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Abstract: Let G be a graph of order n and L(G) be its Laplacian matrix. The Laplacian polynomial
of G is defined as P(G; λ) = det(λI − L(G)) = ∑n

i=0(−1)ici(G)λn−i, where ci(G) is called the i-th
Laplacian coefficient of G. Denoted by Gn,m the set of all (n, m)-graphs, in which each of them
contains n vertices and m edges. The graph G is called uniformly minimal if, for each i(i = 0, 1, . . . , n),
H is ci(G)-minimal in Gn,m. The Laplacian matrix and eigenvalues of graphs have numerous applica-
tions in various interdisciplinary fields, such as chemistry and physics. Specifically, these matrices
and eigenvalues are widely utilized to calculate the energy of molecular energy and analyze the
physical properties of materials. The Laplacian-like energy shares a number of properties with the
usual graph energy. In this paper, we investigate the existence of uniformly minimal graphs in
Gn,m because such graphs have minimal Laplacian-like energy. We determine that the c2(G)-c3(G)

successive minimal graph is exactly one of the four classes of threshold graphs.

Keywords: Laplacian coefficient; uniformly minimal graphs; threshold graph

1. Introduction

The Laplacian matrices and eigenvalues of graphs have been employed in various
fields, including chemistry and physics. In the realm of chemistry, molecular graphs are
frequently used to represent molecules. The Laplacian matrices of these graphs enable the
calculation of numerous properties of molecules including their energies and vibrational
spectra [1]. Additionally, the Laplacian matrices and eigenvalues of graphs can be utilized
to investigate chemical bonding between atoms in a molecule, enabling the determination
of bond strength and prediction of molecular reactivity [2]. In the field of materials science,
the Laplacian matrices and eigenvalues of graphs are useful in studying physical properties
such as the electrical conductivity of metals and the thermal conductivity of insulators [3].
In physics, the Laplacian matrices and eigenvalues of graphs play a prominent role in
network analysis. They aid in investigating the flow of information in complex networks [4].
Lastly, the Laplacian matrices and eigenvalues of graphs have applications in quantum
mechanics, where they are utilized to study electron behavior in materials and calculate
electronic structures of atoms and molecules [5].

Furthermore, the Laplacian-like energy shares a number of properties with the usual
graph energy. Stevanović has proved that the graph with uniformly minimum Laplacian
coefficients is the graph with the minimal Laplacian-like energy [6], so it is crucial to
determine whether a graph with uniformly minimum Laplacian coefficients exists. But this
is extremely difficult. So far, only some small dimensional special graph classes with
uniformly minimum Laplacian coefficients have been determined.

Many interesting results have been drawn on uniformly minimal graphs with small
dimensions. For instance, Mohar [7] proved that the star is the unique uniformly minimal
graph among all trees of order n. Then Stevanović and Ilić [8], He and Shan [9] and Pai,
Liu and Guo [10] determined, respectively, the unique uniformly minimal graph among all
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unicyclic graphs, bicyclic graphs and tricyclic graphs of order n. For more results on the
Laplacian coefficients of graphs, one can see [11–19].

A graph G is said to be a threshold graph if G is {2K2, C4, P4}-free. Threshold graphs
have beautiful structures and possess many important mathematical properties such as the
extreme cases of certain graph properties, see [20–23]. For more information on threshold
graphs, one can see the monograph [22].

In reference [24], Gong, Zou and Zhang gave a characterization of ci-minimal graphs
as follows.

Theorem 1 ([24], Theorem 1). Let n ≥ 3 and n− 1 ≤ m ≤ (n
2). Then, for each i, 2 ≤ i ≤ n− 2,

ci-minimal (n, m)-graph is a threshold graph.

In reference [24], Gong et al., proved additionally that there does not exist uniformly
minimal graphs in Gn,n+3, n ≥ 6; see [24] (Theorem 6). Therefore, a natural question
is proposed.

Question ([24], Question 7) For two positive integers n and m with n ≥ 5 and n + 3 ≤ m ≤
n(n− 1)/2, determine all pairs (n, m) such that the uniformly minimal graphs in Gn,m exist.

In this paper, we investigate the above Question. The rest of the paper is organized
as follows. In Section 2, we will introduce the notations and terminologies. In Section 3,
we determine that the c2-minimal graphs in Gn,m are six classes of threshold graphs. Then,
in Section 4, we give a characterization of c2-c3 successive minimal graphs in Gn,m, deter-
mine that each c2-c3 successive minimal graph is exactly one of the four classes of threshold
graphs. In Section 5, we give the main results of this paper and a flow diagram of the
idea of proof. Finally, in Section 6, we draw some conclusions and describe the further
development of this work.

2. Preliminaries

In this section, we will introduce the notations and terminologies, which will be
utilized in the subsequent discussion.

Throughout the paper, graphs are simple, finite and undirected. Let G be a graph of
order n. Denote by A(G) and D(G) the adjacency matrix and the degree diagonal matrix
of G, respectively. The Laplacian characteristic polynomial P(G; λ) of G is defined by

P(G; λ) = det(λI − L(G)) =
n

∑
i=0

(−1)ici(G)λn−i, (1)

where ci(G) is referred to as the i-th Laplacian coefficient of G. Because the Laplacian matrix
L(G) is positive semi-defined, ci(G) ≥ 0 holds for each i. Without causing confusion, we
abbreviate ci(G) to ci.

A graph G having n vertices and m edges is called a (n, m)-graph. Denote by Gn,m the
set of all (n, m)-graphs. Let H ∈ Gn,m. The graph H is called

• ci-minimal if ci(H) ≤ ci(G) holds for any graph G in Gn,m;
• c2-c3 successive minimal if H is c3-minimal among all c2-minimal graphs;
• uniformly minimal if, for each i(i = 0, 1, . . . , n), H is ci-minimal in Gn,m.

Let G ∈ Gn,m with vertex set V. The degree of the vertex i of G is the number of edges
incident with i, denoted by di. Denote by D(G) = (d1, d2, . . . , dn) the degree sequence of G
and4(G) the number of triangles contained in G.

Let A and B be two disjoint graphs. Denote by A ∪ B the sum of A and B, where
V(A ∪ B) = V(A) ∪ V(B) and E(A ∪ B) = E(A) ∪ E(B), and by A ∨ B, the product of
A and B, the graph obtained from A ∪ B by adding all the edges (u, h) with u ∈ V(A)
and h ∈ V(B).



Axioms 2023, 12, 464 3 of 12

Let (n, m) be an integer pair with n ≥ 5 and n− 1 ≤ m ≤ n(n− 1)/2. Suppose that
the integers k, j, r and s satisfy

m =

(
k + 1

2

)
− j, 1 ≤ j ≤ k, (2)

m =

(
n
2

)
−
(

r + 1
2

)
+ s, 1 ≤ s ≤ r. (3)

We introduce six special threshold graphs as follows (see Figures 1–3):

• Cn,m := (Kk−j ∨ (K1 ∪ Kj)) ∪ (n− k− 1)K1;

• Rn,m := (K1 ∨ (Kk−1 ∪ (k− j)K1)) ∪ (n− 2k + j)K1, where k + 1 ≤ 2k− j− 1 ≤ n− 1;

• Tn,m := (Kk−2 ∨ 3K1) ∪ (n− k− 1)K1, where j = 3;

• Sn,m := Kn−r−1 ∨ ((K1 ∨ sK1) ∪ (r− s)K1);

• Qn,m := Kn−2r+s ∨ ((Kr−s ∨ (r− 1)K1) ∪ K1), where r + 1 ≤ 2r− s− 1 ≤ n− 1;

• Pn,m := Kn−r−1 ∨ (K3 ∪ (r− 2)K1), where s = 3.

Figure 1. Sn,m := Kn−r−1 ∨ ((sK1 ∨ K1) ∪ (r− s)K1), Qn,m := Kn−2r+s ∨ ((Kr−s ∨ (r− 1)K1) ∪ K1).

Figure 2. Pn,m := Kn−r−1 ∨ (K3 ∪ (r− 2)K1), Cn,m := (Kk−j ∨ (K1 ∪ Kj)) ∪ (n− k− 1)K1.
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Figure 3. Rn,m := (K1 ∨ (Kk−1 ∪ (k− j)K1)) ∪ (n− 2k + j)K1, Tn,m := (Kk−2 ∨ 3K1) ∪ (n− k− 1)K1.

Moreover, we refer Sn,m as the quasi-star graph and refer Cn,m as the quasi-complete graph.
In the final of this section, we need to introduce some terminology results, which will

be used in the subsequent discussion.
Let G be a graph with order n and degree sequence D(G) = (d1, d2, . . . , dn). The prob-

lem of characterizing the graphs having maximum invariant

n

∑
i=1

d2
i

in Gn,m was first investigated by Katz [25] in 1971 and by R. Ahlswede and G.O.H. Ka-
tona [20] in 1978. Then the invariant ∑n

i=1 d2
i is named as the first Zagreb index, denoted by

M(G); see [26,27]. For convenience, a graph G is referred to as optimal if M(G) is maximal
among all graphs in Gn,m.

3. On c2-Minimal Graphs in Gn,m

For any given graph G, the following results provide combinatorial expressions on the
Laplacian coefficients c2(G) and c3(G) in terms of their degree sequence and the trace of A3.

Lemma 1 ([28], Theorem 3.1). Let G ∈ Gn,m be a graph with degree sequence (d1, . . . , dn). Then

c2(G) = 2m2 −m− 1
2

n

∑
i=1

di
2. (4)

Lemma 2 ([28], Theorem 3.2). Let G ∈ Gn,m be a graph with adjacency matrix A and degree
sequence (d1, . . . , dn). Then

c3(G) =
1
3
(4m3 − 6m2 − 3m

n

∑
i=1

di
2 +

n

∑
i=1

di
3 − tr(A3)). (5)

From Lemma 1, it can be seen that the graph with the largest sum of degree squares,
i.e., the optimal graph, is a graph of c2-minimal.

In 1999, Peled, Petreschi and Sterbini [29], and Byer [30], independently showed that
all optimal graphs, which may not necessarily be connected, belong to one of the six classes
of threshold graphs defined above.

Lemma 3 ([31], Theorems 2.4, 2.6, 2.7). Let n and m be two integers such that 0 ≤ m ≤ (n
2). Let

also k, r, j and s satisfy Equations (1) and (2). Then the set of optimal graphs are contained in

{Sn,m, Qn,m, Pn,m, Cn,m, Rn,m, Tn,m}.

Moreover,
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(1). at least one of Sn,m and Cn,m is optimal;
(2). if Qn,m or Pn,m is optimal, then Sn,m must be optimal;
(3). if Rn,m or Tn,m is optimal, then Cn,m must be optimal;
(4). if Qn,m and Cn,m are both optimal, then j = k, r = k + 1, s = 2k− n + 2, n > 5 and k are
positive integers that satisfy Pell’s equation (2n− 3)2 − 2(2k− 1)2 = −1;
(5). if Pn,m and Cn,m are both optimal, then j = s, k = r, n > 9 and k are positive integers that
satisfy Pell’s equation (2n− 1)2 − 2(2k + 1)2 = −49;
(6). if Qn,m and Pn,m are both optimal, then (n, m) = (7, 9) or (9, 18), and Cn,m also exists.

The following theorem indicates that there are few integer pairs (n, m) that satisfy
M(Sn,m) = M(Cn,m) for n ≥ 5 and n + 3 ≤ m ≤ n(n− 1)/2.

Let k0 = k0(n) be an integer such that(
k0

2

)
≤ 1

2

(
n− 1

2

)
<

(
k0 + 1

2

)
and define the quadratic function

q0 =
1− 2(2k0 − 3)2 + 2(n− 5)2

4
, R0 =

4((n
2)− 2(k0

2 ))(k0 − 2)
−1− 2(2k0 − 4)2 + (2n− 5)2 .

Theorem 2 ([31], Theorem 2.8). Let n be a positive integer.
(1). If q0(n) > 0, then

M(Sn,m) ≥ M(Cn,m) for 0 ≤ m ≤ 1
2 (

n
2),

M(Cn,m) ≥ M(Sn,m) for 1
2 (

n
2) ≤ m ≤ (n

2).

M(Sn,m) = M(Cn,m) if and only if m ∈ {0, 1, 2, 3, 1
2 (

n
2)}, or m = (k0

2 ) and (2n− 3)2 − 2(2k0 −
3)2 = −1, 7.
(2). If q0(n) < 0, then

M(Sn,m) ≥ M(Cn,m) for 0 ≤ m ≤ 1
2 (

n
2)− R0 or 1

2 (
n
2) ≤ m ≤ 1

2 (
n
2) + R0;

M(Cn,m) ≥ M(Sn,m) for 1
2 (

n
2)− R0 ≤ m ≤ 1

2 (
n
2) or 1

2 (
n
2) + R0 ≤ m ≤ (n

2).

M(Cn,m) = M(Sn,m) if and only if m ∈ {0, 1, 2, 3, 1
2 (

n
2)− R0, 1

2 (
n
2)}.

(3). If q0(n) = 0, then

M(Sn,m) ≥ M(Cn,m) for 0 ≤ m ≤ 1
2 (

n
2),

M(Cn,m) ≥ M(Sn,m) for 1
2 (

n
2) ≤ m ≤ (n

2).

M(Sn,m) = M(Cn,m) if and only if m ∈ {0, 1, 2, 3, (k0
2 ), . . . , 1

2 (
n
2)}.

From Theorem 2, there are few integer pairs (n, m) that satisfy M(Sn,m) = M(Cn,m)
for n ≥ 5 and n + 3 ≤ m ≤ n(n− 1)/2.

Below, Figure 4 ([31] Figures 2.5–2.8) shows the value M(Sn,m) − M(Cn,m)
for n = 25, 15, 17, and 23, respectively. It is easy to see that Sn,m and Cn,m are rarely
both optimal.
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Figure 4. In reference [31], m = 1
2 (

n
2). S(25, e) and e denote the sum of squares of degrees and the

number of edges of the quasi-star graph.

4. On c2-c3 Successive Minimal Graphs in Gn,m

Combining with Lemma 3 and the definition of the c2-c3 successive minimal graphs,
we have the following result immediately.

Corollary 1. Let G be a c2-c3 successive minimal graph in Gn,m. Then

G ∈ {Sn,m, Qn,m, Pn,m, Cn,m, Rn,m, Tn,m}.

Let G be a graph with an adjacency matrix A. The following result is well known.

Lemma 4 ([32], Proposition 2). Let G ∈ Gn,m be a graph with adjacency matrix A. Then

tr(A3) = 64(G). (6)

Set

α(G) =
n

∑
i=1

di
3 − 64(G). (7)

As a consequence of Lemma 3 and Corollary 1, we have

Proposition 1. Let G ∈ Gn,m be a graph with adjacency matrix A. Then G is a c2-c3 successive
minimal graph if and only if G has minimal value α(G) among all graphs in

{Sn,m, Qn,m, Pn,m, Cn,m, Rn,m, Tn,m}.

Therefore, to determine the c2-c3 successive minimal graph, we need to compare the
values α(G) among all graphs in {Sn,m, Qn,m, Pn,m, Cn,m, Rn,m, Tn,m}.

Firstly, by the structures of those special threshold graphs, we can easily list the degree
sequences of all graphs above as follows.
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(1). D(Sn,m) = (

n−r−1︷ ︸︸ ︷
n− 1, . . . , n− 1, n− r + s− 1,

s︷ ︸︸ ︷
n− r, . . . , n− r );

(2). D(Qn,m) = (

n−2r+s︷ ︸︸ ︷
n− 1, . . . , n− 1,

r−s︷ ︸︸ ︷
n−2, . . . , n−2,

r−1︷ ︸︸ ︷
n− r, . . . , n− r, n− 2r + s);

(3). D(Pn,m) = (

n−r−1︷ ︸︸ ︷
n− 1, . . . , n− 1,

3︷ ︸︸ ︷
n− r + 1, . . . , n− r + 1,

r−2︷ ︸︸ ︷
n− r− 1, . . . , n− r− 1);

(4). D(Cn,m) = (

k−j︷ ︸︸ ︷
k, . . . , k,

j︷ ︸︸ ︷
k− 1, . . . , k− 1, k− j,

n−k−1︷ ︸︸ ︷
0, . . . , 0);

(5). D(Rn,m) = (2k− j− 1,

k−1︷ ︸︸ ︷
k− 1, . . . , k− 1,

k−j︷ ︸︸ ︷
1, . . . , 1,

n−2k+j︷ ︸︸ ︷
0, . . . , 0);

(6). D(Tn,m) = (

k−2︷ ︸︸ ︷
k, . . . , k, k− 2, k− 2, k− 2,

n−k−1︷ ︸︸ ︷
0, . . . , 0).

By the structures of those special threshold graphs, we have

Proposition 2. Let (n, m) be a given integer pair with n− 1 ≤ m ≤ n(n− 1)/2. Then

(1).4(Sn,m) =

(
n− r + 1

3

)
+ (s− 1)

(
n− r

2

)
+ (r− s)

(
n− r− 1

2

)
;

(2).4(Qn,m) =

(
n− r + 1

3

)
+ (r− 2)

(
n− r

2

)
+

(
n− 2r + s

2

)
;

(3).4(Pn,m) =

(
n− r + 2

3

)
+ (r− 2)

(
n− r− 1

2

)
;

(4).4(Cn,m) =

(
k
3

)
+

(
k− j

2

)
;

(5).4(Rn,m) =

(
k
3

)
;

(6).4(Tn,m) =

(
k− 1

3

)
+ 2
(

k− 2
2

)
.

Proof. (1). We divide all vertices of Sn,m into four parts:
V1: the vertices that are contained in the complete graph Kn−r+1;
V2: the vertices that are contained in the isolated vertices (r− s)K1;
V3: the vertices that are contained in the isolated vertices sK1;
V4: the unique isolated vertex (see Figure 1).

The number of triangles each of whose all vertices are contained in V1 is (n−r−1
3 ),

the number of triangles each of whose two vertices are contained in V1 and one vertex
is contained in V2 is (r − s)(n−r−1

2 ), the number of triangles each of whose two vertices
are contained in V1 ∨ V4 and one vertex is contained in V3 is s(n−r

2 ), and the number of
triangles each of whose two vertices are contained in V1 and one vertex is contained in V4 is
(n−r−1

2 ). Besides, by a simple calculation, it can be seen that (n−r−1
3 ) + s(n−r

2 ) + (n−r−1
2 ) =

(n−r+1
3 ) + (s− 1)(n−r

2 ).

(2). We divide all vertices of Qn,m into four parts:
V1: the vertices that are contained in the complete graph Kn−2r+1;
V2: the unique isolated vertex K1;
V3: the vertices that are contained in the isolated vertices (r− 1)K1;
V4: the vertices that are contained in the complete graph Kr−s (see Figure 1).

The number of triangles each of whose all vertices are contained in V1 ∨V4 is (n−r
3 ),

the number of triangles each of whose two vertices are contained in V1 and one vertex is



Axioms 2023, 12, 464 8 of 12

contained in V2 is (n−2r+s
2 ), the number of triangles each of whose two vertices are contained

in V1 ∨V4 and one vertex is contained in V3 is (r− 1)(n−r
2 ). Besides, by a simple calculation,

it can be seen that4(Qn,m) = (n−r
3 ) + (r− 1)(n−r

2 ) = (n−r+1
3 ) + (r− 2)(n−r

2 ).

(3). We divide all vertices of Pn,m into three parts:
V1: the vertices that are contained in the complete graph Kn−r−1;
V2: the vertices that are contained in the complete graph K3;
V3: the vertices that are contained in the isolated vertices (r− 2)K1 (see Figure 2).

The number of triangles each of whose all vertices are contained in V1 ∨V2 is (n−r+2
3 ),

the number of triangles each of whose two vertices are contained in V1 and one vertex is
contained in V3 is (r− 2)(n−r−1

2 ). So4(Pn,m) = (n−r+2
3 ) + (r− 2)(n−r−1

2 ).

(4). We divide all vertices of Cn,m into four parts:
V1: the vertices that are contained in the complete graph Kk−j;
V2: the vertices that are contained in the complete graph Kj;
V3: the isolated vertex K1;
V4: some isolated vertices (n− k− 1)K1 (see Figure 2).

The number of triangles each of whose all vertices are contained in V1 is (k−j
3 ), the num-

ber of triangles each of whose two vertices are contained in V1 and one vertex is contained
in V2 is j(k−j

2 ). The number of triangles each of whose all vertices are contained in V2 is
( j

3), the number of triangles each of whose two vertices are contained in V2 and one vertex
is contained in V1 is (k− j)( j

2). The number of triangles each of whose two vertices are
contained in V1 and one vertex is contained in V3 is (k−j

2 ). Besides, by a simple calculation,
it can be seen that (k−j

3 ) + j(k−j
2 ) + ( j

3) + (k− j)( j
2) = (k

3). So4(Cn,m) = (k
3) + (k−j

2 ).

(5). We divide all vertices of Rn,m into four parts:
V1: one vertex K1;
V2: the vertices that are contained in the complete graph Kk−1;
V3: some isolated vertices (k− j)K1;
V4: some isolated vertices (n− 2k− 1)K1 (see Figure 3).

The number of triangles each of whose all vertices are contained in V2 is (k−1
3 ), the num-

ber of triangles each of whose two vertices are contained in V2 and one vertex is contained
in V1 is (k−1

2 ). Besides, by a simple calculation, it can be seen that (k−1
3 ) + (k−1

2 ) = (k
3). So

4(Rn,m) = (k
3).

(6). We divide all vertices of Tn,m into three parts:
V1: the vertices that are contained in the complete graph Kk−2;
V2: three isolated vertices 3K1;
V3: some isolated vertices (n− k− 1)K1 (see Figure 3).

The number of triangles each of whose all vertices are contained in V1 is (k−2
3 ),

the number of triangles each of whose two vertices are contained in V1 and one ver-
tex is contained in V2 is 3(k−2

2 ). Besides, by a simple calculation, it can be seen that
(k−2

3 ) + 3(k−2
2 ) = (k−1

3 ) + 2(k−2
2 ). So4(Tn,m) = (k

3).

Therefore, the proof is complete.

Now we establish two main theorems as follows. These theorems can help us better
identify the candidate graphs of c2-c3 minimal successive graphs in Gn,m.

Theorem 3. Let (n, m) be a given integer pair with n− 1 ≤ m ≤ n(n− 1)/2. Then

(1). α(Pn,m) < α(Sn,m) if Pn,m and Sn,m are c2-minimal;

(2). α(Cn,m) < α(Tn,m) if Cn,m and Tn,m are c2-minimal;

(3). α(Qn,m) < α(Sn,m) if Qn,m and Sn,m are c2-minimal;

(4). α(Cn,m) < α(Rn,m) if Cn,m and Rn,m are c2-minimal.
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Proof. Combining with the degree sequences above and Lemma 2, we have

α(Sn,m) = (n− r− 1)(n− 1)3 + (n− r + s− 1)3 + s(n− r)3 + (r− s)(n− r− 1)3

− 6(
(

n− r + 1
3

)
+ (s− 1)

(
n− r

2

)
+ (r− s)

(
n− r− 1

2

)
);

α(Qn,m) = (n− 2r + s)(n− 1)3 + (r− s)(n− 2)3 + (r− 1)(n− r)3 + (n− 2r + s)3

− 6(
(

n− r + 1
3

)
+ (r− 2)

(
n− r

2

)
+

(
n− 2r + s

2

)
);

α(Pn,m) = (n− r− 1)(n− 1)3 + 3(n− r + 1)3 + (r− 2)(n− r− 1)3

− 6(
(

n− r + 2
3

)
+ (r− 2)

(
n− r− 1

2

)
);

α(Cn,m) = (k− j)k3 + j(k− 1)3 + (k− j)3 − 6(
(

k
3

)
+

(
k− j

2

)
);

α(Rn,m) = (2k− j− 1)3 + (k− 1)4 + k− j− 6
(

k
3

)
;

α(Tn,m) = (k− 2)k3 + 3(k− 2)3 + (k− 3)3 − 6(
(

k− 1
3

)
+ 2
(

k− 2
2

)
).

(1). By a direct calculation, α(Sn,m)− α(Pn,m) = 12 > 0 as s = 3.
(2). α(Cn,m)− α(Tn,m) = −12 < 0 as j = 3. So (1) and (2) are trivial.
(3). Note that α(Sn,m)− α(Qn,m) = 3r3 − (6s + 3)r2 + (3s2 + 3s)r, we define

f (r) = α(Sn,m)− α(Qn,m) = 3r3 − (6s + 3)r2 + (3s2 + 3s)r.

Recall that r + 1 ≤ 2r− s− 1 ≤ n− 1, then r ≥ s + 2 and thus the derivative f ′(r) satisfies
f ′(r) = 9r2 − 2(6s + 3)r + 3s2 + 3s ≥ f ′(s + 2) = 3s + 24 > 0, which implies that f (r) is
an increasing function on r. Consequently, α(Sn,m)− α(Qn,m) ≥ f (3) = 18 > 0. Thus (3)
follows.
(4). Note that α(Cn,m)− α(Rn,m) = −7k3 + (6j + 10)k2− (3j2− 3j + 10)k− 3j2− 4j + 2, we
define

g(k) = α(Cn,m)− α(Rn,m) = −7k3 + (6j + 10)k2 − (3j2 − 3j + 10)k− 3j2 − 4j + 2,

a function on k. Recall that k+ 1 ≤ 2k− j− 1 ≤ n− 1, then k ≥ j+ 2 and thus the derivative
g′(k) satisfies g′(k) = −108j2 + 228j− 440 < 0, which implies that g(k) is a decreasing
function on k. Consequently, α(Cn,m)− α(Rn,m) ≤ g(3) = −80 < 0. Thus 4) follows.

In the following theorem, we exclude the rare case of M(Sn,m) = M(Cn,m), r + 1 ≤
2r− s− 1 ≤ n− 1 and s = 3.

Theorem 4. Let (n, m) be a given integer pair with n− 1 ≤ m ≤ n(n−1)
2 . Then

(1). α(Cn,m) < α(Qn,m) if Cn,m and Qn,m are c2-minimal;

(2). α(Cn,m) < α(Pn,m) if Cn,m and Pn,m are c2-minimal;

(3). α(Cn,m) < α(Qn,m) and α(Cn,m) < α(Pn,m) if Qn,m and Pn,m are c2-minimal.

Proof. (1). Note that α(Qn,m) − α(Cn,m) = n4 − (k + 7)n3 + (3k + 21)n2 + (6k2 − 9k −
28)n− k4 − 15k2 + 13k + 15, we define

F(n) = α(Qn,m)− α(Cn,m) = n4− (k+ 7)n3 + (3k+ 21)n2 + (6k2− 9k− 28)n− k4− 15k2 + 13k+ 15,

a function on n. Recall that n > 5 and thus the derivative F′(n) satisfies F′(n) = 4n3− 3(k+
7)n2 + 2(3k + 21)n + 6k2 − 9k− 28 = 6k2 − (3n2 − 6n + 9)k + 4n3 − 21n2 + 42n− 28. We
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define G(k) = 6k2 − (3n2 − 6n + 9)k + 4n3 − 21n2 + 42n− 28. Recall that r + 1 ≤ 2r− s−
1 ≤ n− 1 and r = k + 1, s = 2k− n + 2, then k ≤ n− 3 and thus the first derivative G′(k)
satisfies G′(k) = 12k− 2n2 + 6n− 9 ≤ G′(n− 3) = −3n2 + 18n− 45 < 0, which implies
that G(k) is a decreasing function on k. F′(n) = G(k) ≥ G(n− 3) = n3− 21+ 53 > 168 > 0,
which implies that F(n) is an increasing function on n. If n = 5, then k = 2. Consequently,
α(Qn,m)− α(Cn,m) > F(5) = 30 > 0. Thus 1) follows.

(2). Since integer n > 9 satisfies the Pell’s equation (2n− 1)2 − 2(2k + 1)2 = −49, integer
n is at least 12, and at the same time n = 12, k = 8. Note that α(Pn,m) − α(Cn,m) =
n4 − 4n3 − (3k2 + 3k− 24)n2 + (3k3 + 12k2 − 27k− 21)n− 2k4 − 6k3 + 24k2 − 44k + 84, we
define

H(n) = n4 − 4n3 − (3k2 + 3k− 24)n2 + (3k3 + 12k2 − 27k− 21)n− 2k4 − 6k3 + 24k2 − 44k + 84.

The derivative H′(n) satisfies

H′(n) = 4n3 − 12n2 − (6k2 + 6k− 48)n + 3k3 + 12k2 + 27k− 21.

The second derivative H′′(n) satisfies

H′′(n) = 12n2 − 24n− (6k2 + 6k− 48).

The third derivative H′′′(n) satisfies

H′′′(n) = 24n− 24 > 0,

which implies that H′′(n) is an increasing function on n. H′′(n) ≥ H′′(12) = 1056 > 0,
which implies that H′(n) is an increasing function on n. H′(n) ≥ H′(12) = 3075 > 0,
which implies that H(n) is an increasing function on n. Consequently, α(Pn,m)− α(Cn,m) ≥
H(12) = 7204 > 0. Thus 2) follows.

(3). By Lemma 3 (6), if Qn,m and Pn,m are all optimal, then (n, m) = (7, 9) or (9, 18), and Cn,m
also exists. Substituting (n, m) = (7, 9) into Equations (1) and (2) yields k = 4, j = 1, r = 5,
and s = 3. By further direct calculation, α(Qn,m) = 258, α(Pn,m) = 276 and α(Cn,m) = 204.
Similarly, substituting (n, m) = (9, 18) into Equations (1) and (2) yields k = r = 6 and
j = s = 3. By further direct calculation, α(Qn,m) = 1068, α(Pn,m) = 1164 and α(Cn,m) = 912.
It is not difficult to see that α(Cn,m) is always the smallest.

5. Results

By Theorem 4 and Lemma 3 (6), if Qn,m and Pn,m are c2-minimal, then Cn,m also exists,
and Cn,m is c2-c3 successive minimal.

By Lemma 3, Proposition 1 and Theorem 3, at least one of Sn,m and Cn,m be a c2-c3
successive minimal graph in Gn,m. Qn,m or Pn,m can only be a c2-c3 successive minimal
graph if certain conditions are satisfied, while Rn,m or Tn,m cannot be c2-c3 successive
minimal graph. Therefore, we have the main results of the paper as follows.

Theorem 5. Let G ∈ Gn,m. If M(Sn,m) < M(Cn,m), or M(Sn,m) = M(Cn,m) with r + 1 ≤
2r − s − 1 ≤ n − 1 or M(Sn,m) = M(Cn,m) with s = 3, the c2-c3 successive minimal graph
is Cn,m.

Theorem 6. Let G ∈ Gn,m. If M(Sn,m) 6= M(Cn,m), or M(Sn,m) = M(Cn,m) with r + 1 ≤
2r− s− 1 ≤ n− 1, or M(Sn,m) = M(Cn,m) with s = 3, each Laplacian coefficient c2-c3 successive
minimal graph is exactly one of the four classes of threshold graphs Sn,m, Qn,m, Pn,m and Cn,m.

The Figure 5 describes the logical progression of our proofs.
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Cn,m

Figure 5. Only when Sn,m is c2-minimal graph, Pn,m and Qn,m can be c2-minimal graphs. Similarly,
only when Cn,m is c2-minimal graph, Rn,m and Tn,m can be c2-minimal graphs. The application of
Theorem 3 enables us to reduce the set of candidate graphs for c2-c3 successive minimal graphs to
four types of threshold graphs, namely: Sn,m, Qn,m, Pn,m and Cn,m. Besides, Theorem 4 indicates that,
if M(Sn,m) = M(Cn,m) with r + 1 ≤ 2r − s− 1 ≤ n− 1 M(Sn,m) = M(Cn,m) with s = 3, the c2-c3

successive minimal graph is Cn,m.

Lemma 1 declares that the uniqueness of c2-minimal graphs cannot be guaranteed
in Gn,m. For instance, Theorem 2.5 in [31] demonstrates six c2-minimal graphs existing
in G9,18. Theorems 3 and 4 further state that the c2-c3 minimal successive graph in Gn,m must
be one of the four threshold graphs, that is, Sn,m, Qn,m, Pn,m, and Cn,m, with the exception
that only Sn,m and Cn,m can be c2-minimal. Bearing in mind that for most integer pairs
(n, m) with n + 3 ≤ m ≤ n(n− 1)− 3, where the corresponding optimal (n, m)-graph is
unique, the c2-minimal graph is also unique. This being said, the cases where solely Sn,m
and Cn,m are c2-minimal are infrequent and encompassed in Theorem 2.

After excluding the case where solely Sn,m and Cn,m are c2-minimal, we have success-
fully demonstrated the uniqueness of the c2-c3 minimal successive graph in Gn,m. However,
it must be noted that this scenario is rarely encountered (as noted in Theorem 2, where the
possibility of Sn,m and Cn,m both being c2-minimal is already uncommon). In light of this,
we propose the conjecture that the c2-c3 minimal successive graph in Gn,m is indeed unique.

6. Conclusions

The research on the Laplacian matrix and its eigenvalues of graphs in the fields of
physics and chemistry is notable. The coefficients of Laplacian matrix are directly linked
to the eigenvalues and they serve as a reflection of the graph structure. In this paper, we
extend Ábrego et al.’s work [31] and conduct a study of the c2-c3 successive minimal
graphs. Our research aims to gain a better understanding of the structural properties of
molecular graphs.

Our next step is to map the threshold graph to the Ferrers matrix (the adjacency matrix
of a threshold graph such that the upper-triangular part is left justified and the number of
zeros in each row of the upper-triangular part does not decrease. We demonstrate Ferrers
matrices using “+” for the main diagonal, an empty circle “◦” for the zero entries, and a
black dot, “•” for the entries equal to one), attach weights corresponding to Laplacian
coefficients to each element in the Ferrers matrix, and use a special perturbation of the
threshold graph to minimize some Laplacian coefficients.
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