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Abstract: We apply the theory of quadratic differentials, to present a classification of orthogonal pairs
of foliations of the hyperbolic plane by hyperbolic conics. Light rays are represented by trajectories of
meromorphic differentials, and mirrors are represented by trajectories of the quadratic differential
that represents the geometric mean of two such differentials. Using the notion of a hyperbolic conic
as a mirror, we classify the types of orthogonal pairs of foliations of the hyperbolic plane by confocal
conics. Up to diffeomorphism, there are nine types: three of these types admit one parameter up
to isometry; the remaining six types are unique up to isometry. The families include all possible
hyperbolic conics.
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1. Introduction

In this article we apply the theory of quadratic differentials, to present a classifica-
tion of orthogonal pairs of foliations of the hyperbolic plane by hyperbolic conics. This
complements the classifications in the Euclidean and spherical cases that appear in [1].
In that paper, which was a useful reference for the current discussion, we viewed conics
as mirrors reflecting a field of geodesics, representing a bundle of light rays, to another
field of geodesics. The light rays were trajectories of meromorphic differentials; the mirrors
were trajectories of the quadratic differential that represents the geometric mean of the
two families.

Here, we demonstrate that the curves we describe as mirrors are the hyperbolic conics
described by various authors, e.g., [2–6], using projective geometry (we neglect curves with
an empty locus in the hyperbolic plane). In fact, every such hyperbolic conic gives rise
to an orthogonal pair of confocal families of conics, given by the horizontal and vertical
trajectories of a quadratic differential.

As we noted in [1], the hyperbolic case is considerably more complicated than the
Euclidean and spherical cases, because of the wider variety of geodesic fields. In addition
to families of rays emanating from a point, and families of “parallel” rays converging to an
ideal point, there are also “ultraparallel” (some authors use the term “hyperparallel” for
lines that diverge in both directions) families that in some models of hyperbolic geometry
may be thought of as converging to an “ultra-ideal” point. This leads to a more elaborate
classification of conics: in addition to the obvious notions of ellipse, parabola, and hyper-
bola, there are curves such as semihyperbolas. As we will see, such curves may be viewed
as reflecting light from a point source (a focus) to a hyperparallel field of geodesics: namely,
the orthogonals to a fixed hyperbolic line.

We may visualize the semihyperbolic mirror in the Poincaré disc model of hyperbolic
space or in the Beltrami–Klein model of the disc (Figure 1). Each model has advantages
and disadvantages. In the Poincaré model, the light rays are circle arcs meeting the circle
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orthogonally, or straight lines from the origin: it is clear that the angle of incidence equals
the angle of reflection. The reflected rays are orthogonal to a hyperbolic line, shown as the
dotted curve, and are seen to diverge from each other. In the Klein model, the light rays
are all straight lines. The rays converge to a point beyond the ideal boundary (Figure 2,
right). In this model, we can view the semihyperbola as having two foci. Viewing the Klein
disc as part of the Euclidean plane, the curve is seen to be a Euclidean ellipse, although one
of its foci is actually outside the ellipse. It is not obvious that the picture is correct, as the
Klein model is not conformal.
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elaborate classification of conics. In addition to the obvious notions of el-

lipse, parabola, and hyperbola, there are curves such as semihyperbolas. As

we will see, such curves may be viewed as reflecting light from a point source

(a focus) to a hyperparallel field of geodesics, namely the orthogonals to a

fixed hyperbolic line.

Remark 1.1. In [5], Henle discusses two conditions that are equivalent def-

initions of Euclidean parabolas. He shows that the curves in H that are

equidistant from a point (focus) and a line (directrix) are not the same as

the curves that reflect rays from a focus to an ideal point. His computations

allow one to verify that the curves satisfying the focus-directrix condition

are the semihyperbolas, while the curves satisfying the reflection property

are the elliptic parabolas, which may be thought of as the limiting case of

semihyperbolas as the directrix becomes infinitely distant. (See Figure 4.)

Figure 1. Semihyperbolic mirror in Poincaré disc (left); in

Klein disc (right)

We may visualize the semihyperbolic mirror in the Poincaré disc model

of hyperbolic space or in the Beltrami-Klein model of the disc ( see Figure

1). Each model has advantages and disadvantages. In the Poincaré model,

the light rays are circle arcs meeting the circle orthogonally or straight lines

from the origin. It is clear that angle of incidence equals angle of reflection.

The reflected rays are orthogonal to a hyperbolic line, shown as the dotted

curve, and are seen to diverge from each other. In the Klein model, the

light rays are all straight lines. The rays converge to a point beyond the

ideal boundary (see the right side of Figure 2). In this model, we can view

the semihyperbola as having two foci. Viewing the Klein disc as part of the

Figure 1. Semihyperbolic mirror in Poincaré disc (left); in Klein disc (right). The pink arcs in the
figure on the left represent light rays, which are reflected off the (orange) mirror to the blue light rays
that converge at the focus. In the Klein model, these rays are represented by black straight lines.
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Euclidean plane, the curve is seen to be a Euclidean ellipse, although one of

its foci is actually outside the ellipse. It is not obvious that the picture is

correct, since the Klein model is not conformal.

Figure 2. Left: the two models superimposed.

Right: Locating the ultra-ideal point in the Klein model

Perhaps the best way to see that the curves in the Klein model are correct

is to compare the two pictures via the Klein-to-Poincaré map KP (z) =
z

1+
√

1−|z|2
; this is the unique isometry from the disc with the Klein metric

to the disc with the Poincaré metric that keeps the ideal boundary pointwise

fixed. (See [11]) It takes the straight line segment between points on the

boundary to the geodesic between the same two points in the Poincaré disc.

Since we have chosen the focus inside the disc to be at the origin, the rays

from focus coincide (but not pointwise.) The reflected rays meet the ideal

boundary at the same point in the two models. (see the left side of Figure

2)

There is no relation between points outside the disc in the two models.

The Klein disc can be thought of as a subset of the projective plane RP 2.

This idea apparently dates back to a paper of Study [14]. Some authors refer

to this as the ”extended hyperbolic plane” (see, e.g.,[6], [10].) The exterior

of the disc is the “de Sitter Plane”. The Poincaré disc, on the other hand,

is a subset of the extended complex plane CP 1. In this model, points in the

exterior of the unit disc may be thought of as identified with points in the

interior via reflection across the unit circle.

To study confocal families of conics, we use the theory of quadratic dif-

ferentials. We will see that a family of confocal hyperbolic quadrics can be

represented in the Poincaré disc model as the horizontal or vertical trajecto-

ries of a non-vanishing meromorphic quadratic differential. This is consistent

Figure 2. Left: The two models superimposed. Right: Locating the ultra-ideal point in the
Klein model. Red = mirror; pink and gray = incident rays, blue = reflected rays.

Perhaps the best way to see that the curves in the Klein model are correct is to compare
the two pictures via the Klein-to-Poincaré map KP(z) = z

1+
√

1−zz̄
, |z| ≤ 1: this is the unique

isometry from the disc with the Klein metric to the disc with the Poincaré metric that keeps
the ideal boundary pointwise fixed [7]; it takes the straight line segment between points
on the boundary to the geodesic between the same two points in the Poincaré disc. As we
have chosen the focus inside the disc to be at the origin, the rays from the focus coincide
(but not pointwise). The reflected rays meet the ideal boundary at the same point in the
two models (Figure 2, left).

There is no relation between points outside the disc in the two models. The Klein disc
can be thought of as a subset of the projective plane RP2. This idea apparently dates back
to a paper by Study [8]. Some authors refer to this as the “extended hyperbolic plane”,
e.g., [4,9]. The exterior of the disc is the “de Sitter Plane”. The Poincaré disc, on the other
hand, is a subset of the extended complex plane CP1. In this model, points in the exterior of
the unit disc may be thought of as being identified with points in the interior via reflection
across the unit circle.
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To study confocal families of conics, we use the theory of quadratic differentials. We
will see that a family of confocal hyperbolic conics can be represented in the Poincaré disc
model as the horizontal or vertical trajectories of a non-vanishing meromorphic quadratic
differential: this is consistent with viewing hyperbolic conics as parts of curves in CP1.
They may instead be seen as certain quartic or lower degree curves in CP2, though we will
not make use of that fact here.

In Section 2, we discuss the general notion of confocal families of conics, and of the
bundles of light rays reflected by a confocal family. Section 3 reviews the fields of geodesics
and the corresponding differentials used in constructing the families. Then, in Section 4,
we enumerate the quadratic differentials determined by the geodesic fields and nine types
of confocal families of conics. Appendix A gives a dictionary of the types of conics as
they are defined by various authors, and where to find them among the confocal families.
Appendix B has some comments on how the curve families are computed. For background
material on quadratic differentials, refer to [10] or [1].

2. Confocal Conics in the Hyperbolic Plane

In order to discuss confocal conics, it will be necessary to determine what we mean
by the term “confocal”. In the case of the ellipse, the concept dates back at least to the
work of Menaechmus (c. 350 BCE), appearing in the book Conics by Apollonius of Perga.
While he does not name the points, Apollonius showed that the foci of an ellipse satisfy
two important properties: the string property and the reflection property. It was Kepler
who introduced the term foci, noting that the orbits of the planets are ellipses, with the sun
located at one of the foci.

The two properties of ellipses continue to hold in the sphere and the hyperbolic plane:
that is, the sum of the distances of a point on the ellipse to the foci is constant, and the lines
joining the point to the foci make equal angles with the tangent line. It follows that light
rays emanating from one focus, and reflected off the ellipse, travel to the other focus. It is
thus clear what we mean by confocal ellipses.

For parabolas, the notion of confocal is already more subtle in the Euclidean case. As
a parabola only has one focus in the plane, a rotation around the focus carries a parabola to
another parabola with the same focus. Thus, to define confocal parabolas, we must take
into account the direction determined by parallel rays that are reflected by the parabola
into its focus. A natural way to understand this is to think of the parabola as having a
second focus at infinity. If we view the plane as being a subset of RP2, then an ordinary
point and an ideal point determine two confocal families of parabolas, one orthogonal to
the other. This idea needs to be taken a step further when we consider the hyperbolic case,
where a focus may be located at infinity or even beyond. In the Klein model, the foci of a
conic may be points in the hyperbolic plane, ideal points, or de Sitter points ([4], p. 30).

Remark 1. In [3], Henle discusses two conditions that are equivalent definitions of Euclidean
parabolas. He shows that the curves in H that are equidistant from a point (focus) and a line
(directrix) are not the same as the curves that reflect rays from a focus to an ideal point. His
computations allow one to verify that the curves satisfying the focus–directrix condition are the
semihyperbolas, while the curves satisfying the reflection property are the elliptic parabolas, which
may be thought of as the limiting case of semihyperbolas, as the directrix becomes infinitely distant
(Figure 1).

The notion that a focus may be located at an ultra-ideal point may be justified by
considering a variable mirror with one fixed focus at the origin in the disc, while the other
focus is allowed to move across the ideal boundary, as seen in Figures 3 and 4. When the
movable focus reaches the ideal boundary, the reflected light rays become parallel, in the
hyperbolic sense, i.e., they meet at the ideal point. If we “keep going” beyond the ideal
boundary, the reflected rays now disperse. Note that the mirror has only one branch in
the hyperbolic plane; hence, the name “semihyperbola”. The same picture in the Klein



Axioms 2023, 12, 507 4 of 14

model would show the rays meeting at the ultra-ideal focus, as we saw in Figure 2. In the
extended hyperbolic plane, this process is continuous.
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then an ordinary point and an ideal point determine two confocal families of
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stood in the Beltrami-Klein model, in which the hyperbolic plane is repre-

sented as the interior of the unit disc in the real projective plane, the unit

circle is the absolute, consisting of ideal points, and the exterior is de Sitter

space. Foci of a conic may be points in the hyperbolic plane, ideal points,

or de Sitter points. (See [6], p. 30.)

The notion that a focus may be located at an ultra-ideal point may be

justified by considering a variable mirror with one fixed focus at the origin in

the disc, while the other focus is allowed to move across the ideal boundary,

as seen in Figure 3. When the moveable focus reaches the ideal boundary,

the reflected light rays become parallel in the hyperbolic sense; i.e., they

meet at the ideal point. If we ”keep going” beyond the ideal boundary, the

reflected rays now disperse. Note that the mirror has only one branch in the

hyperbolic plane; hence the name semihyperbola. The same picture in the

Klein model would show the rays meeting at the ultra-ideal focus, as we saw

in Figure 2. In the extended hyperbolic plane this process is continuous.

Figure 3. One focus at the origin, the other moving right,

ellipses to parabolas to semihyperbolas, in the Poincaré disc

model.

All of this may be viewed as motivation for a formal definition of confocal

conics in hyperbolic space. Rather than referring to the focus itself, we

will identify it in terms of a geodesic field, the geodesics emanating from

it. A point in the plane corresponds to the family of oriented geodesic rays

emanating from that point. An ideal point corresponds to an asymptotic

family of geodesics. An ultra-ideal point corresponds to a family of geodesics

Figure 3. One focus at the origin, the other moving right, ellipses to parabolas to semihyperbolas,
in the Poincaré disc model. Red = mirror; pink = incident rays, blue = reflected rays.

We regard a conic in the hyperbolic plane H (normalized to have constant Gaussian
curvature −1) as a mirror, which reflects a light ray according to the principle that angle
of incidence equals angle of reflection. The mirror has a coherence property: there is a
particular bundle of light rays I that is reflected into another particular bundle J. These
bundles of rays are oriented geodesic fields whose orthogonal trajectories have constant
geodesic curvature. In the Euclidean plane, this condition is satisfied by the rays emanating
from a point, and by the parallel lines orthogonal to a fixed line.6 JOEL C. LANGER AND DAVID A. SINGER

Figure 4. One focus at the origin, the other moving right,

in the Klein model.

orthogonal to a hyperbolic line. If we take the unit vector field T tangent

to the family of rays, the flow in R2 determined by integrating T preserves

the orthogonal trajectories, which we may think of as wave fronts. This fact

is actually a special case of Gauss’ lemma in Riemannian geometry, and it

characterizes geodesic fields.[4]

The particular geodesic fields we are considering are characterized by the

fact that the orthogonal trajectories have constant curvature. If the focus

is a point in the hyperbolic plane, orthogonal trajectories are circles. If it is

an ideal point, the orthogonal trajectories are horocycles. If it is an ultra-

ideal point, the orthogonal trajectories consist of a single straight line and

the equidistant curves to the line. The orthogonal trajectories act as wave

fronts. A conic acts as a mirror, reflecting the family of rays from one focus

to the family of rays to the other focus. Two conics are confocal if they

reflect the same geodesic field to the same geodesic field.

This notion of focus has the advantage that it is not model-dependent.

In the Beltrami-Klein model, conics are recognizable as being the Euclidean

conics, a fact that is often exploited in discussions of hyperbolic geometry.

One can “see” the foci as points in the disc, on its boundary, or outside the

disc. But since this model is not conformal, it is difficult to determine the

location of foci for a given conic or to recognize when conics are confocal. We

will be relying mainly on the Poincaré disc and half plane models, which are

conformal and allow us to use complex analysis. In these models, however,

the conics are quartic curves, and the ultra-ideal points are not points in

the model. Instead, the foci are represented by pencils of circles orthogonal

to the unit circle.

Each family of geodesics is representable as the (oriented) trajectories

of a meromorphic differential f(z)dz in the extended complex plane, as we

Figure 4. One focus at the origin, the other moving right, in the Klein model. Red = mirror;
black = incident rays, blue = reflected rays.

In the hyperbolic plane, there are three types of such fields. An elliptic geodesic field
consists of geodesic rays emanating from (or converging to) a point in H; its orthogonal
trajectories are circles (curves of constant curvature > 1) (Figure 5). A hyperbolic geodesic
field consists of rays orthogonal to a fixed geodesic (Figure 6, right): such a field’s other
orthogonal trajectories have constant curvature 0 < k < 1. The transition between these
two types consists of rays asymptotic to an ideal point. For such a parabolic geodesic field,
the orthogonal trajectories are horocycles, which have curvature k = 1 (Figure 6, left).

We refer to the above special geodesic fields collectively as elliptic–parabolic–hyperbolic
fields, or EPH fields. For any EPH field, if we take the unit vector field T tangent to the
family of rays, the flow determined by integrating T preserves the orthogonal trajectories,
which we may think of as wave fronts. This fact is actually a special case of Gauss’ lemma
in Riemannian geometry, and it characterizes geodesic fields.

Definition 1. A confocal family of conics is a family of curves that reflects some fixed EPH field I
to another fixed EPH field J.

This notion of confocal family has the advantage that it is not model-dependent. In the
Klein model, conics are recognizable as being Euclidean conics, a fact that is often exploited in
discussions of hyperbolic geometry. One can “see” the foci as points in the disc, on its boundary,
or outside the disc; however, as this model is not conformal, it is difficult to determine the
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location of foci for a given conic, or to recognize when conics are confocal. We will be relying
mainly on the Poincaré disc model, which is conformal, and allows us to use complex analysis:
in this model, however, the conics are quartic (or lower degree) curves in C ' R2, and the
ultra-ideal points are not points in the model; instead, the geodesic fields are represented by
pencils of circles orthogonal to the unit circle. This representation of geodesic fields, expressed
in terms of differentials, forms the basis for the procedure followed in the next section.

CONFOCAL FAMILIES OF HYPERBOLIC CONICS 7

discuss in the next section. The quadratic differential Q(z)dz2 correspond-

ing to a confocal family is the product of two of these differentials. The

(unoriented) horizontal and vertical trajectories form a pair of orthogonal

curve families that bisect the angle between the two geodesic families. It

follows that the trajectories act as mirrors reflecting one family to the other.

So quadratic differentials yield pairs of confocal families in the disc model.

These families can then be transferred to the Beltrami-Klein model using

the Klein-to-Poincaré and Poincaré-to-Klein maps [11]. The quartic curves

in the Poincaré disc are transformed to quadratic curves in the Klein disc,

allowing us to see what confocal conics look like in the latter model.

3. Foci of conics and Poles of quadratic differentials

Following the procedure described in [7], we construct a foliation of the

extended complex plane by confocal conics with the use of a non-vanishing

meromorphic quadratic differential. Note that unlike the Beltrami-Klein

model, in which H is represented as the open unit disc in RP 2, we are

viewing H as the open unit disk (or the upper half plane) in CP 1.

A foliation of the extended complex plane corresponding to the rays from

a point P inside the unit disc is given by the trajectories of a differential of

the form dz
z (in the case P = 0) or dz

(z−a)(z−1/a) when P = a.

Figure 5. Rays from a point inside the disc

For the case of rays from an ideal point, the differential has the form
dz

(z−a)2 .Rays from an ultra-ideal point give a family of circles simultaneously

orthogonal to the unit circle and a geodesic joining two ideal points a and b

on the circle, i.e., a fixed circle orthogonal to the unit circle. Such a family

has to degenerate to points at a and b, and it has the form idz
(z−a)(z−b) . In Fig-

ure 6 the case where a = 1 and b = −1 is illustrated. In the Beltrami-Klein

Figure 5. Elliptic geodesic fields.
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model, the focus would be located at the dual point (“pole”) corresponding

to the line through a and b (the “polar”). (Interestingly, in the case where a

and b are antipodal points on the circle, the ultra-ideal points in the Klein

model are ideal points in RP 2!)

Figure 6. Rays from ideal and ultraideal points

As indicated in the previous paragraph, we can read off the location of

the foci from the location of the poles of the quadratic differential. The

trajectories form two families of curves in CP 1. Stereographic projection

from CP 1 to the plane R2 allows us to view the curves as real algebraic

curves, and that is the sense in which they are quartic curves.

4. Classification of Confocal Families

For each of the types listed below, we specify the form of the quadratic

differential whose horizontal and vertical trajectories give confocal families

of conics. We specify the location of the poles. In the first three cases, there

is a one-parameter family of isometric classes; in the remaining cases all

families are isometric. The curves in each family act as mirrors; we describe

the geodesic fields that are reflected in these mirrors. Finally, we illustrate

the families graphicaly in both the Poincaré disc and the Beltrami-Klein

disc. The curves in the Klein model are recognizable as parts of Euclidean

conics; the corresponding curves in the Poincaré disc are quartics that meet

the circle in the same points as the Klein curves. To get from one model to

the other one can use the Poincaré to Klein map and its inverse.

(I) Two poles in the disc and their reciprocals.

Figure 6. Parabolic geodesic fields (left) and hyperbolic geodesic fields (right).

3. Curve Families in the Disc and Meromorphic Differentials

From here on, we use the Poincaré disc model D ' H of the hyperbolic plane. As D is
the open unit disc in the extended complex plane Ĉ ' CP1, we may represent curve families
in D via trajectories of meromorphic differentials on Ĉ. An EPH field is represented by the
(oriented) trajectories of a differential f (z)dz. Given two such EPH fields, the corresponding
confocal conics are represented via the product quadratic differential Q = f1(z) f2(z)dz2.
The (unoriented) horizontal and vertical trajectories of Q form a pair of orthogonal curve
families bisecting the angle between the pair of geodesic fields: thus, such trajectories act
as mirrors reflecting one EPH field to the other.

Remark 2. The resulting curve families can be transferred to the Klein model, using the Klein-to-
Poincaré and Poincaré-to-Klein maps [7]. The quartic curves in the disc D ⊂ C are transferred to
quadratic curves in the Klein disc model, allowing us to see what confocal conics look like in the
latter model.

In this section, we describe the differentials f (z)dz representing the three types of EPH
fields. Then, the classification of confocal families of hyperbolic conics, in the next section,
amounts to combining pairs of such differentials in all possible ways, up to hyperbolic
isometries (i.e., conformal automorphisms of D).
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Although points in the exterior of D ⊂ Ĉ are generally ignored in the Poincaré disc
model, it is useful to consider the circle inversion z 7→ I(z) := 1/z̄, which interchanges D
with its exterior. The geodesics in D are represented by circle arcs meeting the ideal bound-
ary S1 = ∂D orthogonally, and one may view inversion as geodesic-reversing. Accordingly,
the differential ω = f (z)dz corresponding to an EPH field transforms under inversion to its
opposite ω 7→ −ω. (Recall that trajectories γ(t) of ω are defined by the positivity condition
f (γ(t))γ′(t) > 0, so reversing the sign of ω reverses orientation of trajectories.)

In particular, the singular set of such a differential ω must be preserved by I : that is,
a singularity either belongs to an inversion-symmetric pair {a, 1/ā}, a ∈ D, or is a complex
unit σ ∈ S1. Furthermore, from the description of the three types of EPH fields, it is now
evident that ω has, at most, two singularities in Ĉ. As the zeros and poles of a meromorphic
differential on Ĉ satisfy Z− P = 2g− 2 = −2, it follows that Z = 0 and P = 2, i.e., ω is
non-vanishing, and has either two simple poles or one double pole. In fact, ω has either a
pair of simple poles a, 1/ā, for some a ∈ D, a double pole σ = eiα ∈ S1, or a pair of simple
poles σj = eiαj ∈ S1. Thus, ω has one of the three forms:

(1) ω =
λdz

(z− a)(z− 1/ā)
, a ∈ D;

(2) ω =
λdz

(z− σ)2 , σ = eiα ∈ S1; or

(3) ω =
λdz

(z− σ1)(z− σ2)
, σj = eiαj ∈ S1.

Here, it remains to determine values of the multipliers λ = reiθ ∈ C \ {0}, such that
ω 7→ −ω under inversion.

For this purpose, it is useful to first consider the reflection of rational functions
and differentials in the real axis. For a function, this is given by f̄ (z) := f (z̄) (complex
conjugation of coefficients). In particular, for f to be reflection anti-symmetric, f̄ = − f , it
must have imaginary coefficients. The reflection of a differential ω = f (z)dz in the real axis
is given by ω̄ = RRω := f̄ (z)dz. In the anti-symmetric case, ω̄ = −ω, f must again have
imaginary coefficients.

The corresponding rule for reflecting differentials ω = f (z)dz in the unit circle can now

be described via pull-back, by S(z) = 1/z: namely, RS1 ω := S∗ω̄ = − f̄ (1/z)dz
z2 . For differ-

entials of the form ω = λdz
g(z) , as above, the rule for reflection anti-symmetry −ω = RS1 ω be-

comes λ
g(z) =

λ̄
z2 ḡ(1/z) , i.e., e2iθ = λ/λ̄ = g(z)

z2 ḡ(1/z) . Thus, g determines eiθ , up to sign, via the

formula e2iθ =
g(z)

z2 ḡ(1/z)
. For instance, in case (1), e2iθ =

(z− a)(z− 1/ā)
z2(1/z− ā)(1/z− 1/a)

= a/ā;

therefore, up to multiplication by a positive number, ω = adz
(z−a)(z−1/ā) . In case (2),

e2iθ =
(z− α)2

z2(1/z− ᾱ)2 = α/ᾱ, so we can take ω =
αdz

(z− α)2 .

Case (3) is slightly more complicated, in general; however, for our purposes, it will suffice

to symmetrize ω, so that σ1 and σ2 are complex conjugates: e2iθ =
(z− σ)(z− σ̄)

z2(1/z− σ̄)(1/z− σ)
=

(z− σ)(z− σ̄)

(1− σ̄z)(1− σz)
= 1. Thus, we can simply take ω =

±dz
(z− σ)(z− σ̄)

.

Of course, any given differential in case (3) may be put into this symmetrized form via
rotation; however, as we will be considering pairs of differentials, more general hyperbolic
isometries (disc automorphisms) are actually required, to show that such symmetrized
differentials suffice. Similarly, for the first two types of differentials, it turns out that we
may always take λ = ±1: in case (1), we may always assume −1 < a < 1, and in case (2),
we may use σ = ±1.

It is not necessary to consider all possible ways to multiply two differentials ω1, ω2
of the above types, because we can characterize the resulting quadratic differentials
Q = q(z)dz2 = ω1ω2 more directly. First, we note that the equations RS1 ωj = −ωj im-



Axioms 2023, 12, 507 7 of 14

ply that Q itself has reflection symmetry RS1 Q = Q. (RS1 Q = S∗Q̄ = (RS1 ω1)(RS1 ω2)).
Counting multiplicities, Q has exactly four poles, and these are either paired by reflection
in S1, or lie on S1. Furthermore, by hyperbolic isometries, we can arrange for all poles to
be real or belong to complex conjugate pairs. Figure 7 shows the resulting possible pole
patterns. The nine types I–IX of quadratic differentials (pole patterns) are discussed further
in Section 4.

2 ρ

Ι

2α

ΙΙ

2 β

ΙΙΙ

ΙV V VΙ

VΙΙ VΙΙΙ ΙX

Figure 7. Pole patterns for the quadratic differentials. Pole key: • = simple; ◦ = double;
� = triple; ⊕ = quadruple. Poles at z = 0 are paired with identical poles at z = ∞—out of
view. Hyperbolic–geometric parameters for types I, II, and III: pole separation 0 < 2ρ < ∞; angle
between geodesic rays 0 < 2α < π; angle between geodesics 0 < 2β ≤ π/2.

For example, Type I arises when there are four poles of the form a, 1/ā, b, 1/b̄, |a| < 1,
|b| < 1: in this case, the midpoint of the geodesic arc ab ⊂ D of length 2ρ can be moved to
the origin by isometry, and then rotation places its endpoints on the real axis, with equal
distance ρ from the origin, as in Figure 7.

For Type II, there are poles a, 1/ā, σ1 6= σ2, |a| < 1, |σj| = 1; then, a may be moved to
the origin, and rotation gives σ2 = σ̄1. Within this type, equivalence is defined by the angle
0 < 2α < π between geodesic rays from a to σ1 and σ2.

For Type III, there are four (consecutive) poles σj ∈ S1. These can be put in a long
rectangular position: geodesics σ1σ3 and σ2σ4 may be moved, so as to intersect at z = 0; the
resulting rectangular pole-set may then be made “horizontal” by rotation (and the angle
between the diagonal geodesics then lies in the range 0 < 2β ≤ π

2 ). Note that there are
three ways to represent a “rectangular” type such as Q = ω1ω2, one of which corresponds
to differentials satisfying ω̄j = ωj.

Finally, the “multiplier” in Q = Λdz2

G(z) = λ1λ2dz2

g1(z)g2(z)
is again determined, up to real

scaling, by the poles. Thus, for the normal forms shown in Figure 7, Q is always of the form
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Q = ±dz2

G(z) , where G(z) is a real, monic polynomial of degree—at most, four. A change of
sign in Q simply interchanges horizontal and vertical trajectories.

4. Classification of Confocal Families

For each of the types listed below, we specify the form of the quadratic differential
whose horizontal and vertical trajectories give confocal families of conics. We specify the
location of the poles. In the first three cases, there is a one-parameter family of isometric
classes; in the remaining cases, all the families are isometric. The curves in each family act
as mirrors; we describe the geodesic fields that are reflected in these mirrors. Finally, we
illustrate the families graphically, in both the Poincaré disc and the Klein disc. The curves
in the Klein model are recognizable as parts of Euclidean conics; the corresponding curves
in the Poincaré disc are quartics that meet the circle in the same points as the Klein curves.
To get from one model to the other, one can use the Poincaré-to-Klein map and its inverse.

(I) Two poles in the disc, and their reflections in the circle (Figure 8).
The quadratic differential is equivalent to

dz2

(z2 − a2)(z2 − 1/a2)
,

with 0 < a < 1. The trajectories are hyperbolic ellipses and hyperbolas, with foci in
the Poincarè disc at z = a and z = −a. The rays from one focus are reflected to the
rays to the other focus (ellipses) or from the other focus (hyperbolas).

CONFOCAL FAMILIES OF HYPERBOLIC CONICS 9

The quadratic differential is equivalent to

dz2

(z2 − a2)(z2 − 1/a2)
,

with 0 < a < 1. The trajectories are hyperbolic ellipses and hyper-

bolas with foci in the Poincarè disc at z = a and z = −a. Rays from

one focus are reflected to rays to the other focus (ellipses) or from

the other focus (hyperbolas).

Figure 7. I. Ellipse and Hyperbola

(II) One pole in the disc and its reciprocal, two poles on the circle.

The quadratic differential is equivalent to

dz2

z(z2 − 2 cos(2θ) + 1)

with 0 < θ < π. The trajectories are Semi-hyperbolas with one focus

(at the origin). Rays from the focus are reflected to rays correspond-

ing to lines that cross the line joining the ideal points orthogonally.

Figure 8. II. Semi-Hyperbola

(III) Four poles at points on the circle.

The quadratic differential is equivalent to

dz2

z4 − 2 cos(2θ)z2 + 1

Figure 8. I. Ellipse and hyperbola. The left two parts show the horizontal (red) and vertical (magenta)
trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical
(pink) trajectories in the Klein model.

(II) One pole in the disc and its reflection, two poles on the circle (Figure 9).
The quadratic differential is equivalent to

dz2

z(z2 − 2 cos(α)z + 1)

with 0 < α < π/2. The trajectories are semihyperbolas, with one focus (at the origin).
Rays from the focus are reflected to rays corresponding to lines that cross the line
joining the ideal points orthogonally.

CONFOCAL FAMILIES OF HYPERBOLIC CONICS 9

The quadratic differential is equivalent to

dz2

(z2 − a2)(z2 − 1/a2)
,

with 0 < a < 1. The trajectories are hyperbolic ellipses and hyper-

bolas with foci in the Poincarè disc at z = a and z = −a. Rays from

one focus are reflected to rays to the other focus (ellipses) or from

the other focus (hyperbolas).

Figure 7. I. Ellipse and Hyperbola

(II) One pole in the disc and its reciprocal, two poles on the circle.

The quadratic differential is equivalent to

dz2

z(z2 − 2 cos(2θ) + 1)

with 0 < θ < π. The trajectories are Semi-hyperbolas with one focus

(at the origin). Rays from the focus are reflected to rays correspond-

ing to lines that cross the line joining the ideal points orthogonally.

Figure 8. II. Semi-Hyperbola

(III) Four poles at points on the circle.

The quadratic differential is equivalent to

dz2

z4 − 2 cos(2θ)z2 + 1

Figure 9. II. Semihyperbola. The left two parts show the horizontal (red) and vertical (magenta)
trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical
(pink) trajectories in the Klein model.
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(III) Four poles at points on the circle (Figure 10).
The quadratic differential is equivalent to

dz2

z4 − 2 cos(2β)z2 + 1

for 0 < β ≤ π
4 . The poles are placed at ±eiβ and ±e−iβ. The trajectories are concave

hyperbolas. Rays orthogonal to one line are reflected to rays orthogonal to another line.

10 JOEL C. LANGER AND DAVID A. SINGER

for 0 < θ < π
2 . The poles are placed at ±eiθ and ±e−iθ. The

trajectories are Concave Hyperbolas. Rays orthogonal to one line

are reflected to rays orthogonal to another line.

Figure 9. III. Concave Hyperbola

(IV) A pole in the disc and its reciprocal and a double pole on the circle.

The quadratic differential is equivalent to

dz2

z(z − 1)2
.

We may place the poles. at z = 0 and at t z = 1. This is a limiting

case of an ellipse or hyperbola with one focus at an ideal point. The

trajectories are Elliptic Parabolas, which reflect rays from the finite

focus to rays approaching the ideal point, and Convex Hyperbolic

Parabolas, which reflect rays from the finite focus to rays emanating

from the ideal point.

Figure 10. IV. Elliptic and Convex Hyperbolic Parabola

(V) One double pole and two single poles on the circle.

The quadratic differential is equivalent to

dz2

(z − 1)2(z2 + 1)
.

Figure 10. III. Concave hyperbolas.The left two parts show the horizontal (red) and vertical (magenta)
trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical
(pink) trajectories in the Klein model.

(IV) A pole in the disc, and its reflection, and a double pole on the circle (Figure 11).
The quadratic differential is equivalent to

dz2

z(z− 1)2 .

We may place the poles at z = 0 and at z = 1: this is a limiting case of an ellipse or
hyperbola, with one focus at an ideal point. The trajectories are elliptic parabolas,
which reflect rays from the finite focus to rays approaching the ideal point, and convex
hyperbolic parabolas, which reflect rays from the finite focus to rays emanating from
the ideal point.

10 JOEL C. LANGER AND DAVID A. SINGER

for 0 < θ < π
2 . The poles are placed at ±eiθ and ±e−iθ. The

trajectories are Concave Hyperbolas. Rays orthogonal to one line

are reflected to rays orthogonal to another line.

Figure 9. III. Concave Hyperbola

(IV) A pole in the disc and its reciprocal and a double pole on the circle.

The quadratic differential is equivalent to

dz2

z(z − 1)2
.

We may place the poles. at z = 0 and at t z = 1. This is a limiting

case of an ellipse or hyperbola with one focus at an ideal point. The

trajectories are Elliptic Parabolas, which reflect rays from the finite

focus to rays approaching the ideal point, and Convex Hyperbolic

Parabolas, which reflect rays from the finite focus to rays emanating

from the ideal point.

Figure 10. IV. Elliptic and Convex Hyperbolic Parabola

(V) One double pole and two single poles on the circle.

The quadratic differential is equivalent to

dz2

(z − 1)2(z2 + 1)
.

Figure 11. IV. Elliptic and convex hyperbolic parabola. The left two parts show the horizontal (red)
and vertical (magenta) trajectories in the Poincaré disc model; the right two parts show the horizontal
(blue) and vertical (pink) trajectories in the Klein model.

(V) One double pole and two single poles on the circle (Figure 12).
The quadratic differential is equivalent to

dz2

(z− 1)2(z2 + 1)
.

Rays orthogonal to the line joining the ideal points are reflected to rays to the double
ideal point. The mirrors are wide concave hyperbolic parabolas and long concave
hyperbolic parabolas.
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CONFOCAL FAMILIES OF HYPERBOLIC CONICS 11

Rays orthogonal to the line joining the ideal points are reflected

to rays to the double ideal point. The mirrors are Wide concave

Hyperbolic Parabolas and Long Concave Hyperbolic Parabolas.

Figure 11. V.Wide and Long Concave Hyperbolic Parabola

(VI) Two double poles on the circle.

The quadratic differential is equivalent to

dz2

(z2 − 1)2

. The trajectories consist of a hyperbolic straight line and the

equidistant curves to the line. (These are curves of constant cur-

vature less than 1.) The orthogonal trajectories are the geodesic

field of lines orthogonal to the given line.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 12. VI. Equidistant Curves

(VII) A double pole in the disc and its reciprocal double pole. The qua-

dratic differential is equivalent to

dz2

z2
.

The trajectories are concentric circles. If the center is chosen to be at

the origin, the Euclidean, Poincaré and Klein models are identical.

Otherwise, the curves in the Poincarè disc are circles, the Klein

Figure 12. V. Wide and long concave hyperbolic parabolas. The left two parts show the horizontal
(red) and vertical (magenta) trajectories in the Poincaré disc model; the right two parts show the
horizontal (blue) and vertical (pink) trajectories in the Klein model.

(VI) Two double poles on the circle (Figure 13).
The quadratic differential is equivalent to

dz2

(z2 − 1)2 .

The trajectories consist of a hyperbolic straight line and the equidistant curves to the
line (these being curves of constant curvature less than 1). The orthogonal trajectories
are the geodesic field of lines orthogonal to the given line.

CONFOCAL FAMILIES OF HYPERBOLIC CONICS 11

Rays orthogonal to the line joining the ideal points are reflected

to rays to the double ideal point. The mirrors are Wide concave

Hyperbolic Parabolas and Long Concave Hyperbolic Parabolas.

Figure 11. V.Wide and Long Concave Hyperbolic Parabola

(VI) Two double poles on the circle.

The quadratic differential is equivalent to

dz2

(z2 − 1)2

. The trajectories consist of a hyperbolic straight line and the

equidistant curves to the line. (These are curves of constant cur-

vature less than 1.) The orthogonal trajectories are the geodesic

field of lines orthogonal to the given line.

Figure 12. VI. Equidistant Curves

(VII) A double pole in the disc and its reciprocal double pole. The qua-

dratic differential is equivalent to

dz2

z2
.

The trajectories are concentric circles. If the center is chosen to be at

the origin, the Euclidean, Poincaré and Klein models are identical.

Otherwise, the curves in the Poincarè disc are circles, the Klein

Figure 13. VI. Equidistant curves. The left two parts show the horizontal (red) and vertical (magenta)
trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical
(pink) trajectories in the Klein model.

(VII) A double pole in the disc, and its reflected double pole (Figure 14).
The quadratic differential is equivalent to

dz2

z2 .

The trajectories are concentric circles. If the center is chosen to be at the origin,
the Euclidean, Poincaré, and Klein models are identical; otherwise, the curves in the
Poincarè disc are circles, and the Klein circles are ellipses. The orthogonal trajectories
are rays from the center.

12 JOEL C. LANGER AND DAVID A. SINGER

circles are ellipses. The orthogonal trajectories are rays from the

center.

Figure 13. VII. Circles

(VIII) A triple pole on the circle and a single pole on the circle.

The quadratic differential is equivalent to

4dz2

(z + 1)3(z − 1)

. The trajectories are Osculating Parabolas, as are the orthogonal

trajectories. The line ` joining the two foci reflects one of the two

families to the other. Each parabola reflects rays orthogonal to ` to

rays from the ideal point.

(IX) A quadruple pole on the circle. The quadratic differential is equiva-

lent to
dz2

(z − 1)4

. The trajectories are horocycles. The orthogonal trajectories are

the lines meeting at the ideal point, i.e., the hyperbolic parallel lines.

This is the limiting case of concentric circles, when the center be-

comes an ideal point.

Figure 14. VIII. Osculating Parabola

Figure 14. VII. Circles. The left two parts show the horizontal (red) and vertical (magenta) trajecto-
ries in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical (pink)
trajectories in the Klein model.
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(VIII) A triple pole on the circle, and a single pole on the circle (Figure 15).
The quadratic differential is equivalent to

4dz2

(z + 1)3(z− 1)
.

The trajectories are osculating parabolas, as are the orthogonal trajectories. The line `
joining the two foci reflects one of the two families to the other. Each parabola reflects
rays orthogonal to ` to rays from the ideal point.

12 JOEL C. LANGER AND DAVID A. SINGER

circles are ellipses. The orthogonal trajectories are rays from the

center.

-1.0 -0.5 0.5 1.0
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1.0
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Figure 13. VII. Circles

(VIII) A triple pole on the circle and a single pole on the circle.

The quadratic differential is equivalent to

4dz2

(z + 1)3(z − 1)

. The trajectories are Osculating Parabolas, as are the orthogonal

trajectories. The line ` joining the two foci reflects one of the two

families to the other. Each parabola reflects rays orthogonal to ` to

rays from the ideal point.

(IX) A quadruple pole on the circle. The quadratic differential is equiva-

lent to
dz2

(z − 1)4

. The trajectories are horocycles. The orthogonal trajectories are

the lines meeting at the ideal point, i.e., the hyperbolic parallel lines.

This is the limiting case of concentric circles, when the center be-

comes an ideal point.

Figure 14. VIII. Osculating ParabolaFigure 15. VIII. Osculating parabolas. The left two parts show the horizontal (red) and vertical
(magenta) trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and
vertical (pink) trajectories in the Klein model.

(IX) A quadruple pole on the circle (Figure 16). The quadratic differential is equivalent to

dz2

(z− 1)4 .

The trajectories are horocycles. The orthogonal trajectories are the lines meeting at the
ideal point, i.e., the hyperbolic parallel lines. This is the limiting case of concentric
circles, when the center becomes an ideal point.

Figure 16. IX. Horocycles. The left two parts show the horizontal (red) and vertical (magenta)
trajectories in the Poincaré disc model; the right two parts show the horizontal (blue) and vertical
(pink) trajectories in the Klein model.

5. Conclusions

We have classified orthogonal pairs of meromorphic foliations of the Poincaré disc by
hyperbolic conics. We showed that there are nine types of such foliations: three of them
admit one parameter up to isometry of the hyperbolic plane; the remaining six types are
unique up to isometry. Every hyperbolic conic is represented among the leaves of these
foliations: this gives a complete classification of confocal families of hyperbolic conics,
where the notion of confocal depends only on the geometry of the hyperbolic plane. There
are other notions of foci that are model-dependent; while we use the Poincaré model to
construct the foliations, the resulting families can be characterized in a model-independent
way as mirrors reflecting one family of geodesic fields to another. Using the notion of the
EPH field (elliptic–parabolic–hyperbolic), we are able to characterize confocal families,
without dealing with the ambiguous notion of foci.

Figure 17 displays the nine families of horizontal and vertical trajectories in the
Poincaré disc.
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Figure 17. The nine orthogonal families of conics. The red curves are horizontal trajectories and the
magenta curves are vertical trajectories.
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Appendix A. Conics and Their Names

Over the years, various authors have enumerated the types of hyperbolic conics. In an
1882 article, William Story listed 8 types, with some subtypes [6]. In Coolidge’s 1909
textbook [2], he listed 11 types. Various modern authors have refined the list to 12 types; a
particularly attractive treatment is a 2017 article by Ivan Izmestiev [4]. The various types
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and their names are compiled in the following chart, with their correspondence to the
confocal families:

Table A1. Comparative list of types of hyperbolic conics.

Type Story Coolidge Ismestiev

I ellipse ellipse ellipse

I hyperbola convex hyperbola convex hyperbola

II semihyperbola semihyperbola semihyperbola

III hyperbola concave hyperbola concave hyperbola

IV elliptic parabola elliptic parabola elliptic parabola

IV H parabola convex H parabola convex H parabola

V H parabola concave H parabola wide/long parabola

VI circle equidistant curve hypercycle

VII circle circle circle

VIII semicircular parabola osculating parabola osculating parabola

IX circular parabola horocycle horocycle

Appendix B. Computation

The computations necessary to produce the curve families illustrated throughout
this paper are accomplished exclusively using Mathematica. For example, the horizontal
trajectories of the quadratic differential dz2√

(1−z2)(1−k2z2)
are given by the parametrized

curves fc(t) = p sn(t + ic, p2), with k = p2.
Using the formulas for addition of complex arguments of elliptic functions ([11], p. 24),

we derive explicit coordinate functions (x(t; p), y(t; p)). Eliminating the parameter t, using
the Mathematica command Eliminate, the curves can be expressed as the level sets of a
family of quartic curves in the Cartesian coordinates (x, y), depending on the parameter p.

Now, using a fractional linear transformation, we can map the poles to (±a,± 1
a ) to

get the trajectories of Type I, or we can map the poles to four points on the unit circle, to
get the trajectories of Type III. A similar technique, using elliptic cosine instead of elliptic
sine, allows us to get the quartic equations corresponding to trajectories of Type II. The
remaining six types do not involve elliptic integrals.

The corresponding figures in the Klein disc can be produced from the parameterized
curves in the Poincaré disc, by composing with the Poincaré-to-Klein map, or by composing
the Klein-to-Poincaré map, with the quartic equations for the curves in the Poincaré disc.
The latter method reveals the Klein curves as Euclidean conics, which can then be extended
beyond the disc.
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