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Abstract: In this paper, we primarily investigate the methodology for the hybrid complex projective
synchronization (HCPS) scheme in non-identical complex fractional order chaotic systems via an
active complex synchronization technique (ACST). Appropriate controllers of a nonlinear type
are designed in view of master–slave composition and Lyapunov’s stability criterion (LSC). The
HCPS is an extended version of the previously designed projective synchronization scheme. In the
HCPS scheme, by using a complex scale matrix, the system taken as slave system is asymptotically
synchronized with another system taken as the master system. By utilizing a complex scale matrix,
the unpredictability and security of communication are increased along with image encryption. An
efficient computational method has been employed to validate and visualize the HCPS method’s
efficacy by performing numerical simulation outcomes in MATLAB (version 2021).

Keywords: active control; complex fractional order chaotic system; hybrid complex projective
synchronization; Lyapunov’s stability criterion; fractional derivative; simulation
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1. Introduction

Chaos may be characterized as extreme randomness or utter confusion. Chaotic
dynamics [1] has currently become the most prominent and intriguing field for researchers.
Chaotic systems (CSs) are mainly unpredictable and hugely erratic in behavior. A typical
innate property of CSs, which Henri Poincare first announced, is the sensitivity dependency
on its initial condition, i.e., 2 close-by points of state space would be separated very quickly
with the evolution of time. A microscopic variation in the dynamics of a CS will lead to
destructive results.

In 1990, Pecora and Carroll [2] evolved an approach for the synchronization in similar
chaotic systems. Chaotic synchronization is a phenomenon that concerns with the coupling
of two or more chaotic systems possessing different initial conditions to achieve identical
dynamics along with synchronization error converges asymptotically to zero with the evolu-
tion of time. After further studies, researchers introduced distinct types of synchronization
methods, viz., complete [3], anti [4,5], lag [6,7], phase and anti-phase [8], combination [9],
multi-switching [10], hybrid [11], projective [12], hybrid projective [13,14], hybrid function
projective [15] and hybrid complex projective synchronization (HCPS) [16,17] by using
different control methods such as active control [4,17,18], linear and nonlinear feedback
technique [19–21], adaptive control [22–24], sliding mode control [25], active and adaptive
sliding mode [26–28], robust adaptive sliding mode [9] and back-stepping design [29].
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Fractional calculus [30–32], which was announced in the seventeenth century on
30 September 1965 by Guillaume de Leibniz and L’Hopital, provides the theory for deriva-
tives and integrals of arbitrary order, that combine and establish the notion of integer
order differentiation and n-fold integration. Fractional calculus gives an important tool for
depicting memory as well as inherent effects in distinct substances and fractional calculus
is majorly applicable in control theory, dielectric polarization, signal processing, robotics,
information processing, finance models, viscoelasticity [33], electromagnetic waves [34],
chaotic systems [1], mathematical biology [17], delay differential equations [32], etc.

Fractional order chaotic systems synchronization [35,36] is gaining larger attraction
and interest because of its applications in encryption, secure communication, and many
more. Fractional order models are basically represented through fractional differential
equations or pseudo-state space descriptions [37]. There are several fractional order chaotic
systems, for instance, Lorenz [38], Lu [39], Chua [40], T, Rossler, Chen’s, and Duffing
systems. To escalate complexity, researchers have introduced fractional order complex CSs.
As compared to integer order complex network, fractional order complex systems enhance a
degree of freedom by utilizing fractional order derivative. Fractional order derivatives may
be described in various expressions, for example, Riemann–Liouville form, Caputo form
and Grunwald–Letnikov form. Generally, the Caputo fractional order derivative [30,31]
operator was pronounced for the complex network since its initial conditions data are
similar to that of integer order differential equation conditions. Thus, it provides prominent
known physical truths. Therefore, Caputo fractional derivative operator is preferred instead
of Riemann–Liouville fractional derivative operator. Another important difference between
the Riemann–Liouville derivative definition and the Caputo derivative definition is that
although the Caputo derivative of the constant is zero, the Riemann–Liouville fractional
derivative of the constant is not equal to zero for a finite value of arbitrary real α [31]. Hence,
the Caputo fractional derivative operator becomes the most important form in comparison
to other fractional derivative forms.

Various types of synchronization schemes which have been discussed above, are being
used to synchronize these complex networks. HCPS, which is an extension of projective
synchronization, has been developed not long ago. In HCPS, all scaling functions of the
vector are dissimilar due to the complexity increases and improves the strength of secure
communication. Despite hybrid function projective synchronization where the scaling
factors are in the form of functions, in HCPS the scaling factors are complex-valued. In
HCPS, the transformation matrix is a square matrix whose elements are complex. This
type of transformation matrix plays a vital role in such cases as chaotic secure communi-
cation where the state of the drive system is changed by the scaling factors to send to the
communication channel and to enhance the security of the effective information signal.

In this paper, we have considered a fractional order complex Lorenz system as a
master system and fractional order complex T-system as a slave system. More importantly,
generalizing the 3D Lorenz model to a 5D Lorenz model by modifying the existing state
real variable to the complex introduced firstly by Fowler et al. [41]. HPCS scheme via active
control has been used to investigate synchronization between these two chaotic complex
systems. In the considered master–slave configuration, the states of the slave system are
evolving over the period of time, which is guided by the active controller, and this active
controller is obtained in view of Lyapunov’s stability criterion (LSC) by the error dynamics
equations using the HCPS scheme. This error dynamics is a result of both master and
slave chaotic systems. As a consequence, we have the required error dynamics. Further,
this error dynamics has been used in order to show that the derivative of the designed
Lyapunov function is a negative definite function. Consequently, the considered error
dynamics achieve global and asymptotical stability with the evolution of time. So, the state
trajectories of the master system and the slave system behave alike. Numerical simulations
have been done in MATLAB to validate and visualize our results in diagrams.

The main attributes of our suggested research work in this manuscript are enumer-
ated as:
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• The suggested HCPS methodology considers two dissimilar complex fractional order
chaotic systems.

• It designs a robust HCPS strategy-based control input to achieve hybrid complex
projective synchronization among considered fractional order complex systems and
performs oscillation for synchronization errors with a fast rate of convergence.

• The description of HCPS scheme-based active control inputs is executed in a simplistic
manner utilizing LSC and drive-response/master–salve configuration.

• Simulation outcomes depict the efficacy and superiority of the suggested HCPS strategy.

Describing the remainder of this paper as follows: Section 2 recalls some basic prelimi-
nary results, which will be utilized in the coming sections. Section 3 formulates the problem
of the HPCS strategy. Section 4 deals with illustrating the synchronization phenomena
using the HPCS scheme and active control strategy. Section 5 depicts numerical simulation,
which is performed in MATLAB toolbox for establishing the efficacy and suitability of our
HCPS scheme. Finally, Section 6 presents some important concluding remarks.

2. Preliminaries

Although, many definitions of fractional order derivatives are available in the existing
literature. We specifically consider Caputo’s derivative definition that is given by:

t0 Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α−n+1 dτ, t > t0,

where n = min{k ∈ N | k > α}, Γ denotes Gamma function and the operator t0 Dα
t is usually

called ‘α’ order Caputo differential operation. Throughout, we denote t0 Dα
t by Dα.

Property 1. If f (t) is a constant function and of the order q > 0, the Caputo fractional-order
derivative satisfies the conditions:

Dq f (t) = 0.

Property 2. The Caputo derivative satisfies the following linear property:

Dq[c1 f1(t) + c2 f2(t)] = c1Dq f1(t) + c2Dq f2(t),

where f1(t) and f2(t) are functions of t, and c1 and c2 are constants.

3. Problem Formulation

Consider the following fractional order chaotic system described by

DαU(t) = PU(t) + f (U(t)), (1)

where U = [u′1, u′2, ..., u′n]T ∈ Cn is a state vector. P ∈ Cn×n is the constant matrix, f : Cn →
Cn is non-linear function. System (1) is supposed as a drive system.

Corresponding to (1) the slave system with control input vector σ(t) ∈ Cn is given as

DαV(t) = QV(t) + g(V(t)) + σ(t), (2)

where V = [v′1, v′2, ..., v′n]T ∈ Cn is a state vector, Q ∈ Cn×n is the constant matrix, g : Cn →
Cn is non-linear function and σ(t) = [σ1, σ2, ..., σn] ∈ Cn is the active control function.

The purpose of this article is to design a suitable active control function σ(t) such that
the controlled slave system (2) asymptotically approaches against the master system (1)
and hence we achieve synchronization.

In HCPS, the synchronization error between the master system (1) and the controlled
slave system (2) is given as:

E(t) = V(t)− µU(t), (3)
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where E = [e′1, e′2, ..., e′n] ∈ Cn and µ = diag(µ′1, µ′2, ..., µ′n) is a complex scaling matrix.
Particularly, the coupled master–slave system is said to achieve complete synchronization
and anti-synchronization if all the coefficients µ are equal to 1 and −1, respectively.

Definition 1. The master system (1) and the controlled slave system (2) are said to achieve HCPS
if there exists a control function σ(t) = [σ′1, σ′2, ..., σ′n] ∈ Cn such that

lim
t→∞
‖ E(t) ‖= lim

t→∞
‖ V(t)− µU(t) ‖= 0, (4)

where ‖ . ‖ is the Euclidean norm of a vector.

The error dynamics is obtained as:

DαE(t) = QV(t)− PµU(t) + g(V(t))− µ f (U(t)) + σ(t)

= (Q + P)E(t) + G(U(t), V(t)) + σ(t), (5)

where G(U(t), V(t)) = g(V(t))− µ f (U(t)) + µQU(t)− PV(t).

To stabilize the error system, we design appropriate control functions σ(t) using active
control methodology. The control input σ(t) is defined as:

σ(t) = K(t)− G(U(t), V(t)). (6)

By using (6), the system (5) reduces to

DαE(t) = K(t) + (Q + P)E(t), (7)

then the error system (7) becomes a linear system, where K(t) as a function of the error
vector E(t) is a control function.

By choosing a suitable controller function K(t), the system (7) becomes stable. We
choose

K(t) = RE(t), (8)

where R is an n× n constant matrix.
The system (7) becomes

DαE(t) = (Q + P + R)E(t). (9)

A matrix R is chosen in such a manner that the eigenvalues of Q + P + R are satisfied
for arg(µ) > qπ

2 . This appropriate choice will lead to

lim
t→∞
‖ E(t) ‖= 0, (10)

and hence, we achieve HCPS between the considered master system and the slave system.

4. Synchronization Phenomena

The fractional order complex Lorenz system is

Dαu′1 = p1(u′2 − u′1)

Dαu′2 = p2u′1 − u′2 − u′1u′3 (11)

Dαu′3 =
1
2
(u′2u′2 + u′1u′2)− p3u′3,

where u′ = [u′1, u′2, u′3]
T is the state variable vector, u′1 = u1 + iu2, u′2 = u3 + iu4 are complex

variables, u′3 = u5 is the real variable and p1, p2, p3 are real constant parameters.
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Separating into real and imaginary parts, we have the system (11)

Dαu1 = p1(u3 − u1)

Dαu2 = p1(u4 − u2)

Dαu3 = p2u1 − u3 − u1u5 (12)

Dαu4 = p2u2 − u4 − u2u5

Dαu5 = u1u3 − u2u4 − p3u5.

For the values of parameters as p1 = 10, p2 = 180, p3 = 1, initial conditions as
u(0) = [2, 3, 5, 6, 9]T with α = 0.94, the system is chaotic.

The fractional order complex T-system is

Dαv′1 = q1(v′2 − u′1)

Dαv′2 = (q2 − q1)u′1 − q1v′1v′3 (13)

Dαv′3 =
1
2
(v′1v′2 + v′1v′2)− q3v′3

where v′ = [v′1, v′2, v′3]
T is the state variable vector, v′1 = v1 + iv2, v′2 = v3 + iv4 are complex

variables, v′3 = v5 is the real variable and q1, q2, q3 are real constant parameters.
Separating real and imaginary parts, we have

Dqv1 = q1(v3 − v1)

Dqv2 = q1(v4 − v2)

Dqv3 = (q2 − q1)v1 − q1v1v5 (14)

Dqv4 = (q2 − q1)v2 − q1v2v5

Dqv5 = v1v3 + v2v4 − q3v5

For the values of parameters as q1 = 2.1, q2 = 30, q3 = 0.6; initial condition v(0) =
[8, 7, 6, 8, 7]T with α = 0.94, the system is chaotic.

We now consider system (12) as the master and system (14) as a slave, the slave system
with the control function σ(t) = [σ1, σ2, σ3, σ4, σ5] is given as

Dqv1 = q1(v3 − v1) + σ1

Dqv2 = q1(v4 − v2) + σ2

Dqv3 = (q2 − q1)v1 − q1v1v5 + σ3 (15)

Dqv4 = (q2 − q1)v2 − q1v2v5 + σ4

Dqv5 = v1v3 + v2v4 − q3v5 + σ5.

The synchronization errors can be written as:

e′i = v′i − µiu′i,

where e′1 = e1 + ie2, e′2 = e3 + ie4, e′3 = e5.
On separating real and imaginary parts, we obtain

e1 = v1 − µ1u1 + µ2u2

e2 = v2 − µ1u2 − µ2u1

e3 = v3 − µ3u3 + µ4u4 (16)

e4 = v4 − µ3u4 − µ4u3

e5 = v5 − µ5u5.

The error dynamics is obtained as:
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Dαe1 = q1(v3 − v1)− µ1 p1(u3 − u1) + µ2 p2(u4 − u2) + σ1

Dαe2 = q1(v4 − v2)− µ1 p2(u4 − u2)− µ2 p1(u3 − u1) + σ2 (17)

Dαe3 = (q2 − q1)v1 − q1v1v5 − µ3(p2u1 − u3 − u1u5) + µ4(p2u2 − u4 − u2u5) + σ3

Dαe4 = (q2 − q1)v2 − q1v2v5 − µ3(p2u2 − u4 − u2u5) + µ4(p2u1 − u3 − u1u5) + σ4

Dαe5 = v1v3 + v2v4 − q3v5 − µ5(u1u3 + u2u4 − p3u5) + σ5.

The control functions are designed appropriately as:

σ1 = µ1 p1u3 − µ2 p1u4 − µ3q1u3 + µ4q1u4 + µ1q1u1 − µ2q1u2 − p1v1 + K1(t)

σ2 = µ1 p1u4 + µ2 p1u3 − µ3q1u4 − µ4q1u3 + µ1q1u2 + µ2q1u1 − p1v2 + K2(t) (18)

σ3 = q1v1v5 + µ3 p2u1 − µ3u1u5 − µ4 p2u2 + µ4u2u5 − (q2 − q1)µ1u1 + (q2 − q1)µ2u2 − v3 + K3(t)

σ4 = q1v2v5 + µ3 p2u2 − µ3u2u5 + µ4 p2u1 − µ4u1u5 − (q2 − q1)µ1u2 + (q2 − q1)µ2u1 − v4 + K4(t)

σ5 = −v1v3 − v2v4 + q3µ5u5 + µ5u1u3 + µ5u2u4 + p3v5 + K5(t).

Thus, the resulting error system is given by

Dαe1 = q1e3 − q1e1 − p1e1 + K1(t)

Dαe2 = q1e4 − q1e2 − p1e2 + K2(t)

Dαe3 = (q2 − q1)e1 − e3 + K3(t) (19)

Dαe4 = (q2 − q1)e2 − e4 + K4(t)

Dαe5 = −q3e5 − p3e5 + K5(t).

As K(t) = Re(t), where R is 5× 5 constant matrix and e(t) = [e1(t), e2(t), e3(t), e4(t),
e5(t)]T . Here, we choose matrix R as follows:

q1 + p1 − r 0 −q1 0 0
0 q1 + p1 − r 0 −q1 0

−(q2 − q1) 0 1− r 0 0
0 −(q2 − q1) 0 1− r 0
0 0 0 0 q3 + p3 − r

.

Then, the eigenvalues of the linear system (19) are (−r,−r,−r,−r,−r). For simplicity,
we take r = 1, then the resultant error system for this particular choice becomes

Dαei(t) = −ei(t), i = 1, 2, 3, 4, 5 (20)

5. Numerical Simulation and Discussion

Numerical simulation is performed to explore and validate the effectiveness and
superiority of the suggested HCPS scheme between fractional order complex chaotic
Lorenz system (master) and fractional order complex chaotic T-system (slave). We here
simply utilize the 4th-order Runge–Kutta algorithm along with the Oustaloup’s technique
to approximate the fractional derivatives. In computation, consider α = 0.94 with a
step size of 0.005. The initial conditions for the master system and the slave system are
[2,3,5,6,9] and [8,7,6,8,7], respectively. Thus, according to the considered error system, the
initial conditions are (e1, e2, e3, e4) = [6.3, 3.8, 8, 16.5,−3.8]. The complex scaling matrix
is µ = [1 + 0.1i,−1 − 0.05i, 1.2]. The chaotic behavior of the fractional order complex
Lorenz system and T-system has been shown in Figures 1a–d and 2a–d, which represent
the phase diagrams of the considered systems. It is clearly shown that Figure 3a–c displays
the state trajectories of the master system and the controlled slave system behaving alike.
Additionally, Figure 4a,b represents that the synchronization error goes to zero as time tends
to infinity. By choosing different complex scaling matrices, we can synchronize the given
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systems up to the desired result. Thus, the considered HCPS strategy between dissimilar
master and slave systems is validated computationally using MATLAB environment.
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(a) (t, e1); (t, e2); (t, e3) and (t, e4); (b) (t, e5) and simultaneous plot (t, e1, e2, e3, e4, e5).

6. Conclusions

In this research work, a hybrid complex projective synchronization (HCPS) methodol-
ogy has been investigated among dissimilar two fractional order chaotic complex systems
via an active control strategy. Appropriate active nonlinear control input has been designed
because of the drive-response/master–slave configuration and Lyapunov’s stability anal-
ysis (LSA). The error dynamical system converges asymptotically to zero by utilizing a
proper and simplified nonlinear active control input. The efficacy and superiority of the an-
alytical outcomes are validated by executing simulation through the MATLAB environment.
Significantly, both the analytic work and the numerical effects are in excellent conformity.
We noted that our investigated HCPS method is primary yet theoretically precise. Further,
this scheme will serve as a prominent task in enhancing security in communication and
encrypting images with numerous applications in biological, social, and physical nonlinear
dynamic systems. Moreover, we realize that the suggested HCPS methodology may be
generalized via other control schemes.
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