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Abstract: Approximate solutions are obtained in implicit forms for the following general form
of the nonlinear Stefan problem d

dx

[
(1 + δ1yp)

dy
dx

]
+ 2x(1 + δ2yp)

dy
dx = 4

Ste β(x), 0 < x < λ, with

y(0) = 1, y(λ) = 0, where λ > 0 is a solution to the nonlinear equation y′(λ) = − 2λ
Ste , where

δi > −1, i = 1, 2, p > 0, and Ste is the Stefan number, which represents a phase-change problem with
a nonlinear temperature-dependent thermal parameters (i.e., thermal conductivity and specific heat)
on (0, λ).

Keywords: nonclassical Stefan problem; nonlinear thermal conductivity; approximate solutions
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1. Introduction

In heat transfer theory applications, it is often necessary to model processes with
phase-change phenomena (e.g., melting or liquidation processes), which occur naturally
and find various applications in industry. In mathematical models of these processes, spe-
cial treatment needs to be applied because the boundary moves. These problems are known
as “Stefan problems”. The revolutionary technological development of recent years has led
to an increase in interest in this type of problem among researchers; see, for example, [1–16].
In classical Stefan problems, the substance’s specific heat and thermal conductivity are
both constants. Since the 1970s, researchers have started to adopt a more realistic model of
representing temperature-dependent parameters due to recent technological advancements.
However, recent studies have shown that the thermal properties of substances admit non-
linear behavior with respect to temperature, and researchers have realized that modeling
the thermal parameters with nonlinear functions of temperature can describe phase-change
processes more accurately and realistically and can be more helpful and useful for physical
and industrial applications [17–29].

The purpose of the present paper is to investigate the existence and uniqueness
theorem for the solution of the problem{

d
dx

[
(1 + δ1yp) dy

dx

]
+ 2x(1 + δ2yp) dy

dx = 4
Ste β(x), 0 < x < λ,

y(0) = 1, y(λ) = 0,
(1)

where δi > −1, i = 1, 2 and λ > 0 is the solution of the nonlinear equation

y′(λ) = − 2λ

Ste
, (2)
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where Ste is the Stefan number, and β(x) ∈ C1[0, ∞) is such that β(x)e−x2 ∈ L1[0, ∞).
Here, (1 + δ1yp) and (1 + δ2yp) denote the thermal conductivity and the specific heat of
order p, respectively. It should be noted that the forms and expressions modeled for the
thermal conductivity and the specific heat play a crucial role in these problems. In 1978,
Cho and Sunderland [1] assumed a linear model for the thermal conductivity in the form
of (1 + δy), where y denotes the temperature and δ > −1 is the thermal coefficient of
the thermal conductivity. Oliver and Sunderland [2] investigated the Cho–Sunderland
model but with both thermal conductivity and specific heat being linear in temperature.
No existence or uniqueness theorems were established in the preceding two articles, but
several researchers investigated the problem [3–9]. The authors in [3] proved the existence
and uniqueness of the solution for small constant δ > 0. The general case δ > −1 was
investigated and established in [4,5]. In [5], the authors investigated a nonlinear thermal
conductivity of the form (1 + δy + γy2)n where δ > −1 and γ > −1, and existence and
uniqueness theorems for the solution were established. In a recent article [6], the authors
investigated the problem with a nonzero source term 4

Ste β(x) and considering the general
nonlinear model (1+ δyp) to represent both thermal conductivity and the specific heat, and
the existence and uniqueness of the solutions were established. However, it should be noted
that considering the same δ for both thermal parameters causes the thermal conductivity
and specific heat to be equal, which is not the case for substances. Moreover, assuming
the coefficient δ takes only positive values restricts the problems to materials for which
their thermal conductivities increase with temperature, which is not the case for metals
and liquids, and this justifies the importance of allowing the coefficient δ to admit negative
values −1 < δ < 0. Our proposed model considers these observations.

The paper is organized as follows: In Section 2, we obtain two approximate solutions
for the problem. In Section 3, we find explicit forms of the solution in special cases, and we
obtain the value of λ. In Section 4, we consider the general case that contains more realistic
physical problems. In Section 5, we carefully analyze the obtained results and compare the
solutions to numerical solutions for different values of δ. Our conclusions are summarized
in Section 6.

2. Approximate Solutions

The following lemma is an important tool to prove the approximate solutions of BVP
(1) and (2).

Lemma 1. If y is a solution of BVP (1), then y can be expressed implicitly by

z(y) = 1 +
δ1

p + 1
+

4
Ste

∫ x

0

[
e
−2
∫ η

0 t Ψ2(t)
Ψ1(t)

dt
∫ η

0
e

2
∫ ξ

0 t Ψ2(t)
Ψ1(t)

dt
β(ξ)dξ

]
dη + K

∫ x

0
e
−2
∫ η

0 t Ψ2(t)
Ψ1(t)

dt
dη, (3)

where z(y) = y + δ1
p+1 yp+1, Ψi(x) = 1 + δiyp, i = 1, 2 and K is a constant.

Remark 1. The constant K will be determined from the given boundary conditions y(0) =
1, y(λ) = 0, and the nonlinear equation in λ containing the Stefan number Ste will also be
developed later using Equation (2).

We shall prove this lemma.

Proof. Rewrite the first equation of BVP (1) as

d
dx

[
Ψ1(x)

dy
dx

]
+ 2x

Ψ2(x)
Ψ1(x)

[
Ψ1(x)

dy
dx

]
=

4
Ste

β(x), 0 < x < λ, (4)

where Ψi(x) = 1 + δiyp, i = 1, 2. Setting Φ(x) = Ψ1(x) dy
dx . This yields

dΦ(x)
dx

+ 2x
Ψ2(x)
Ψ1(x)

Φ(x) =
4

Ste
β(x). (5)
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Solving Equation (5) in Φ(x), we obtain

Φ(x) =
4

Ste
e
−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt
∫ x

0
e

2
∫ ξ

0 t Ψ2(t)
Ψ1(t)

dξ
β(ξ)dξ + Ke

−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt
, (6)

where K is an unknown constant and can be determined from the BC y(λ) = 0. In view of
Φ(x) = Ψ1(x) dy

dx , we have

(1 + δ1yp)y′ =
4

Ste
e
−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt
∫ x

0
e

2
∫ ξ

0 t Ψ2(t)
Ψ1(t)

dξ
β(ξ)dξ + Ke

−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt
. (7)

Integrating (7) from 0 to x and taking into account that y(0) = 1, we obtain (3).
Substituting x = λ into (3) and taking into account that y(λ) = 0, we obtain

K = −
1 + δ1

p+1 + 4
Ste
∫ λ

0

[
e
−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt ∫ x
0 e

2
∫ ξ

0 t Ψ2(t)
Ψ1(t)

dt
β(ξ)dξ

]
dx

∫ λ
0 e
−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt
dx

. (8)

In the following, we deduce the approximate solutions of BVP (1) and (2) in ex-
plicit forms.

Let us start with the case δi ≥ 0, i = 1, 2. The general case δi > −1, i = 1, 2 will be
discussed later. Because for such a solution y, 0 ≤ y ≤ 1, we have 1 ≤ 1+ δiyp ≤ 1+ δi, i =
1, 2 and 1

1+δi
≤ 1

1+δiyp ≤ 1, i = 1, 2. Thus,

1
1 + δ1

≤ Ψ2

Ψ1
≤ 1 + δ2 (9)

and

2
1 + δ1

∫ x

0
tdt ≤ 2

∫ x

0
t
Ψ2(t)
Ψ1(t)

dt ≤ 2(1 + δ2)
∫ x

0
tdt. (10)

So

e
x2

1+δ1 ≤ e
2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt ≤ e(1+δ2)x2
. (11)

and

e−(1+δ2)x2 ≤ e
−2
∫ x

0 t Ψ2(t)
Ψ1(t)

dt ≤ e−
x2

1+δ1 . (12)

2.1. The First Approximation

In view of the above inequalities, we can approximate Ψ2
Ψ1

by its upper bound:

Ψ2

Ψ1
≈ 1 + δ2, x ∈ [0, λ]. (13)

A simple substitution of this into (3) and (8) yields

z(y) ≈ 1 +
δ1

p + 1
+

4
Ste

∫ x

0

[
e−(1+δ2)η

2
∫ η

0
e(1+δ2)ξ

2
β(ξ)dξ

]
dη + K1

∫ x

0
e−(1+δ2)η

2
dη (14)
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and

K ≈ K1 = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−(1+δ2)x2
[∫ x

0 β(ξ)e(1+δ2)ξ
2
dξ
]
dx∫ λ

0 e−(1+δ2)x2 dx
. (15)

Thus, the first approximate solution to BVP (1) is given by

y1 +
δ1

p + 1
yp+1

1 = 1 +
δ1

p + 1
+

4
Ste

∫ x

0

[
e−(1+δ2)η

2
∫ η

0
e(1+δ2)ξ

2
β(ξ)dξ

]
dη + K1

∫ x

0
e−(1+δ2)η

2
dη, (16)

where

K1 = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−(1+δ2)x2
[∫ x

0 β(ξ)e(1+δ2)ξ
2
dξ
]
dx∫ λ

0 e−(1+δ2)x2 dx
. (17)

2.2. The Second Approximation

If we approximate Ψ2
Ψ1

by its lower bound:

Ψ2

Ψ1
≈ 1

1 + δ1
, x ∈ [0, λ], (18)

then, by substitution of this into (3) and (8), we obtain

z(y) ≈ 1 +
δ1

p + 1
+

4
Ste

∫ x

0

[
e−

η2
1+δ1

∫ η

0
e

ξ2
1+δ1 β(ξ)dξ

]
dη + K2

∫ x

0
e−

η2
1+δ1 dη (19)

and

K ≈ K2 = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−
x2

1+δ1

[∫ x
0 β(ξ)e

ξ2
1+δ1 dξ

]
dx

∫ λ
0 e−

x2
1+δ1 dx

. (20)

Thus, the second approximate solution to BVP (1) is given by

y2 +
δ1

p + 1
yp+1

2 = 1 +
δ1

p + 1
+

4
Ste

∫ x

0

[
e−

η2
1+δ1

∫ η

0
e

ξ2
1+δ1 β(ξ)dξ

]
dη + K2

∫ x

0
e−

η2
1+δ1 dη, (21)

where

K2 = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−
x2

1+δ1

[∫ x
0 β(ξ)e

ξ2
1+δ1 dξ

]
dx

∫ λ
0 e−

x2
1+δ1 dx

. (22)

2.3. A Special Case Ψ1(x) = Ψ2(x)

The analytical solution in the implicit form of BVP (1) when Ψ1(x) = Ψ2(x) is given by:

y +
δ1

p + 1
yp+1 = 1 +

δ1

p + 1
+

4
Ste

∫ x

0

[
e−η2

∫ η

0
eξ2

β(ξ)dξ

]
dη + K

∫ x

0
e−η2

dη, (23)

where

K = −
1 + δ1

p+1 + 4
Ste
∫ λ

0

[
e−x2 ∫ x

0 eξ2
β(ξ)dξ

]
dx∫ λ

0 e−x2 dx
. (24)
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3. The Values of λ in Terms of the Stefan Number Ste

A natural question that arises is how to find the values of λ > 0 in terms of the Stefan
number Ste. To examine this question, we substitute x = λ into (7) and, using y′(λ) = − 2λ

Ste ,
we obtain

− 2λ

Ste
=

4
Ste

e
−2
∫ λ

0 t Ψ2(t)
Ψ1(t)

dt
∫ λ

0
e

2
∫ ξ

0 t Ψ2(t)
Ψ1(t)

dξ
β(ξ)dξ + Ke

−2
∫ λ

0 t Ψ2(t)
Ψ1(t)

dt
. (25)

3.1. Case 1: Ψ1(x) = Ψ2(x)

If we consider the special case Ψ1(x) = Ψ2(x), that is δ1 = δ2, then

− 2λ

Ste
=

4
Ste

e−λ2
∫ λ

0
ex2

β(x)dx + Ke−λ2
, (26)

where K is given by

K = −
1 + δ1

p+1 + 4
Ste
∫ λ

0

[
e−x2 ∫ x

0 eξ2
β(ξ)dξ

]
dx∫ λ

0 e−x2 dx
. (27)

Substituting (27) into (26) with an appropriate choice of β(x) = 1
2 e−x2

, we get

λ
√

πerf(λ)(eλ2
+ 1)− 1 + e−λ2

= (1 +
δ1

p + 1
)Ste, (28)

which is the nonlinear algebraic equation in λ > 0.

Lemma 2. If Ψ1(x) = Ψ2(x) and (y, λ) is a solution of BVP (1) and (2) with β(x) = 1
2 e−x2

,
then the analytical solution in implicit form is given by (23) and (24), and λ satisfies the nonlinear
algebraic Equation (28).

To explore the solutions of the nonlinear Equation (28), we present in Figure 1 the
variation of λ in terms of the Stefan constant Ste following Equation (28) for δ1 = δ2 = 1
(left panel), δ1 = δ2 = 5 (right panel), and various values of p = 0.5, 1, 1.5, 2.5. It is obvious
that a small value of Stefan’s constant Ste allows for the achievement of the boundary
condition λ = 1, for the case δ1 = δ2 = 5.

Figure 1. The variation of λ, in terms of the Stefan constant Ste, from Equation (28). For δ1 = δ2 = 1
(left panel), δ1 = δ2 = 5 (right panel), different values of p = 0.5, 1, 1.5, 2.5 from the highest line to
the lowest, respectively.
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3.2. Case 2: Ψ1(x) 6= Ψ2(x)

From (25) and Ψ2
Ψ1
≈ 1 + δ2, x ∈ [0, λ], we have

− 2λ

Ste
=

4
Ste

e−(1+δ2)λ
2
∫ λ

0
e(1+δ2)ξ

2
β(ξ)dξ + K1e−(1+δ2)λ

2
. (29)

Substituting the expression of K1 into (29), we obtain the nonlinear equation of λ,
which corresponds to the first approximation y1.

λ

√
π√

1 + δ2
erf(λ

√
1 + δ2) + 4e−(1+δ2)λ

2
( √

π

2
√

1 + δ2
erf(λ

√
1 + δ2)− 1

) ∫ λ

0
e(1+δ2)x2

β(x)dx

−(1 + δ1

p + 1
)e−(1+δ2)λ

2
Ste = 0. (30)

With the appropriate choice of the function β(x) = 1
2 e−(1+δ2)x2

, we get the transcen-
dental equation

erf(λ
√

1 + δ2 )λ
√

1 + δ2 (e(1+δ2)λ2
+ 1)
√

π + (e−(1+δ2)λ2 − 1) = (1 + δ2)(1 +
δ1

p + 1
)Ste. (31)

Similarly, from (25) and Ψ2
Ψ1
≈ 1

1+δ1
, x ∈ [0, λ], we have

− 2λ

Ste
=

4
Ste

e−
λ2

1+δ1

∫ λ

0
e

ξ2
1+δ1 β(ξ)dξ + K2e−

λ2
1+δ1 . (32)

Substituting the value of K2 into (43), we obtain the nonlinear equation of λ, which
corresponds to the second approximation y2

λ
√

π
√

1 + δ1erf(
λ√

1 + δ2
) + 4e−

λ2
1+δ1

(√
π
√

1 + δ1

2
erf(

λ√
1 + δ1

)− 1
) ∫ λ

0
e(1+δ1)x2

β(x)dx

−(1 + δ1

p + 1
)e−

λ2
1+δ1 Ske = 0. (33)

With the appropriate choice of the function β(x) = 1
2 e−

x2
1+δ1 , we get the transcendental

equation

λ
√

π
√

1 + δ1 erf(
λ√

1 + δ1
)(e

λ2
1+δ1 + 1) + (δ1 + 1)(e−

λ2
1+δ1 − 1) = (1 +

δ1

p + 1
)Ste (34)

Thus, we have deduced the approximate solutions of BVP (1) and (2) in implicit forms.

Lemma 3. If Ψ1(x) 6= Ψ2(x) and (y, λ) is a solution of BVP (1) and (2), then the first approxi-
mate solution y1 is given by (16) and (17), and λ satisfies the corresponding nonlinear algebraic
Equation (30).

and

Lemma 4. If Ψ1(x) 6= Ψ2(x) and (y, λ) is a solution of BVP (1) and (2), then the second
approximate solution y2 is given by (21) and (22), and λ satisfies the corresponding nonlinear
algebraic Equation (33).

To investigate the solutions of the nonlinear Equations (31) and (34), we show in
Figure 2 the change of λ in terms of the Stefan constant Ste, using Equations (31) (left panel)
and (34) (right panel), for δ1 = 1, δ2 = 0.1 as well as a range of p = 0.5, 1, 5, 10. Obviously,
the boundary value λ = 1 for the first instance necessitates a large value of Stefan’s constant
Ste, but the boundary value for the second case may be achieved with a modest value of
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Ste. The boundary requirement λ = 1 is also satisfied in the second case for modest values
of Stefan’s constant Ste, whereas the first example needed huge values of Ste.

Figure 2. The variation of λ, in terms of the Stefan constant Ste, from Equations (31) and (34).
(Left panel) from Equation (31), (right panel) from Equation (34), for δ1 = 1, δ2 = 0.1, and different
values of p = 0.5, 1, 5, 10 from the highest line to the lowest, respectively.

4. Remarks on the General Case: δ1 > −1 and δ2 ≥ 0

It is useful to consider the general case with δ1 > −1 and δ2 > 0 before addressing the
numerical discussion of the proposed approximations. Based on the previous procedure,
we obtain

1 ≤ Ψ2

Ψ1
≤ 1 + δ2

1 + δ1
, δ1 > −1 and δ2 ≥ 0. (35)

For

Ψ2

Ψ1
≈ 1 + δ2

1 + δ1
, x ∈ [0, λ]. (36)

With a simple substitution of this into (3) and (8), we obtain the first approximate
solution to BVP (1):

y1,δi +
δ1

p + 1
yp+1

1,δi
= 1 +

δ1

p + 1
+

4
Ste

∫ x

0

[
e−

1+δ2
1+δ1

η2
∫ η

0
e

1+δ2
1+δ1

ξ2
β(ξ)dξ

]
dη + K1,δi

∫ x

0
e−

1+δ2
1+δ1

η2
dη, (37)

where

K1,δi = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−
1+δ2
1+δ1

x2
[∫ x

0 β(ξ)e
1+δ2
1+δ1

ξ2
dξ

]
dx∫ λ

0 e−
1+δ2
1+δ1

x2
dx

. (38)

By using this case and repeating the above calculations, we can obtain λ in terms of
Ste. Thus,

− 2λ

Ste
=

4
Ste

e−
1+δ2
1+δ1

λ2
∫ λ

0
e

1+δ2
1+δ1

ξ2
β(ξ)dξ + K1,δi e

− 1+δ2
1+δ1

λ2
. (39)

Similarly, for

Ψ2

Ψ1
≈ 1, x ∈ [0, λ], (40)
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with a simple substitution of this into (3) and (8), we obtain the second approximate solution
to BVP (1), as follows:

y2,δi +
δ1

p + 1
yp+1

2,δi
= 1 +

δ1

p + 1
+

4
Ste

∫ x

0

[
e−η2

∫ η

0
eξ2

β(ξ)dξ

]
dη + K2,δi

∫ x

0
e−η2

dη, (41)

where

K2,δi = −
1 + δ1

p+1 + 4
Ste
∫ λ

0 e−x2
[∫ x

0 β(ξ)eξ2
dξ
]
dx∫ λ

0 e−x2 dx
, (42)

and the values of λ in terms of the Stefan number Ste are given by

− 2λ

Ste
=

4
Ste

e−λ2
∫ λ

0
eξ2

β(ξ)dξ + K2,δi e
−λ2

. (43)

In these cases, the proof is almost identical to that in the above cases when δi ≥ 0, i = 1, 2.

5. Discussion

For numerical validation, we utilized the Maple software, which is a powerful tool
offering advanced numerical techniques. Additionally, we created a user-friendly program
with simple statements to solve boundary value problems (BVP) using this software. The
program automatically detects the type of problem and selects an appropriate algorithm.
In our case, the middefer method was employed, which is a midpoint method that incor-
porates enhancement schemes. The Richardson extrapolation method is typically faster
for enhancement schemes, while deferred corrections use less memory for challenging
problems. Furthermore, this method can handle harmless end-point singularities that the
trapezoidal scheme cannot. The numerical technique also employs a beneficial strategy us-
ing the continuation method, which modifies the coefficient of the second-order derivative
of the equation. This method reduces the global error by selecting an appropriate number
of maxmesh [30].

To begin with, it is interesting to explore whether the prior results numerically satisfy
the requirement y′(λ) = − 2λ

Ste , which is associated with the system (1). We will restrict our
investigation to the δ1 = δ2 case.

In Table 1, we present a comparison between the numerical value of the first derivative
y′(λ) of Equation (2) and the value 2λ/Ste obtained from Equation (28). It is clear that for a
modestly large values of p, the two results are in good agreement with our approximation
at this stage.

Table 1. Comparison between the numerical value of the first derivative y′(λ) and analytic expression
(−2λ/Ste) from Equation (28) for the case δ1 = δ2 = 1.

p 0.1 0.5 1 1.5 2 5 10

−2λ/Ste −0.7758 −0.6773 −0.6096 −0.5689 −0.5418 −0.4741 −0.4433

y′(λ) −0.4972 −0.6441 −0.6102 −0.5698 −0.5427 −0.4760 −0.4433

In Figure 3, we present the numerical solution in terms of the independent variable
x for two cases, δ1 = δ2 = 1 (left panel) and δ1 = δ2 = 5 (right panel), and for different
values of p = 1, 5, 10.
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Figure 3. The numerical solution for the boundary λ = 1 for different values of p. (Left panel)
δ1 = δ2 = 1, (right panel) δ1 = δ2 = 5. Solid black line: p = 1, dashed blue line: p = 5, and
dashed–dotted red line: p = 10.

In Figure 4, we present the analytical solution in the implicit form given by Equation (23)
in terms of the independent variable x for two cases, δ1 = δ2 = 1 (left panel) and δ1 = δ2 = 5
(right panel), and for different values of p = 1, 5, 10. The obtained results show good agreement
between the analytical solution in the implicit form given by Equation (23) and the numerical
solution when the nonlinear approximated equation given by Equation (28) is used for the case
δ1 = δ2.

The numerical values for the situation δ1 = δ2 = 5 and various values of the parameter
p = 1, 5, 10 are included in Table 2 to allow for a more detailed comparison of the numerical
solution of BVP (1) with the analytical solution in implicit form given by Equation (23). It is
well-established and prevalent that these ideals perfectly coincide. They make our proposed
approximation more acceptable in the situation of δ1 = δ2 and, with this approximation in
hand, will provide instruments to study more complex physical cases.

Figure 4. The analytical solution in implicit form given by Equation (23) for the boundary λ = 1 for
different values of p. (Left panel) δ1 = δ2 = 1, (right panel) δ1 = δ2 = 5. Solid black line: p = 1,
dashed blue line: p = 5, and dashed–dotted red line: p = 10.

In Table 3, we present a comparison between the value of the numerical first derivation
y′(λ) of Equation (2) and the value 2λ/Ste obtained from Equation (31) for δ1 = 1, δ2 = 0.1.
It is clear that, for large values of p, the two values are in good agreement. Thus, the
suggested approximation shows that the condition y′(λ) = − 2λ

Ste is well satisfied for λ > 0
in the case δ1 6= δ2 and large values of p.
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Table 2. Comparison between the numerical solution ynum of BVP (1) for the boundary λ = 1 and
the analytical approximation yapp given by Equation (23) for δ1 = δ2 = 5 and for different values of
p = 1, 5, 10. For the function, β(x), see the text.

p = 1 p = 5 p = 10

x yapp ynum yapp ynum yapp ynum

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.909960 0.909904 0.949665 0.949618 0.957271 0.957223
0.2 0.816690 0.816590 0.889224 0.889194 0.896205 0.896159
0.3 0.721090 0.720860 0.814792 0.814763 0.800557 0.800429
0.4 0.623984 0.623694 0.720319 0.720219 0.659203 0.659085
0.5 0.526044 0.525706 0.599310 0.599076 0.505868 0.505774
0.6 0.427654 0.427191 0.456012 0.455911 0.367732 0.367636
0.7 0.328695 0.328249 0.312872 0.312859 0.248849 0.248768
0.8 0.228078 0.227540 0.187551 0.187508 0.148830 0.148778
0.9 0.122416 0.122437 0.0837442 0.0837148 0.0664419 0.0664179
1.0 4× 10−6 0.00000 0.00000 0.00000 0.00000 0.00000

Table 3. Comparison between the numerical value of the first derivative y′(λ) and analytic expression
(−2λ/Ste) from Equation (31) for δ1 = 1, δ2 = 0.1.

p 0.1 0.5 1 1.5 2 5 10

−2λ/Ste −0.7310 −0.6382 −0.5740 −0.5360 −0.5102 −0.4468 −0.4178

y′(λ) −0.6851 −0.8026 −0.7092 −0.6315 −0.5855 −0.4897 −0.4539

In Figure 5, we present the numerical solutions y(x) of BVP (1) in terms of the inde-
pendent variable x (left panel) and the first approximation y1(x) given by Equation (16)
(right panel). Both cases are for δ1 = 1, δ2 = 0.1, and for different values of p = 1, 5, 10. The
obtained results show good agreement between the first approximation in Equation (16)
and the numerical solution when the nonlinear approximated Equation (31) is used for the
case δ1 6= δ2.

Figure 5. Comparison between the numerical solutions of BVP (1) and the first approximation in
Equation (16) for the boundary λ = 1, for different values of p. The (left panel) represents the
numerical solutions, while the (right panel) represents the first approximation as in Equation (16). In
both cases δ1 = 1, δ2 = 0.1, solid black line: p = 1, dashed blue line: p = 5, and dashed–dotted red
line: p = 10. For the function, β(x) = 1

2 e−(1+δ2)x2
.

To further illustrate the comparison between the numerical solution and the first
approximation solution, we present the numerical values in Table 4 for the case δ1 = 1, δ2 =
0.1 and different values of p = 1, 5, 10. Good agreement is present between both solutions.
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Table 4. Comparison between the numerical solution ynum of BVP (1) for the boundary λ = 1 and
the first approximation y1 Equation (16) for δ1 = 1, δ2 = 0.1 and for different values of p = 1, 5, 10.
For the function, β(x) = 1

2 e−(1+δ2)x2
.

p = 1 p = 5 p = 10

x y1 ynum y1 ynum y1 ynum

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.88353 0.894305 0.901384 0.905988 0.898449 0.902000
0.2 0.76533 0.785659 0.784270 0.793780 0.764844 0.772572
0.3 0.64752 0.676322 0.653688 0.667504 0.622902 0.633430
0.4 0.53229 0.567523 0.520863 0.536825 0.490117 0.501984
0.5 0.42178 0.460092 0.396590 0.412553 0.371442 0.383526
0.6 0.31802 0.355452 0.286588 0.300962 0.268065 0.279297
0.7 0.22277 0.255541 0.192562 0.204256 0.180066 0.189469
0.8 0.13746 0.161506 0.114270 0.122498 0.106851 0.113620
0.9 0.06306 0.0753524 0.050600 0.054836 0.0473141 0.0508684
1.0 8× 10−6 0.00000 0.000013 0.00000 0.00000 0.00000

Now, we can explore numerically the second approximation in Equation (21) of the
BVP (1) with the boundary λ = 1 for the case δ1 6= δ2. We present in Table 5 a comparison
between the numerical values of BVP (1) and the second approximation in Equation (21) for

an appropriate choice of the function, β(x) = 1
2 e−

x2
1+δ1 , with δ1 = 0.1, δ2 = 1, and different

values of p = 1, 5, 10. It turns out that the second approximate values are in good agreement
with the numerical values. On the other hand, the choice of the values for the parameters
δ1 and δ2 is guided by the satisfaction of the condition y′(λ) = − 2λ

Ste .

Table 5. Comparison between the numerical solution ynum of BVP (1) for the boundary λ = 1 and the
second approximation y2 of Equation (21) for δ1 = 0.1, δ2 = 1 and for different values of p = 1, 5, 10.

For the function, β(x) = 1
2 e−

x2
1+δ1 .

p = 1 p = 5 p = 10

x y2 ynum y2 ynum y2 ynum

0 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.859128 0.844884 0.860807 0.855819 0.859406 0.855716
0.2 0.723092 0.696854 0.723068 0.714310 0.719800 0.713261
0.3 0.594257 0.559926 0.591772 0.580742 0.588046 0.579486
0.4 0.474624 0.436756 0.470282 0.458281 0.466955 0.457202
0.5 0.365737 0.328685 0.360565 0.348677 0.357914 0.347866
0.6 0.268611 0.235952 0.263571 0.252739 0.261613 0.252179
0.7 0.183726 0.157980 0.179527 0.170570 0.178190 0.170217
0.8 0.111045 0.093645 0.108117 0.101710 0.107311 0.101518
0.9 0.050085 0.041510 0.0486159 0.0452548 0.0482536 0.0451840
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

6. Conclusions

We have discussed the conceptual model, which is more precise, realistic, and practical
for actual applications, that arises from the phase-change Stefan issue with variable thermal
coefficients. This proposed model has two approximately appropriate solutions. Finding
the explicit forms of the solutions in specific circumstances allows for the determination of
the associated thermal coefficients of thermal conductivity. It is extensively discussed in a
fascinating scenario where the thermal coefficient is higher than −1.

Exceptional approximations are provided, and the obtained results are in good agree-
ment with those obtained numerically. We predict that the approximation solutions we
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have proposed will be useful in investigating more useful heat transfer processes that
can be governed by the one-phase Stefan equation with variable thermal coefficients of a
high order.
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