a monochromatic source is reflected at the mirrors, and completes a closed cycle, returning
to the source. By using a semitransparent plate it is possible to split the beam into two
beams moving in the opposite directions of this closed cycle. Sagnac discovered that if the
platform is made to rotate, then the beam that moves in the direction of platform rotation
will arrive at the source later than the beam moving in the opposite direction. The delay
gives rise to a shift of the interference pattern on the photographic plate.

The SE has been experimentally studied many times: for electromagnetic waves [1–3]
and for massive particles [4–6] as well. It was observed with the help of the Earth’s rotation,
i.e., using the entire Earth as a platform [7,8]. With the advent of laser and optical sensor tech-
nologies, the SE is harnessed in so-called laser or fiber-optic gyroscopes [9–11]. The theoretical
consideration of the SE constitutes a broad variety of interpretations and explanations [12]. The
explanation offered by Sagnac himself on the basis of the purely classical operation of addition
and subtraction of the velocity of light and the linear velocity of rotation of the source yielded a
discrepancy of about one per cent between theory and experiment.

The most widespread explanation (which is included in textbooks and can be called
standard) is based on a special relativity statement of the constant light velocity, that
immediately brings up the correct formula, see for instance [13]. However, this simplicity
is an oversight of fundamental issues of the physics involved. A more elaborate treatment
is applied with the help of a general frame of reference for a rotating observer [14]. Much
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effort has been paid to incorporating the SE into the frame of general relativity [15,16]
including the generalization to Finsler coordinates [17]. The approach to the SE from
a quantum point of view is given in [18]. One can also generalize the context to Born
coordinates [19]. We consider that in the long run, such approaches somewhat obscure the
simple physical meaning of the SE as a purely relativistic effect of special relativity. A more
formal mathematical treatment by the means of group theory was given in [20,21].

It is worth mentioning that there were attempts to interpret the SE as a disproval or
a possibility to introduce an alternative to some statements of the commonly accepted
theory [22–24], which caused a rebuttal [25–28] and an ongoing discussion. Recently,
an attempt was made to broaden the treatment of the SE so as to ascribe it to inertial
frames. It is noticed that the time difference in ray arrival occurs for an observer moving
inertially, i.e., along a straight line with a constant velocity, if the observer emits light beams
directly forward and backward and the beams travel the same path [29]. However, that
experimental setup has a completely different nature. In the original setup, all components
(ray source, detector, mirrors) are in rest relative to each other. No linear inertial movement
of this rigid installation is able to produce the effect; a noninertial or nonlinear one is
necessary. The magnitude of the SE depends on the area enclosed into a light-beam
loop and is independent of the loop length. Oppositely, in [29], the effect’s magnitude is
independent from the area but depends on loop length. Here, we adopt the classical narrow
interpretation of the SE as a substantially noninertial phenomenon in rotating frames.

Along with the SE, a uniform circular motion is involved in consideration of the
so-called twin paradox, as formulated by Langevin [30]. As well as the explanation of the
SE [13], the commonly accepted treatment of the twin paradox [31] is simple and is based
on the constancy of light velocity. Analogously, it overlooks the fundamental physical
issues of the space-time metric.

The present communication is aimed at showing that the Sagnac effect can be directly
explained within the framework of the special relativity theory by the fact that there exists
a group of motion of the Minkowski metric, i.e., a group of nonlinear transformations
of the pseudo-Euclidean coordinates, which leaves the Minkowski metric invariant. It
should be noted that such invariance is found in a special case of motions, and general
coordinate transformations to accelerating frames do not leave the space-time invariant [32].
Additionally, we consider the application of this group to carry out a more mathematically
correct analysis of the well-known twin paradox.

2. Formulation of the Problem

We discuss a somewhat modified version of the experiment [13], with the motion of
a light beam in a light guide along a circular path. This modification leaves the physical
meaning of the experiment unchanged.

Thus, we have, in our experiment, a source which uniformly moves along a circular
orbit and which simultaneously emits two light beams moving along the same circular orbit
in the opposite directions, returning to the source at different moments in time, see Figure 1.
The problem is to find the time interval between the beam arrivals at the moving source.

Before proceeding to solve the problem thus formulated, one should answer several
questions of crucial importance.

1. Does the velocity of the light beam that travels along a circular orbit depend on the
velocity at which the emitting source moves?

2. Will the form of the pseudo-Euclidean space change with the change-over from the
inertial frame of reference to the one that moves uniformly along a circular orbit?

3. What is the relationship between the space-time coordinates of the source that
moves relative to the frame of reference at rest and to the frame of reference uniformly
moving along a circular orbit?

At first glance it would seem that the principles of the special theory of relativity
(STR) enable one to give exhaustive answers to the questions posed above. However, such
appearance is deceptive. The point is that all the principles of the STR are valid only in
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the inertial frame of reference, whereas the Sagnac experiment is done in a noninertial
frame of reference. Therefore, in order to get correctly answers the above questions, one
should construct a relativistic theory of uniformly rotating noninertial frames of reference.
It turns out that such a theory completely rests, in all its essentials, upon the existence of
the additional group of proper motions of the Minkowski metric.

ω

Emitted forward and
backward beams.

t = 0

ω

Encountered
the backward beam.

t = t−

ω

Caught by
the forward beam.

t = t+

Figure 1. Timing in the Sagnac effect.

3. Complete Group of Proper Motion in Space R3
1,2

The special theory of relativity is generally developed for the Minkowski space-time,
which combines three-dimensional Euclidean (x1, x2, x3) ∈ R3 spatial and one-dimensional
temporal x0 ∈ R components into a four-vector ~x = (x0, x1, x2, x3). This space is equipped
with the Minkowski metric, commonly written as

s2 = (x0
1 − x0

2)
2 − (x1

1 − x1
2)

2 − (x2
1 − x2

2)
2 − (x3

1 − x3
2)

2 . (1)

This is a case of a pseudo-Euclidean space R4
1,3 of signature (1, 3). To explain the

relativistic effect discovered by Sagnac, it is sufficient to confine our consideration to the
case of a pseudo-Euclidean space R3

1,2 by assigning x3 ≡ 0. Here, we denote the coordinates
as x0, x1, and x2 and consider x0 as temporal and the other two as spatial ones, so we
describe planar movements in time. The third spatial coordinate is omitted for simplicity.
It is currently held [13,20] that the group of proper transformations of coordinates which
leaves the pseudo-Euclidean space metric invariant is in fact the Lorentz group, i.e., the
linear group of transformations performing transitions from one inertial frame of reference
to another. It is now shown that along with the Lorentz linear group, there exists a group
of proper transformations of the Minkowski metric which brings about transitions between
noninertial frames of reference of a special kind. Proceeding from general considerations,
this group, if it does exist, should represent a subgroup of group SO(1, 2), i.e., the group of
all proper orthogonal and pseudo-orthogonal transformations in R3

1,2.
Any proper rotation in a three-dimensional pseudo-Euclidean space R3

1,2, i.e., any
proper orthogonal or pseudo-orthogonal transformation which retains the coordinates’
origin, can be decomposed into three rotations in planes {x1x2}, {x0x1}, {x0x2}, and one
rotation in the space R3

1,2 = {x0x1x2} itself, which cannot be reduced to the previous
ones. The first rotation modifies the space coordinates only and corresponds to the space
rotations. The second and third rotations act in pseudo-Euclidean planes and correspond to
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the proper pseudo-orthogonal rotations or, which is the same, the Lorentz transformations
of the form

dx0 =
dx0′ + v

c dxi′√
1−

( v
c
)2

,

dxi =
dxi′ + v

c dx0′√
1−

( v
c
)2

, i = 1, 2.

(2)

Now, we consider in detail the extra rotation in R3
1,2. The desired transformation

should leave invariant the differential quadratic form

ds2 = dx02 − dx12 − dx22
. (3)

Further calculations are better represented in a polar coordinate system. We denote t = x0,

r =
√

x12
+ x22, and ϕ = arctan(x2/x1), so (t, r, ϕ) are polar coordinates of a point s in the

three-dimensional pseudo-Euclidean space {x0x1x2}. It is required that the transformation
from the desired group leave the radial coordinate r of the point s unchanged. Equation (3)
in the polar coordinate system has the form

ds2 = dx02 − dr2 − r2 dϕ2 , (4)

where x1 = r cos ϕ, x2 = r sin ϕ.
Let the differentials of coordinates t and ϕ of a point s(t, r, ϕ) be subjected to the linear

transformation aω: (dt, dϕ)→ (dt′, dϕ′) of the form:

dt =
dt′ + r2ω

c dϕ′√
1−

( rω
c
)2

,

dϕ =
dϕ′ + ω

c dt′√
1−

( rω
c
)2

,

(5)

where ω is the angular velocity of a circle of radius r in the plane {x1x2} relative to the
origin of the coordinates, |ω| < c

r . It is easy to see that the linear transformation (5) leaves
the quadratic form (4) invariant, and is an element of some group Gr. Obviously, the
element a0 corresponds to unit I of the group Gr. The element a−ω is identified as an
element inverse to aω ∈ Gr, i.e., (aω)−1 = a−ω. If aω1 , aω2 ∈ Gr, then their group product
may be determined as

aω1 · aω2 = a ω1+ω2
1+( r

c )
2

ω1ω2

. (6)

If |ω1|, |ω2| < c
r , then it immediately follows from the group multiplication that∣∣∣∣∣ ω1 + ω2

1 +
( r

c
)2

ω1ω2

∣∣∣∣∣ < c
r

. (7)

The group Gr can formally be supplemented by adding two elements a− c
r
, a c

r
. The

replenished group is stationary relative to the associated elements a− c
r
, a c

r
. Indeed, for any

aω ∈ Gr, we have aω · a± c
r
= a± c

r
.

In terms of special relativity theory, it means that the linear velocity of a circular
motion cannot exceed the light speed c and that the light speed is the same in all steadily
rotating noninertial reference systems.

If we compare the Lorentz transformations (2) with the pseudo-orthogonal transfor-
mations (5), it is not hard to notice their formal structural similarity. However, there is
much difference between them.
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The Lorentz transformation describes the transition between inertial reference systems
which move uniformly and straight relative to each other, whereas the transformation (5)
describes the transition between noninertial systems rotating uniformly in circles with
different angular velocities. This difference becomes clear when we go back from the polar
coordinate system to the pseudo-Euclidean one, and a considerably nonlinear character of
the transformations emerges

dx0 =
1√

1−
( v

c
)2

dx0′ − ω

c
x2′√

1−
( v

c
)2

dx1′ +
ω

c
x1′√

1−
( v

c
)2

dx2′ ,

dx1 = −v
c

sin ϕ√
1−

( v
c
)2

dx0′ +
ω

v
Adx1′ +

ω

v
Bdx2′ ,

dx2 =
v
c

cos ϕ√
1−

( v
c
)2

dx0′ +
ω

v
Cdx1′ +

ω

v
Ddx2′ ,

(8)

where

v = ωr , ϕ =

arccos x1 ′√
x1 ′2+x2 ′2

+ ω
c x0′

√
1−

( v
c
)2

,

A = x1′ cos ϕ+
x2′ sin ϕ√
1−

( v
c
)2

, B = x2′ cos ϕ− x1′ sin ϕ√
1−

( v
c
)2

,

C = x1′ sin ϕ− x2′ cos ϕ√
1−

( v
c
)2

, D = x2′ sin ϕ +
x1′ cos ϕ√
1−

( v
c
)2

.

(9)

The whole group of all proper pseudo-orthogonal transformations SO(1, 2) in the
space R3

1,2 is thus generated by elements from the Lorentz group (2) and by transformations
of the form in (8) from the group Gr into the pseudo-Euclidean coordinate system.

It is now appropriate to make one remark that proves useful in what follows. The trans-
formations (5) are represented in differential form. However, because of their essentially
linear character, nothing prevents us from representing them in the form

t =
t′ + r2ω

c ϕ′√
1−

( rω
c
)2

, ϕ =
ϕ′ + ω

c t′√
1−

( rω
c
)2

. (10)

4. An Explanation of the Sagnac Effect

Let us now show that the Sagnac effect is a trivial consequence of the existence of the
nonlinear group of proper motions of the Minkowski metric.

Let index + denote the beam emitted from the moving source in the direction of its
motion, and index −, the beam that moves in the opposite direction, see Figure 1. Let t+(−)
be the time that has elapsed until the beam +(−) arrives at the light source moving relative
to a stationary frame of reference. Then, the following relations should hold:

ct+ = 2πr + rωt+, ct− = 2πr− rωt−, (11)

where r is the distance from the center of the disc upon which the source is mounted, ω
being the angular velocity of rotation of the disc.

Hence, it follows that

t+ =
2πr

c− rω
, t− =

2πr
c + rω

. (12)
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The angular coordinates of the source, ϕ+ and ϕ−, at the moment of its meeting with
the beams emitted, respectively, in the direction of the source motion and in the opposite
direction relative to the stationary frame of reference, have the form:

ϕ+ = ωt+, ϕ− = ωt−. (13)

Let t′+(−) be the time that has elapsed till the beam +(−) meets with the moving light
source relative to an observer who is directly connected with the source.

Then, proceeding from the first relation in (10), we obtain

t′+ =
t+ − r2ω

c2 ϕ+√
1−

( rω
c
)2

, t′− =
t− − r2ω

c2 ϕ−√
1−

( rω
c
)2

. (14)

Hence, it follows that the proper time interval t′+–t′− between the arrival of the two
beams at the source that moves relative to the observer directly connected with it has,
according to (14), the following form

t′+ − t′− = (t+ − t−)

√
1−

( rω

c

)2
. (15)

Thus, according to formula (15), in a moving noninertial frame of reference, the interval
between the arrivals of the beams to the source will be shorter than in the stationary one.
Taking into account the relation (12), we finally arrive at the following result

t′+ − t′− =
4πωr2

c2
1√

1−
( rω

c
)2

. (16)

5. The Additional Group of Motions and the Twin Paradox

The meaning of the twin paradox is a follows: let there be two clocks, one of which
moves along a closed path, returning to the original point where the other clock is at rest.
If, at the initial moment of time, both clocks read the same, then at the moment of its
return, the moving clock will be found to lag behind the one at rest. This conclusion is
based on a nonrigorous heuristic reasoning [33], invoked by the properties of the Lorentz
transformations and leading to the conclusion that a clock at rest always shows a longer
time interval than the moving clock. The group of motions of the Minkowski metric
constructed above enables one to carry out a more consistent analysis of this effect and cast
some doubt on its plausibility.

At the initial moment of time, let there be two observers with clocks who are located
at the same point and their clocks read the same time. Let the first observer be at rest, while
the second uniformly moves along a circumference, e.g., a wheel’s rim where the wheel of
radius r rotates with a constant angular velocity ω. The question is: what will the readings
of the clocks of both observers be at the moment of their second meeting?

In the frame of reference associated with the moving clock of the second observer,
their clock is at rest. Due to the invariance of the metric relative to the transition of the
rotating system to the immobile one, there holds the following relation

c2t′2 = c2t2 − r2 ϕ2 , (17)

where t′ is the time on the clock of the second observer and t is the time read by the clock
of the first observer. Hence, it follows that

t′ = t

√
1−

(ωr
c

)2
, (18)
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i.e., just as one should expect, the clock of the second observer lags behind that of the
first observer.

In the moving frame of reference associated with the second observer, let a segment of
the wheel’s rim of length r(ϕ′2 − ϕ′1) be singled out. Let us find the length of this segment
with respect to the frame of reference at rest associated with the first observer. To do so,
it is necessary to find the angular coordinates ϕ1, ϕ2 of both ends of the segment of the
rotating wheel at one and the same moment of time relative to the clock of the first observer.
From (10), it follows that

r(ϕ2 − ϕ1) = r(ϕ′2 − ϕ′1)

√
1−

( rω

c

)2
, (19)

i.e., as should be expected, the length of the segment of the wheel is larger in the frame of
reference where the wheel is at rest.

In particular, relative to the second observer associated with the rotating wheel, the
length of the rim, and therefore the path it takes till its meeting with the first observer is
2πr, whereas with respect to the first observer, the length of the rotating rim, and therefore
the path the second observer travels till they meet the first one is, according to Formula

(19), 2πr
√

1−
( rω

c
)2.

Since the second observer moves along the orbit with a constant velocity v = rω, the
clock of the first observer reads a time interval between the two meetings with the second
observer equal to

t =
2π

ω

√
1−

( rω

c

)2
. (20)

Let us now see what the second observer’s clock reads at the moment of the meeting
with the first observer. From the point of view of the second observer, till their meeting with
the first observer, they travel a path of length 2πr with a constant linear velocity v = rω.
The time taken to travel that path is, from the point of view of the first observer, equal to
t = 2π

ω . However, then, the time read by the clock of the second observer at the moment of
their meeting with the first one is, according to (18),

t′ =
2π

ω

√
1−

( rω

c

)2
. (21)

Thus, the clocks of both the observers at the moment of their repeated meeting reads
one and the same time.

Does this mean that the above analysis closes the question of whether the twin paradox
exists? Certainly not, for to do so, it would be necessary to extend the result we have just
obtained to any closed paths. This should involve quite an elaborate analysis, stemming
from the basic properties of pseudo-orthogonal groups, as in [34].

6. Discussion and Conclusions

The Sagnac effect (SE) is the variance of the time a light beam takes while traversing
the same path in opposite directions. The light source, the path, and the detector are rigidly
fixed relative to each other. No linear inertial movement of this rigid installation is able
to produce the effect; a noninertial or nonlinear motion is necessary. Thus, the SE is a
substantially noninertial phenomenon in rotating frames. It may seem that the SE is easily
explained with the help of the special theory of relativity (STR) and that the theoretical
prediction perfectly matches experimental data. However, such consideration is deceptive
since the principles of the STR were originally established only for the inertial frames of
reference, whereas the SE exists in a noninertial one. In order to explain it consistently, one
needs to extend the STR principles to the wider class of frames of reference including some
noninertial ones. In the general case, it requires a nontrivial treatment. However, we show
that a uniform circular motion corresponds to the group of nonlinear transformations of
the pseudo-Euclidean coordinates, which leaves the Minkowski metric invariant. Hence, in
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this special case of a uniform circular motion, one can use Lorenz-like transformations as if
it were a uniform straight motion with a constant velocity v = rω. It might be reasonable to
test whether relativistically invariant theories (i.e., theories whose equations are covariant
with respect to the Lorentz transformation) are also invariant with respect to the whole
group SO(1, 3), which incorporates the group of nonlinear transformations of the metric.
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