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Abstract: Fixed-effect meta-analyses aim to estimate the common mean parameter by the best linear
unbiased estimator. Besides unbiasedness, consistency is one of the most fundamental requirements
for the common mean estimator to be valid. However, conditions for the consistency of the common
mean estimator have not been discussed in the literature. This article fills this gap by clarifying
conditions for making the common mean estimator consistent in fixed-effect meta-analyses. In this
article, five theorems are devised, which state regularity conditions for the common mean estimator
to be consistent. These theorems are novel applications of the classical large sample theory to meta-
analyses. Numerical illustrations are also given to help understand the needs of the regularity
conditions. Three real datasets illustrate the practical consequences of the devised theorems. This
article concludes that the inconsistency of the common mean estimator occurs under some conditions

in real meta-analyses.

Keywords: best linear unbiased estimator; common mean; fixed-effect model; large sample theory;
law of large number; meta-analysis
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1. Introduction

Meta-analysis is a statistical method for summarizing results from published studies [1].
Meta-analysis has been applied to all areas of science, including educational studies [2,3]
and medical studies [4,5]. Additionally, meta-analysis has played an especially important
role in studies on the impact of COVID-19 [6-8].

The most basic model in meta-analyses is the fixed-effect model, where all of the
studies share the common mean parameter [5,9]. The goal of fixed-effect meta-analyses
is to estimate the common mean parameter using the observations from all the studies.
The estimator of the common mean optimally combines all the studies to yield minimum
variance and unbiased estimation for the common mean; see Section 2 for details.

The consistency of an estimator is one of the most fundamental requirements for good
estimators, as mentioned in almost all textbooks of mathematical statistics [10-12]. Most of
the commonly used estimators are shown to be consistent, such as the Bayes estimators,
nonparametric estimators, least squared estimators, moment estimators, jackknife estima-
tors, and others [12]. Many statisticians would find it distasteful to apply an inconsistent
estimator [11] to statistical analysis. Note that such examples of inconsistent estimators
exist even if they are unbiased and have minimum variance [10]. This is exactly the case
for fixed-effect meta-analyses; the estimator of the common mean may be inconsistent if
individual studies exhibit pathological patterns.

However, the regularity conditions for the consistency of the common mean estimator
have been largely neglected in the context of fixed-effect meta-analyses. For instance, the
well-known review articles “the statistical basis of meta-analysis” [5] and “a re-evaluation
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of fixed effect (s) meta-analysis” [9] do not talk about the consistency of the common mean
estimator since their main interest is how to apply the estimator to a finite number of
studies. Even the well-known books of meta-analyses, including [1], do not discuss the
consistency of the common mean estimator at all. Furthermore, users of meta-analyses
typically do not pay attention to the consistency of the common mean estimator (as they
pay attention to the results and interpretation of the analysis). Recently, Shih et al. [13,14]
suggested applying the strong law of large numbers for the independent but not identically
distributed sequence [12] to regularize the common mean estimator. However, they only
imposed regularity conditions (as the assumptions) without deep explorations and concrete
examples of inconsistency.

This article fills this gap by clarifying the assumptions/conditions for making the
common mean estimator to be consistent in fixed-effect meta-analyses. We give five
theorems stating the regularity conditions for the common mean estimator to be consistent;
this also provides concrete examples of inconsistent estimators for the common mean. These
theorems are novel applications of the classical large sample theory [10] to fixed-effects
meta-analyses. To deepen the understanding of our theory, we also performed simulation
studies, demonstrating both consistent and inconsistent cases. Finally, we analyzed three
real datasets to illustrate the practical consequences of the proposed theory.

This article is organized as follows. Section 2 reviews fixed-effect meta-analyses.
Section 3 proposes our theory for the consistency of the common mean estimator and
describes its demonstration via simulations. Section 4 analyzes three datasets to explain
how our theory is applied to real examples. Section 5 extends our theory to the case of
unknown variances. Section 6 concludes the article.

2. Fixed-Effect Meta-Analysis

We review fixed-effect meta-analyses along with some mathematical notations and
basic assumptions. Let n be the number of studies in a meta-analysis. Fori = 1,2,...,n, the
i-th study produces a random variable Y; having the unknown common mean p = E(Y;)
and known variance ¢ = V(Y;) > 0. The known variance is reasonable since each study
provides o; as the standard error (SE) of the estimate Y;.

In some meta-analyses, Y; is a mean difference (MD) that takes the form
Y; = Z;’;ll Yij1/ni — 27;21 Yij2/nip, where Yjj is the j-th individual observation and 7
is the sample size from the k-th group in the i-th study. In this case, 07 = V(Y;) =
V(Yij1) /na + V(Yij2) /niz is the pooled variance estimate (Appendix A). For this reason,
there could be a different setting where the variance is unknown and estimated [15-17].
However, we mostly follow usual meta-analyses where the variances are treated as known
by studies (even if they are estimated). In a meta-analysis, available information is
{(Y;,09);i=1,2,...,n}. The case of unknown ¢; being estimated will be considered shortly
in Section 5.

Meta-analyses aim to estimate i by optimally combining Y;s [1,5,9]. The three prin-
ciples of the estimators, best linear unbiased estimation (BLUE), least squared estimation
(LSE), and maximum likelihood estimation (MLE), lead to the same estimator for the

common mean y by
-1
i1 (7)Y,

1

o —1
iy (07)

See [5,10,12] for details. The estimator is unbiased, i.e., Ey(ﬁn) =y, irrespective of
the values of p and o7, - - - , 0,. However, it will be shown that the estimator is not always
consistent.

We say that the estimator i, is consistent for u if

fin =

lim P, (|fty —pu| >¢e) =0 Ve>0. (1)

n—o00
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We emphasize the fact that the consistency is not trivial unless the constant variance

0? = cis assumed. The following section describes the regularity conditions for the

consistency to hold.

3. Consistency

In order to find regularity conditions for the consistency of Equation (1), it is necessary
to find a suitable large sample theory for independent but not identically distributed
(in.i.d.) samples [18,19]. To this end, we adopt the mathematical arguments in the book
of Lehmann [10]. This is a novel application of the classical large sample theory to meta-
analyses.

To show the consistency of Equation (1), we apply Chebychev’s inequality so that

N 1 . 1 1
Pullfn =1l > &) < GVulln) = 5 =~
i (07)

Therefore, P,(|fin — p| > €) — 0 if the right-hand side goes to zero. The following
theorem arises:

. . . o -1
Theorem 1: The common mean estimator fi, is consistent if limy co) 14 (Uiz) = oo.

Theorem 1 provides a regularity condition for the sequence {c;};" to meet the con-
sistency of Equation (1). An obvious example is the constant sequence of 0; = o by which

1 (012)71 = no~ L. In this case, Yi, - - - , Y, are ii.d., so that Theorem 1 reduces to the
well-known consistency of the sample mean for i.i.d. samples. However, the i.i.d. samples
do not arise in usual meta-analyses.

An example of non-constant sequences is a bounded sequence satisfying sup; (¢7) < co.
In this case, there exists a number M > 0 such that ¢? < M Vi, or simply, M = sup;, (¢?).
Then, (0.12)*1 > M~1i. Thus, Y1, (Uiz)fl >nM~! — o0 as n — co. This argument yields
the following:

Theorem 2: The common mean estimator fi,, is consistent if sup; (07) < oco.

The condition sup; (c?

2) < oo in Theorem 2 is easy to interpret. It means that an
individual study should not have a large value for o2.

Another case is where 07 is generated from a distribution that has finite support. For
instance, if 07 ~ U(0,c), then sup,(¢?) = ¢ < co. Theorem 2 may explain the reason
why [13,14,20-22] made ¢? to be a random variable following a chi-squared distribution
bounded on a finite range in their simulation studies of fixed-effect meta-analysis models.

However, the condition sup; (07) < oo in Theorem 2 is much stronger than necessary.
To see why, we consider the case of Ul-z = i. In this case, the variance increases linearly

toward infinity, yet the consistency holds by the divergence of the harmonic series

. no 1
Iim) . . - =0
nﬁmZz:l i ’

and Theorem 1. Another case is 07 generated from a distribution having non-finite support.
For instance, if 07 follows a chi-squared distribution, then sup, (c?) = co. In this case, it is
unclear if the consistency holds. In summary, Theorem 2 provides an easy-to-check and
easy-to-interpret, but a quite stronger condition than Theorem 1.

The above discussions show that the consistency holds for the linear increasing case
0'1-2 = i. How about a faster-increasing case, such as 0'1-2 = 127 To see how fast the variances
can increase while keeping the consistency, we adopt the model of Lehmann [10], defined
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as Uiz =ci*forc > 0and —o0 < & < oo. The case of &« = 0 leads to the i.i.d. case, while the
case of & = 1 is the case of linear increasing. By the property of the Riemann zeta function,

i — . =00 if a <1
lim Y " (i)t =c ' lim Y " it = =
Hm) g (eit) ™ =c T lim) ;i oo if a1,

Thus, the case « = 2 makes Ul?- increases too fast. In this case, it is unclear if the

consistency holds since neither limy, Y /" 1 (07) ! o0 nor sup, (¢7) < oo holds.
Nonetheless, a reasonable question to ask is the following: Is the estimator inconsistent

if the variance increases too fast? What about the case of ¢ = ci* with & > 1? A fine

answer can be obtained by imposing additional assumptions on the distributional form.

Theorem 3: Suppose Y; ~ N(p,0?) fori = 1,2,...,n. Then, the necessary and sufficient

iy N . oo -1
condition for fl, to be consistent is lim, o) 4 ((712) = oo.

The proof is given in Appendix B.
The following theorem is a consequence of Theorem 3.

Theorem 4: Suppose Y; ~ N(y,aiz), 0'1»2 =ci%¢c>0 —0<a<oo fori=1,2,...,n Then,
the necessary and sufficient condition for fi,, to be consistent is o < 1.

The proof of Theorem 4 is given in Appendix C.
Theorem 4 makes it clear that fi,, is inconsistent for the quadratically increasing
variance 07 = ci?, but consistent for the linearly increasing variance 07 = ci.

Numerical illustrations help understand the consistency/inconsistency of fi,,. Let
Y; ~ N(p,0?) with p = 1 and 0? = ci*, where ¢ > 0 and —c0 < & < co. We considered

six cases:

a = —1 giving a consistent estimator by lim,_,cY /" ; i' = o0
« = 0 giving a consistent estimator by lim,_,cY /" i® = o0
« = 1 giving a consistent estimator by lim,_,cY " ;i 1 = co

a = 1.5 giving an inconsistent estimator by lim,_,co) /i 1° = 2.612... < o0
« = 2 giving an inconsistent estimator by limn%wzzf’:l 2 =n2/6=1644... <

a = 3 giving an inconsistent estimator by limy, e} " ;i > = 1.202... < c0

Figure 1 depicts the trajectory of fi,, for n = 1,2,...,10000. For the cases of &« = —1,
« = 0 and & = 1, the estimates jlI, converged to the true value of 4 = 1. For the case of
« =1, the convergence is slower than in the cases of « = —1 and a# = 0. However, for the
cases of « = 1.5,0 = 2,anda = 3, the estimates fi, did not converge to the true value since
the estimates keep away from y = 1. These observations exactly agree with the statements
of Theorem 4.

14-

cases(consistent)

13-

12-

1.1-

1.0—-

Estimate for the true value = 1

0.9-

0 2500 5000 7500 10000
n (the number of studies)

Figure 1. Cont.
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Figure 1. The estimates {1, for n = 1,2,...,1000 0, based on Y; ~ N (y,0?) with y = 1 and 07 = ci®
undera = -1, a =0,a =1, a = 15,04 =2,and « = 3.

4. Data Analysis
This section analyzes three real datasets to illustrate the developed theory in Section 3.

4.1. Allergic Reaction Data

We analyzed a dataset on the allergic reaction of medical students who were exposed
to formaldehyde during an anatomy course [23]. The symptoms were measured by a score
defined as the sum of answers (1: low, 2: medium, 3: high) to a series of questions in a
questionnaire. A higher score corresponds to a more severe symptom. Besides the scores,
the questionnaire provides explanatory variables, such as gender.

Table 1 summarizes the dataset that was collected in the years 2015, 2016, 2018, 2019,
and 2022 in which the questionnaire was delivered. In this analysis, we focused on the mean
difference (MD) of the scores between the male and female students for eye symptoms.
LetY;(i =1,---,5) be the MD of the score between the male and female students (male—
female). We assume that Y; is normally distributed. Let 07 = V(Y;) that was computed by
the pooled variance (Appendix A) based on the standard deviations of male and female
groups (Table 1). Since the students are all different across years, the scores are independent.

Table 1. The dataset on the allergic reaction of medical students who were exposed to formaldehyde
during an anatomy course [23].

i Sample Size Mean SD Sample Size Mean SD _ 2 er2
(Year) (Male) (Male)  (Male) (Female) (Female)  (Female) Yi =MD SE o =SE
1(2015) 74 5.09 1.59 42 5.26 1.65 —0.17 0.3114 0.0970
2 (2016) 79 4.84 1.62 37 5.42 1.69 —0.58 0.3272 0.1071
3(2018) 79 4.81 1.54 34 5.26 1.69 —0.45 0.3253 0.1058
4 (2019) 74 4.86 1.62 33 5.61 1.58 —0.75 0.3366 0.1133
5(2022) 73 4.79 1.68 37 5.35 1.83 —0.56 0.3494 0.1221

NOTE: Sample sizes are the number of medical students. Means are the mean scores. SDs are the standard
deviations of the scores. MD is the mean difference between male and female (male—female) scores. SE is
computed as the square root of the pooled variance using the SDs of male and female groups.

We applied Theorem 4 to the dataset of Table 1 to check the consistency of /i, First,
note that the sequence {‘Tiz}?:1 is increasing (Table 1; Figure 2) so that the model 07 = ci® is
applicable for & > 0. Figure 2 shows that the parameters c and a were estimated by the LSE
regressing {log(c?) }?:1 on {log(i)}>_,. Thus, the LSE resulted in (¢,&) = (0.0964,0.13)
and the coefficient of determination (R-squared) was 0.87. Therefore, 87% of {c? }?:1 was

explained by the fitted value ¢i*. By applying Theorem 4, as & = 0.13 < 1, we conclude
that i, is consistent.
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]
0.100-
0.075-
3
g
0.050 -
Fitted model (R-squared = 0.87)
o? = 0.0964 x i1
0.025-
a = 0.13: consistent
0.000 -
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Figure 2. Observed value o7 vs. fitted value ¢i* based on the allergic reaction data. The LSE

(¢,&) = (0.0964,0.13) was obtained for the sequence {log(c?) }?:1 against {log(i)}?zl.

4.2. Diabetes Data

We analyzed a dataset from pregnant women with diabetes, which is available from
Dingena et al. [24]. Dingena et al. [24] conducted a meta-analysis to examine the influence
of lifestyle interventions on dysglycemia. Table 2 shows the available information from
eight studies that examined the effect of the intake of nutritional supplements on fasting
plasma glucose (mmol/L). Each study reports the mean difference (MD) between the
intervention group and the control group.

Table 2. The summary of 8 studies that examined the mean difference (MD) between the intervention
group and the control group for pregnant women with diabetes [24].

Study Sample Size Y; = MD (mmol/L) SE c? = SE?
Aslfalah 2020 60 —0.70 0.0256 0.0007
Fei 2014 97 —0.47 0.1224 0.0150
Hajimoosayi 2020 70 —0.20 0.0816 0.0067
Jamilian 2018 40 —0.40 0.1786 0.0319
Jamilian 2019 60 —0.10 0.0765 0.0059
Jamilian 2020 51 —0.33 0.0918 0.0084
Lindsay 2015 100 0.01 0.0867 0.0075
Ostadmohammadi 2019 54 —0.20 0.1633 0.0267

NOTE: Sample sizes are the number of pregnant women with diabetes. MD is the mean difference between the
intervention group and the control group. SE is the standard error of the ML.

LetY; i = 1,---,8) be the MD of fasting plasma glucose (mmol/L) between the
intervention group and the control group as previously obtained from the original reference.
Let 0 = V(Y;) be the square of the SE of Y;, which we calculated from the 95% confidence
interval (SE = |CII/2/1.96).

We applied Theorem 4 to check the consistency of fI,, to the dataset of Table 2. To this
end, we fitted the model (Tl-z = ci*, where ¢ > 0 and —oo < a < oo using the increasing
sequence {log((fiz)}?:l against {log(i)}}_,. The LSE becomes (¢ &) = (0.0009,1.63) as
shown in Figure 3. The coefficient of determination (R-squared) was 0.91, showing that
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91% of {o? }?:1 are explained by the fitted value éi*. Therefore, by applying Theorem 4
with & = 1.63 > 1, we conclude that fi,; is not consistent.

Fitted model (R-squared = 0.91)

6> =0.0009 x i

o = 1.63: inconsistent .

0.03-

0.02-

Variance

0.01-

0.00-
0 2 a 6 8
i (index)

Figure 3. Observed value 07 vs. fitted value ¢i* based on the diabetes data. The LSE (¢,&) = (0.0009, 1.63)

was obtained for the increasing sequence {log(c?) }?:1 against {log(i)}}_,.

4.3. COVID-19 Data

We analyze a dataset from COVID-19 pneumonia patients, which is available from
Pranata et al. [7]. Their studies examined the effect of hypertension on mortality for patients
with COVID-19 pneumonia. One of their conclusions was that hypertension increases
mortality. We summarize the data consisting of 11 published studies (Table 3).

Table 3. Summary of the 11 studies (shown by the author and publication year) on COVID-19 patients
for examining the effects of hypertension on mortality.

Study Sample Size Y; = log (RR) SE o? =SE?
Akbari 2020 440 0.6881 0.6732 0.4532
Bai 2000 127 0.5933 0.2754 0.0758
Cao 2020 102 1.1756 0.2821 0.0796
Chen 2020 123 0.5365 0.2493 0.0621
Chen T 2020 274 0.6780 0.1713 0.0294
Fu 2020 200 0.5878 0.3302 0.1090
Grasselli 2020 1591 0.4637 0.0956 0.0091
Li 2020 102 0.5247 0.3272 0.1071
Luo 2020 403 1.2326 0.1489 0.0222
Yuan 2020 27 2.8904 1.4263 2.0344
Zhou 2020 191 1.1378 0.2097 0.0440

NOTE: Sample sizes are the number of patients with COVID-19. log (RR) is the log of the risk ratio for examining
the association (mortality vs. hypertension). SE is the standard error of the log (RR). SE is the standard error of the
log (RR).

LetY;,i=1,...,11, be the log of the risk ratio (RR) for examining the association (mor-
tality vs. hypertension) as previously obtained from the original reference. Let 07 = V(Y;)
be the square of the SE fori = 1,...,11, also quoted from the original reference. Table 3
summarizes all the available data from the 11 studies to perform fixed-effect meta-analyses.

We applied Theorem 4 to examine the consistency of the estimator fi,, for this data
example. We first fitted the model 0? = ci*, where ¢ > 0 and —o0 < a < co. Figure 4

displays the observed value o7 against the fitted value ¢i*, where (¢,&) = (1.69, —1.91)
11
i=1

were obtained by the LSE for the decreasing sequence {log(c?)},_, against {log(i)}.;.
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We observe that the LSE is fitted very well since the coefficient of determination (R-squared)

is 0.94. That is, 94% of {‘73}3; is explained by the model ¢i*. Since & = —1.91 is less than
one, by Theorem 4, the estimator fi,, is consistent.

2.0-
1.5- Fitted model (R-squared = 0.94)
g o°=1.69xi "
g a=-1.91: consistent
g 1.0-
0.5-
0.0-
0 3 6 9 12
i (index)

Figure 4. Observed value U‘iz vs. fitted value ¢i* based on the COVID-19 data. The LSE (¢,&) =
(1.69, —1.91) were obtained for the decreasing sequence {log(c?) }l 1 against {log(i N

5. Extension to Unknown Variances

This section extends our theory (Section 3) to the case of unknown variances. Recall
that we observe a random variable Y; having the common mean y = E(Y;) and variance

0’172 =V(Y;) >0.i=1,2,...,n. In this section, we assume that both y and 0}2 are unknown,

2. . %) . . .
where 07 is estimated by 07 (see Appendix A for an example for the estimator) and y is

estimated by
n (UAZ) ! Y
o i=1 i i

n NN
n 2 !
i=1

Unlike fi,, the estimator ﬁ; entails additional variations by a random variable (TAZ
Appendix A provides an example in which ¢? ~ ¢? )(V /vi, where v; is the degree of
freedom This example corresponds to a meta—analy31s where Y is a mean difference and

hence (7 the pooled Varlance (Section 4.1). In this case, E(U’lz) = 0' and 0' is independent
of ¥;. The estimator 71, is known as the Graybill-Deal estimator [25 26].
To show the consistency of {1, we apply Chebychev’s inequality conditional on the

sequence 012, 022, ... so that

1 1
iy 3 )] < ~F
o2,0%,...)] <
1,92 g2 012 nl<A2>71
1

Therefore, Py,¢,,0,...(|fln — | > €) — 0 if the right-hand side goes to zero. The follow-
ing theorem arises:

e
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Theorem 5: The common mean estimator fi;; is consistent if

lim Eg, .. | ———— | =0.
n—o0

An example of applying Theorem 5 is the case of a bounded sequence so that here

N Ay —1
there exists a number M > 0 such that (Tl-2 < MYVi. Then, ((712) > M~1Vi. Thus,

1
<M—>O

N1 =
) n
i1 (‘Ti)
as n — co. Indeed, this type of bounded sequence condition was imposed for some
simulation studies [13,14,20].

6. Conclusions and Discussion

The literature has not explained regularity conditions for the consistency of estimating
a common mean in fixed-effect meta-analyses, even though they provide a theoretical
basis for meta-analyses. In this article, we provide five versions of regularity conditions
(in Theorems 1-5) for making the common mean estimator to be consistent in fixed-effect
meta-analyses. We conclude that, by well-regularizing the variances of studies, consistency
can be achieved. On the other hand, we also reveal the conditions to make the estimator
inconsistent, where the variances of studies fail to be regularized. These findings actually
mean that readers better check the consistency when performing fixed-effect meta-analyses.
For a more practical level, our findings facilitate the well-regularized variances by avoiding
extremely small variances in studies.

We analyzed three real datasets to illustrate the main theorem (Theorem 4) that can
determine the consistency or inconsistency of the common mean estimator via a simple
linear model. The first and third datasets supported the consistency of the common mean
estimator. On the other hand, the second data did not support the consistency of the
estimator since the variances of the individual studies increased toward infinity too fast.
The first dataset also exhibited increasing variances, yet its speed was slow enough to justify
the consistency. The problem with the second data is that the meta-analysis accumulates
more and more inaccurate studies. However, this inconsistency of the second example
was stated solely for n = 11 studies. Here, an implicit assumption is that the variances of
the studies keep growing with n — co. Unfortunately, this assumption cannot be checked
only by a finite number of observed studies. Hence, our conclusion of the inconsistency
becomes speculative.

An important future work is an extension of the consistency properties to bivariate, tri-
variate, and multivariate meta-analyses [13,14,27-29]. Our current results on a univariate
meta-analysis may not directly carry over to these multivariate settings since the estimator
of the multivariate common means is no longer expressed as the weighted sum of the
independent variables unless the multivariate normal distribution is imposed as in [29].
Instead, the estimator takes the form of the numerical maximization of the likelihood
function [13,14,27,28]. The estimator becomes an even more complex form under some
parameter restrictions [30,31]. Furthermore, the choice of parametric copulas is a key
element in determining the form of the likelihood, such as the FGM copula [13], the Clayton
copula [14], the Gaussian copula [28], and vine copulas [27], all of which were already
adopted in meta-analyses. Other newly developed copulas not yet applied to meta-analysis
can also be tried, such as the trigonometric copulas [32], generalized FGM copula [33],
and Celebioglu—Cuadras copula [34]. More efforts are necessary to work on multivariate
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meta-analysis in order to establish the conditions/assumptions of the consistency of the
multivariate common means.

Another important future work is an extension to fixed-effect meta-regression models,
including fixed-effect structural equation models [1,5,27,35,36]. In the presence of explana-
tory variables, the common mean parameter could be written as a linear predictor. In these
meta-regression models, regularity conditions for the consistency of regression coefficients
were largely unexplored and, thus, should be clarified as we have in Theorems 1-5.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/axioms12050503 /51, the R code for the simulation and data analyses.
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Appendix A. Pooled Variance Estimator

Recall that the mean difference is defined as Y; = Y;; — Y, = Z}El Yijn/ni — 2}121 Yip/np,
where Yjj is the j-th individual observation and nj is the sample size from the k-th
group in the i-th study. We assume that V (Yjj;) = V(Yjp) = 72 Then, 67 = V(Y;) =
7%(1/nj1 +1/nj), where 72 is unbiasedly estimated by the pooled variance

~ 1 n ~\? n ~—\? 2 X%z +njp—2
2 - oy Y 2 (y. Y. PO AL Ll
K +”i22{2]_1< o 11) +Z]_1< L C i 2

Thus,
2
N NV | 1 g
nip - N njp+np—2

Appendix B.

Proof of Theorem 3. It can be shown that

. ~ o . n 2\ —1
nl1_r)ro10P(|ynfy| >€)—2r}1_r>ro10<1>(8 Zi:l(o-i) ) (A1)

where

z 1 uz
P(z) = i \/ﬁexp (—2>du
is the distribution function of the standardized normal distribution. Therefore, the left-hand
side of Equation (A1) is zero if lim, ) /" 4 (012)71 = co. If limyeoY 4 (Uiz)fl < o0, by
the completeness axiom for an increasing and bounded sequence, lim, oY1 ; (07) oo
for a real number ¢ > 0. Therefore, the left-hand side of Equation (A1) is nonzero. [
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Appendix C.

Proof of Theorem 4. Under the assumption of Theorem 4,

) -1 1 1 -
S (of) = im Y = )

where {(«) is the Riemann zeta function. It is known that {(#) = oo if and only if & < 1.
Additionally, {(a) converges to a real number if & > 1. This completes the proof. [J
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