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Abstract: In this paper, a novel method for the automatic classification of coronary stenosis based on a
feature selection strategy driven by a hybrid evolutionary algorithm is proposed. The main contribution is
the characterization of the coronary stenosis anomaly based on the automatic selection of an efficient feature
subset. The initial feature set consists of 49 features involving intensity, texture and morphology. Since the
feature selection search space was O(2n), being n = 49, it was treated as a high-dimensional combinatorial
problem. For this reason, different single and hybrid evolutionary algorithms were compared, where
the hybrid method based on the Boltzmann univariate marginal distribution algorithm (BUMDA) and
simulated annealing (SA) achieved the best performance using a training set of X-ray coronary angiograms.
Moreover, two different databases with 500 and 2700 stenosis images, respectively, were used for training
and testing of the proposed method. In the experimental results, the proposed method for feature selection
obtained a subset of 11 features, achieving a feature reduction rate of 77.5% and a classification accuracy
of 0.96 using the training set. In the testing step, the proposed method was compared with different
state-of-the-art classification methods in both databases, obtaining a classification accuracy and Jaccard
coefficient of 0.90 and 0.81 in the first one, and 0.92 and 0.85 in the second one, respectively. In addition,
based on the proposed method’s execution time for testing images (0.02 s per image), it can be highly
suitable for use as part of a clinical decision support system.

Keywords: Boltzmann distribution; coronary angiograms; feature selection; simulated annealing;
stenosis classification; support vector machine

1. Introduction

Coronary heart disease is the main cause of morbidity all over the world [1]. Con-
sequently, it is highly important for coronary stenosis to be detected and diagnosed by
cardiologists and addressed in computational science. Nowadays, X-ray coronary an-
giography is the main source of decision making in stenosis diagnosis. In order to detect
coronary stenosis, a specialist performs an exhaustive visual examination of the entire
angiogram, and based on their knowledge, the stenosis regions are labeled. In order to
illustrate the challenging and laborious task carried out by the specialist in terms of the
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visual examination of coronary angiograms, in Figure 1, a set of X-ray angiograms along
with manually detected stenosis regions is presented.

Figure 1. (First row): set of X-ray coronary angiograms and the corresponding stenosis regions
manually detected by cardiologist (second row).

The main disadvantages of working with X-ray coronary angiograms are the high noise
levels and low-contrast regions, which make automatic vessel identification, measurement
and classification tasks difficult. Moreover, for the automatic stenosis classification problem,
some approaches have been reported. The method proposed by Saad [2] detects the
presence of atherosclerosis in a coronary artery image using a vessel-width variation
measure. The measurements are computed from a previously segmented image containing
only vessel pixels and its corresponding skeleton in order to determine the vessel center
line, from which the orthogonal line length of a fixed-size window is computed, moving
through the image. Kishore and Jayanthi [3] applied a manually fixed-size window from
an enhanced image. The vessel pixels were measured, adding them to intensity values in
order to obtain a coronary stenosis grading measure. Other approaches make use of the
Hessian matrix properties to enhance or extract vessel trees at the first stage. For instance,
the works of Wan et al. [4], Sameh et al. [5], and Cervantes-Sanchez et al. [6] applied the
Hessian matrix properties in order to enhance vessel pixels in coronary angiograms. The
response image allows for the measurement and extraction of features related with vessel
shapes that are used for the automatic classification and grading of coronary stenosis.

The use of classification techniques and search metaheuristics are additional ap-
proaches that have been used to address vessel disease problems. Cervantes-Sanchez
et al. [7] proposed a Bayesian-based method using a 3D feature vector that was extracted
from the image histogram in order to classify stenosis cases. Taki et al. [8] achieved a com-
petitive result in the categorization of calcified and noncalcified coronary artery plaques
using a Bayesian-based classifier. The proposal of Welikala et al. [9] works with retinal
vessels, applying a genetic algorithm to reduce the number of needed features that perform
a correct classification of proliferative diabetic retinopathy cases. Sreng et al. [10], proposed
a hybrid simulated annealing method to select relevant features that are then used with
an ensemble bagging classifier in order to produce a suitable screening of the eye. The
method of Chen et al. [11] works with a 6D feature vector related with the morphology of
bifurcated vessels in order to detect coronary artery disease. A fuzzy criterion was used
by Giannoglou et al. [12] in order to select features in characterization of atherosclerotic
plaques, and Wosiak and Zakrzewska [13], proposed an automatic feature selection method
by integrating correlation and clustering strategies in cardiovascular disease diagnosis.

On the other hand, emergent evolution of deep learning techniques such as the convo-
lutional neural network (CNN) have made it possible for them to be applied to the coronary
artery disease problem [14]. CNN contains a set of layers (convolutional layers) focused on
the automatic segmentation of the image in order to keep only the data that allow the CNN to
achieve correct classification rates [15–17]. Antczak and Liberadzki [18], proposed a method
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that is able to generate synthetic coronary stenosis and nonstenosis patches in order to improve
the CNN training rates. The strategy proposed by Ovalle et al. [19] makes use of a transfer
learning [20–22] strategy in order to achieve correct training and classification rates with complex
CNN architectures. One of the main drawbacks of CNN is the need for large-instance databases
in order to achieve correct training rates. Data augmentation techniques [23–27] are commonly
used as a way to generate large amounts of instances that are used in the training and testing of
the CNN. In addition, it is difficult for a CNN to identify which features are really useful for a
correct classification and what they represent [28,29].

In the present paper, a novel method for the automatic classification of coronary steno-
sis based on feature selection and a hybrid evolutionary algorithm in X-ray angiograms is
presented. The proposed method uses the evolutionary computation technique for address-
ing the high-dimensional problem of selecting an efficient subset of features from a bank
of 49 features, where the problem is a computational complexity of O(2n). To select the
best evolutionary technique, different population-based strategies were compared in terms
of feature reduction and classification accuracy using a training set of coronary stenosis
images. From the comparative analysis, the Boltzmann univariate marginal distribution
algorithm (BUMDA) and simulated annealing (SA) were selected for further analysis. In
the experiments, two different databases were used. The first database was provided by the
Mexican Institute of Social Security (IMSS), and it contains 500 images. The second database
corresponds to Antczak [18], which is publicly available and contains 2700 patches. Finally, the
proposed method was compared with different state-of-the-art classification methods in terms
of classification accuracy and Jaccard coefficient, working with both databases in order to show
the classification robustness achieved by the subset of 11 features, which were obtained from
the feature selection step using the hybrid BUMDA-SA evolutionary technique.

The remaining of this paper is as follows. In Section 2, the background methodology is
described. Section 3 presents the proposed method and the hybrid approach that performs
the automatic feature selection task. In Section 4, the experiment details and results are
described, and finally, conclusions are given in Section 5.

2. Methods

In this section, the strategies and techniques related to the proposed method are
described in detail. Section 2.1 starts describing feature selection techniques from the
literature in order to extract distinct types of them, such as texture, intensity and mor-
phology. Consequently, in Section 2.2, the Boltzmann univariate marginal distribution
algorithm and the simulated annealing strategies are described, since they comprise the
hybrid evolutionary approach used in the automatic feature selection stage. Finally, in
Section 2.3, the support vector machine technique is described, because it is used as the
classifier in order to determine if a given instance, which is composed of a feature vector, is
classified as positive (stenosis case) or negative (nonstenosis case).

2.1. Feature Extraction

In digital image processing, feature extraction is an important task, because it allows
properties or interest objects of an image (global features) to be described, and it is also
possible to extract features from specific regions (local features) [30,31]. Different feature
types can be extracted from an image, as reported in [32–34]. Based on their type, features
can be classified as being related to texture, intensity or morphology.

2.1.1. Texture Features

Texture features have had high relevance in different cardiovascular problems [9,35–39].
The most widely used approach in texture feature extraction for grayscale images is the
gray-level co-occurrence matrix (GLCM) [40–43]. The GLCM measures the frequency
of variation between gray levels from a given point in the image. It is represented as a
matrix, whose rows and columns correspond to the intensity pixels of the entire image
or a region from it. The variation frequencies are computed based on a specific spatial
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relationship (offset) denoted by (∆x, ∆y) between a pixel with intensity i and another pixel
with intensity j, as follows:

C∆x,∆y(i, j) =
n

∑
x=1

m

∑
y=1

{
1, if I(x, y) = i and I(x + ∆x, y + ∆y) = j
0, otherwise

, (1)

where C∆x,∆y(i, j) is the frequency at which two pixels with intensities i and j at an specific
offset (∆x, ∆y) occur; n and m represent the height and width of the image, respectively.
I(x, y) and I(x + ∆x, y + ∆y) are the pixel values in image I.

In addition, the Radon transform is also used for texture analysis in medical image
processing and feature extraction [44–46]. The Radon transform is an alternative way
to represent an image. Instead of the original spatial domain of the image, the Radon
transform is the projection of the image intensity along with a radial line oriented at some
specific angle. It can be computed as follows:

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(ρ− x cos θ − y sin θ)dxdy, (2)

where R(ρ, θ) is the Radon transform of a function f (x, y) at an angle θ; δ(r) is the
Dirac delta function, which is zero, except when r = 0 and δ(ρ − x cos θ − y sin θ) in
the definition of the Radon transform forces the integration of f (x, y) along the line
ρ− x cos θ − y sin θ = 0.

2.1.2. Shape Features

Shape-based features allow measurable information to be extracted about different
aspects related to the shape of the arteries, such as the length of a segment, its tortuosity,
the number of bifurcations of a segment, the vessel width, etc. However, in order to obtain
correct data from shape-based features, a previous segmentation of the original image is
required to discriminate noninterest information such as noise and background. In the
present work, the Frangi method [47] was used in order to extract vessel information. The
Frangi method works with the Hessian matrix, which is the result of the second-order
derivative of a Gaussian kernel that is convolved with the original image. The Gaussian
kernel is represented as follows:

G(x, y) = −exp
(
− x2 + y2

2σ2

)
, ‖y‖ < L/2, (3)

where σ is the spread of the Gaussian profile and L is the length of the vessel segment.
The resultant Hessian matrix is expressed as follows:

H =

(
Hxx Hxy
Hyx Hyy

)
, (4)

where Hxx, Hxy, Hyx and Hyy are the different convolution responses of the original image
with each second-order partial derivative of the Gaussian kernel.

The segmentation function defined by Frangi for 2D vessel detection is as follows:

f (x) =


0 if λ2 > 0,

exp
(
− R2

b
2α2

)(
1− exp

(
S2

2β2

))
elsewhere.

(5)

The α parameter is used with Rb to control the shape discrimination. The β parameter
is used by S2 for noise elimination. Rb and S2 are calculated as follows:

Rb =
|λ1|
|λ2|

, (6)
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S2 =
√

λ2
1 + λ2

2, (7)

where λ1 and λ2 are the eigenvalues of Hessian matrix.
Since the filter response of the Frangi method can be represented as a grayscale

image, an automatic thresholding strategy has to be applied in order to classify vessel and
nonvessel pixels. In the Otsu method [48], the threshold value is computed automatically
based on the pixel intensities, from which a weighted sum of variance of the two classes is
performed. The threshold is computed as follows:

σ2
ω(t) = ω0(t)σ2

0 (t) + ω1(t)σ2
1 (t), (8)

where ω0 and ω1 weights are the probabilities of the two classes separated by a threshold t,
and σ2

0 and σ2
1 are the statistical variances of ω0 and ω1, respectively.

On the other hand, several vessel shape-based features are computed from the skeleton
of the arteries. In order to extract the vessel skeleton from a previously enhanced image,
the medial axis transform is widely used. It is commonly implemented using the Voronoi
method, expressed as follows:

Rk = {x ∈ X|d(x, Pk) ≤ d(x, Pj) for all j 6= k}, (9)

where Rk is the Voronoi region associated with the site Pk (a tuple of nonempty subsets in
space X), which contains the set with all points in X whose distance to Pk is not greater
than their distance to the other sites Pj. j is any index different from k. d(x, Pk) is a closeness
measure from point x to point Pk. In this part, as a measure of closeness, the Euclidean
distance is the most commonly used norm, which is defined as follows:

D(p, q) =

√
n

∑
i=1

(pi − qi)2 (10)

where D(p, q) is the Euclidean distance between points p and q, i is the value of the points
in each corresponding dimension and n is the number of dimensions in which p and q
are represented.

2.2. Metaheuristics

Selecting features that are relevant for classification in a specific problem is a challenging
task. The total number of different feature combinations that can occur is denoted by 2n, where
n is the number of features involved in the studied problem. In this context, the use of search
metaheuristics and evolutionary strategies are convenient for addressing the problem.

2.2.1. Simulated Annealing

The simulated annealing (SA) algorithm is a stochastic optimization technique that
was inspired from the annealing procedure in metallurgy and ceramics. The goal is a
reduction in defects in solid materials by performing controlled heating and cooling steps.
In the annealing process, the material is exposed to high temperatures. When a determined
temperature is reached, the material is exposed to a controlled cooling process, keeping
an optimal equilibrium of their molecules at all times through its correct alignment. The
heating and cooling procedures are decisive in order to obtain the final structure; if the
initial temperature was not high enough or the cooling process was too slow or too fast,
the resultant material will present defects called metastable states. Kirkpatrick et al. [49]
adapted the procedure to the computational field. It is useful for combinatorial and
continuous problems where the search space is high-dimensional and difficult to explore
exhaustively. The algorithm starts with an initial random solution. In each iteration, the
parameters Tmin, Tmax and Tstep are used to generate a new solution by varying the old one
according to a probability that depends on the current temperature and the decreasing ∆E
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parameter, based on the objective function. The probability is computed by applying the
Boltzmann distribution as follows:

P(∆E, T) =
f (s′)− f (s)

T
, (11)

where P(∆E, T) is the probability based on the Boltzmann distribution; f (s′) is the response
of the objective function evaluating the current solution denoted by s′; f (s) is the value of
the objective function evaluated with the previous solution (denoted by s).

The simulated annealing pseudocode is described in Algorithm 1.

Algorithm 1: Simulated annealing pseudocode.
Input:
Tmax /* Max temperature value */
Tmin /* Min temperature value */
Tstep /* Temperature variation from Tmax to Tmin */
begin

s = s0 /* Generate a random solution */
Tcurrent = Tmax
while Tcurrent > Tmin do

/* Select a random element */
snew = selectRandom(s)
if P(E(s), E(snew), Tcurrent) ≥ generateRandom(0, 1) then

s = snew
end
Tcurrent = Tcurrent − Tstep

end
end
Output: The final state s

2.2.2. Boltzmann Univariate Marginal Distribution Algorithm

The Boltzmann univariate marginal distribution algorithm (BUMDA) [50] is an evolu-
tionary computation technique from the family of estimation of distribution algorithms
(EDAs) [51]. In EDAs, new populations are generated based on the probability distribu-
tion over the search space of the current generation [52]. BUMDA uses the Boltzmann
probability distribution, which makes use of the mean and variance as follows:

µ = ∑
j

W(Xj)xj, where W(Xj) =
g(Xj)

∑Xj
g(Xj)

, (12)

ν = ∑
j

W ′(Xj)(Xj − µ)2, where W ′(Xj) =
g(Xj)

∑Xj
g(Xj) + 1

, (13)

where µ y ν are the objective function mean and variance obtained from the population,
respectively. g(Xj) is the value of the objective function obtained by the individual jth,
which belongs to population X. Consequently, similar to UMDA [53], a fraction of the
best individuals are considered to generate the new population. However, in BUMDA,
the selection rate for the new population is computed according to a selection threshold θ,
as follows:

θt+1 =


f (xnpop) if t = 1,
f (x npop

2
) if f (x npop

2
) >= θt,

f (xi) when f (xi) >= θt
∣∣∣∣npop

i= npop
2 +1

,
(14)

where npop is the population size.
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Only those individuals whose objective function value is higher or equal than θt+1

will be considered for the Boltzmann distribution and the generation of the new population.
The BUMDA pseudocode is described in Algorithm 2.

Algorithm 2: BUMDA pseudocode
Input:
D /* Problem dimension */
npop /* Population size */
Ngen /* Number of generations */
begin

Initialize t = 0, Xt ∼ U(0, 1)
Evaluate Ft = f (Xt)
Select [Xbest, Xt] = sort Xt, according to an objective function.
while t < Ngen do

for i = 1 . . . D do
pi = ∑nset

j=1 xi,j

end
Set P = [p1, p2, . . . , pD]
Select individuals for new generation by applying Equation (14)
Generate new population using µ and ν, which were calculated previously:

Xt+1 = [Xt+1
1:(npop−1) = random_normalized (µ, ν), xbest]

Set t = t + 1
Evaluate Ft = f (Xt)
Select [Xbest, Xt] = sort Xt, according to an objective function.

end
end
Output: xbest /* The best solution achieved */

BUMDA presents several advantages with respect to another population-based meta-
heuristics. For instance, in BUMDA, only the population size and the max number of
generations are required, because the selection rate is computed automatically. In addition,
the use of the Boltzmann distribution helps to generate populations with widely dispersed
individuals, which decreases the risk of falling into a local-optima solution.

2.3. Support Vector Machines

Support vector machines (SVMs) are supervised learning strategies designed at first
as lineal separators for binary classification [54,55]. When the instances are not linearly
separable (classifiable) in their original representation space, the SVM projects the instances
from their original representation space to higher-dimensional orders, where the linear
classification can be made [56]. In order to perform the projections, the SVM makes use of
those instances lying in both sides of the separation line (2D), plane (3D) or hyperplane
(4D or higher). The hyperplane depends only on the support vectors and not on any other
observations. The projection of the training instances in a space χ to a higher-dimensional
feature spaceF is performed via a Mercer kernel operator. For given training data x1, . . . , xn,
that are vectors in some spaces χ ⊆ Rd; the support vectors can be considered as a set of
classifiers expressed as follows [57]:

f (x) =
( n

∑
i=1

αiK(xi, x)
)

. (15)

When K satisfies the Mercer condition [58], it can be expressed as follows:

K(u, v) = Φ(u) ·Φ(v), (16)
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where Φ : χ → F and “·” denotes an inner product. With this assumption, f can be
rewritten as follows:

f (x) = w ·Φ(x),

w =
n

∑
i=1

αiΦ(xi).
(17)

3. Proposed Method

The proposed method consists of the steps of feature extraction, automatic feature
selection, feature subset testing and performance evaluation. The first stage is focused
in the extraction of 49 features from the image database by considering texture, intensity
and morphology feature types. The extracted texture features were those proposed by
Haralik [59], and the morphological features were based on Welikala [9]. The bank of 49
features is described below.

1. The minimum pixel intensity present in the patch.
2. The maximum pixel intensity present in the patch.
3. The mean pixel intensity in the patch.
4. The standard deviation of the pixel intensities in the patch.
5–18. Features 5 to 18 are composed of the Haralik features: angular second moment

(energy), contrast, correlation, variance, inverse difference moment (homogene-
ity), sum average, sum variance, sum entropy, entropy, difference variance, dif-
ference entropy, information measure of correlation 1, information measure of
correlation 2, maximum correlation coefficient.

19–32. The Haralik features applied to the Radon transform response of the patch: angu-
lar second moment (energy), contrast, correlation, variance, inverse difference mo-
ment (homogeneity), sum average, sum variance, sum entropy, entropy, difference
variance, difference entropy, information measure of correlation 1, information
measure of correlation 2, maximum correlation coefficient.

33. The Radon ratio-X measure.
34. The Radon ratio-Y measure.
35. The mean of pixel intensities from the Radon transform response of the patch.
36. The standard deviation of the pixel intensities from the Radon transform response

of the patch.
37. The vessel pixel count in the patch.
38. The vessel segment count in the patch.
39. Vessel density. The rate of vessel pixels in the patch.
40. Tortuosity 1. The tortuosity of each segment is calculated using the true length

(measured with the chain code) divided by the Euclidean length. The mean
tortuosity is calculated from all the segments within the patch.

41. Sum of vessel lengths.
42. Number of bifurcation points. The number of bifurcation points within the patch

when vessel segments were extracted.
43. Gray-level coefficient of variation. The ratio of the standard deviation to the mean

of the gray level of all segment pixels within the patch.
44. Gradient mean. The mean gradient magnitude along all segment pixels within

the subwindow, calculated using the Sobel gradient operator applied on the
preprocessed image.

45. Gradient coefficient of variation. The ratio of the standard deviation to the mean
of the gradient of all segment pixels within the subwindow.

46. Mean vessel width. Skeletonization correlates to vessel center lines. The distance
from the segment pixel to the closest boundary point of the vessel using the vessel
map prior to skeletonization. This gives the half-width at that point, which is then
multiplied by 2 to achieve the full vessel width. The mean is calculated for all
segment pixels within the subwindow.
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47. The minimum standard deviation of the vessel length, based on the vessel seg-
ments present in the patch. The segments are obtained by the tortuosity points
along the vessel.

48. The maximum standard deviation of the vessel length, based on the vessel seg-
ments present in the patch. The segments are obtained by the tortuosity points
along the vessel.

49. The mean of the standard deviations of the vessel length, based on the vessel
segments present in the patch. The segments are obtained by the tortuosity points
along the vessel.

In Figure 2, the overall hybrid evolutionary proposed method steps are illustrated.

Feature Extraction

Texture, Intensity,

Morphology

Automatic Feature Selection
driven by

and SVM-based classifier
Hybrid BUMDA-SA

Apply Feature Subset

Performance Evaluation
Bank of 49 features

on test set

Figure 2. Overall steps of the proposed method based on feature selection to classify coronary stenosis.

In the second step, the automatic feature selection task is performed. It is driven by
the proposed hybrid evolutionary strategy involving the BUMDA and SA techniques. In
this stage, BUMDA is initialized and iterated until the maximum number of generations
is reached. In the third step, the selected feature subset is tested using testing cases, and
finally, the obtained classification results are measured based on the accuracy and Jaccard
coefficient metrics in order to evaluate their performance.

In Figure 3, the hybrid evolutionary strategy is described in detail. This stage of the
proposed method is focused on the automatic feature selection task. It starts with the
BUMDA initialization, requiring only the max number of generations and the population
size. With BUMDA being a population-based technique, it produces a set of solutions
on each iteration. Each solution indicates which features will be used and which will be
discarded. Consequently, for each solution, a particular SVM is trained using only the
feature subset expressed in the solution. On each BUMDA generation, different SVMs
are trained according to each feature vector, which is represented by each individual in
the BUMDA population. Based on the SVM training accuracy and the number of selected
features, the best individual in each generation is selected. In the next step, the previously
selected individual is improved by the SA strategy. Since SA is a single-solution technique,
it is useful to improve the best solution produced by the BUMDA. If the SA-obtained
result is higher than the best result obtained by BUMDA, its best individual is replaced
by the individual improved by the SA. When the max number of BUMDA generations is
reached, the individual with the highest fitness value over all generations is selected as
the best solution achieved. This solution contains the selected feature subset, which will
be directly applied on the test set of coronary stenosis images. In this stage, the use of a
hybrid evolutionary strategy based on the BUMDA and SA techniques is relevant, because
SA helps to further reduce the number of features represented in the best solution achieved
in each BUMDA generation, at the same time keeping the training accuracy rate, or even
improving it.

For the experiment, two different image databases were used. The first database was
provided by the Mexican Social Security Institute (IMSS) and approved by a local committee
under reference R-2019-1001-078. It contains 500 coronary image patches, with a proportion
of 50%− 50% for positive and negative stenosis cases. From this database, 400 instances
were used for the automatic feature selection stage and the remaining 100 instances were
used for testing after this stage ends. All patch sizes were 64× 64 pixels and were validated
by a cardiologist. Figure 4 illustrates sample patches of the IMSS database with their
respective vessel segmentation response and skeleton, according to the Frangi method,
from which the morphological-based feature extraction task was performed.
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Generate initial population

Sort population

BUMDA Initialization
Set population size

Set max number of generations

Evaluate population

For each individual, train SVM and

test it using the validation group

based on objective function

Improve Best Individual

Select Best Individual and

Improve it using SA strategy

Generate New Population

based on BUMDA strategy

  

Repeat

until

Max Number of Generations is Reached

Replace BUMDA Best Individual

with SA Improved Individual

  

Figure 3. Steps of the proposed hybrid evolutionary method focused in the automatic feature selection
task in order to determine the best tradeoff between number of features and classification rate.

(a)      (b)      (c)      (d)      (e)      (f)      (g)      (h)      (i)      (j)

(1)

(2)

(3)

Figure 4. Patches taken from the IMSS database. Row (1) contains the original image. Row (2)
contains the corresponding Frangi response, which is binarized, applying the Otsu method. Row (3)
contains the corresponding vessel skeleton. Columns (a–e) are positive stenosis samples. Columns
(f–j) are negative stenosis samples.

The second database was provided by Antczak [18], which is publicly available.
It contains 2700 instances, which are also balanced for positive and negative stenosis
cases. From this database, 2160 instances (80%) were used for training and the remaining
540 instances were used for testing. Figure 5 illustrates sample patches of the Antczak
database with their respective vessel segmentation response and skeleton, according with
the Frangi method.

(a)      (b)      (c)      (d)      (e)      (f)      (g)      (h)      (i)      (j)

(1)

(2)

(3)

Figure 5. Patches taken from the Antczak database. Row (1) contains the original image. Row (2)
contains the corresponding Frangi response, which is binarized with the Otsu method. Row (3)
contains the corresponding vessel skeleton. Columns (a–e) are positive stenosis samples. Columns
(f–j) are negative stenosis samples.
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In order to evaluate the performance of the proposed method, the accuracy metric (Acc)
and the Jaccard similarity coefficient (JC) were adopted. The accuracy metric considers
the fraction of correct classified cases as positive or negative by defining four necessary
measures: true-positive cases (TP), true-negative cases (TN), false-positive cases (TP) and
false-negative cases. The TP value is the fraction of positive cases classified correctly. The
TN value is the fraction of negative cases classified correctly. The FP cases is the fraction of
negative cases classified as positive. The FN value is the fraction of positive cases classified
as negative. Based on this, the accuracy is computed as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (18)

The JC measures the similarity of two element sets. Applying this principle, it is
possible to measure the accuracy of a classifier using only positive instances, as follows:

JC =
TP

TP + FP + FN
. (19)

It is important to mention that only the IMSS database was used for the automatic
feature selection stage. Furthermore, with the Antczak database, only the feature subset
obtained by the proposed method was used in order to probe the method’s effectiveness.
Additionally, classic search techniques from the literature, such as the Tabú search (TS) [60]
and the iterated local search (ILS) [61], were also included in the experimentation. For the
hybrid approaches, the simulated annealing strategy was used in all experiments in order
to improve the best solution achieved for each particular technique.

4. Results and Discussion

In this section, the proposed method for feature selection and automatic classification is
evaluated with different state-of-the-art methods using two databases of X-ray angiograms.
All the experiments were performed using the Matlab software version 2018 on a computer
with an Intel core i7 processor with 8 GB of RAM.

Table 1 describes the parameter settings of the compared methods used in the auto-
matic feature selection stage, considering the same conditions for all of them in order to
avoid biased measurements.

The SA strategy was configured with Tmax = 1, Tmin = 0 and Tstep = 0.01. In order
to ensure the obtained results, the proposed method was performed with 30 independent
trials. For the SVM, 1000 max iterations were established using a cross-validation with
k = 10. The parameter values for all techniques described previously were set taking into
account the tradeoff between the classification accuracy and the execution time required to
achieve a solution.

Table 1. Main parameter settings of compared methods in the automatic feature selection stage.

Method Population
Size

Max.
Generations Selection Rate Trials

UMDA 30 500 0.70 30
GA 30 500 0.70 30
TS 30 500 – 30
ILS 30 500 – 30
BUMDA 30 500 Auto 1 30
Hybrid GA 30 500 0.70 30
Hybrid TS 30 500 – 30
Hybrid ILS 30 500 – 30
Proposed (BUMDA-SA) 30 500 Auto 1 30

1 The selection rate of BUMDA is computed automatically.



Axioms 2023, 12, 462 12 of 18

In Table 2, a comparative analysis related to the best results obtained by different
strategies during the automatic feature selection stage is presented.

Table 2. Comparative analysis of 30 runs between different evolutionary and path-based metaheuris-
tics in terms of accuracy using the training set of the IMSS database. The SVM method was set as the
classifier in the experiments.

Feature Selection Method Number of Features
Accuracy Training

Max Mean Std. Dev.

None 49 0.90 0.90 0.00
UMDA 20 0.94 0.87 0.02

GA 19 0.96 0.88 0.03
TS 35 0.87 0.82 0.03
ILS 26 0.92 0.83 0.06
SA 27 0.91 0.87 0.02

BUMDA 19 0.95 0.89 0.04
Hybrid GA 13 0.96 0.88 0.06
Hybrid TS 29 0.93 0.84 0.06
Hybrid ILS 22 0.90 0.85 0.02
Proposed

(BUMDA-SA) 11 0.96 0.89 0.03

Based on the results described in Table 2, the SVM training efficiency was improved in
almost all cases when only a feature subset was used instead of the full set with 49 features.
This behavior is because of the difficulty in projecting a high amount of overlapped data to
dimensional orders higher than 49-D. Consequently, the proposed method achieved the
best result since only 11 of 49 features were selected. This means that 78% of the initial
feature set was discriminated, achieving a training rate efficiency of 0.96 at the same time
in terms of the accuracy metric. In addition, some of the compared methods presented
important variations on the best solution achieved according to the standard deviation
accuracy, which gives some evidence of possible local-optima falls in some of the trials.
In contrast, the standard deviation for the accuracy of the proposed method was lower,
and considering the tradeoff between all measured factors, such as number of selected
features, max training accuracy, mean training accuracy and standard deviation accuracy,
the proposed method achieved the highest score.

After the automatic feature selection process was performed, in the next stage, the best
feature subset, which was achieved by the hybrid BUMDA-SA method, was tested using
the test cases from the IMSS and the Antczak databases, separately. Table 3 contains the
corresponding confusion matrix, from which the accuracy and Jaccard coefficient metrics
are computed.

Table 3. Confusion matrix using 100 test cases from the IMSS database using the proposed method.

Real Class

Positive Negative Total

Predicted Class

Positive 44 4 48

Negative 6 46 52

Total 50 50 100

In Table 4, a comparative analysis between the proposed method and different state-
of-the-art methods is presented, using the test set of 100 images of the IMSS database. The
results of the proposed method are described based on the confusion matrix presented
in Table 3.
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Table 4. Comparison of stenosis classification performance between the proposed method and
different methods of the state of the art, using the test set of the IMSS database in terms of the
accuracy and Jaccard coefficient.

Method Number of
Features Reduction Rate Accuracy Jaccard

Coefficient

GLNet [62] – – 0.85 0.78
UNet [63] – – 0.87 0.79

CNN-16C [18] – – 0.86 0.79
SVM 49 0.00 0.87 0.77

UMDA [61] 20 0.59 0.89 0.80
GA 20 0.61 0.87 0.72
TS 35 0.32 0.80 0.74
ILS 26 0.46 0.82 0.69
SA 27 0.44 0.84 0.72

BUMDA 19 0.61 0.87 0.80
Hybrid GA 13 0.73 0.85 0.72
Hybrid TS 29 0.41 0.78 0.62
Hybrid ILS 22 0.55 0.81 0.68
Proposed

(BUMDA-SA) 11 0.78 0.90 0.81

According to the data presented in Table 4, the proposed method achieved the highest
classification rate in terms of the accuracy and Jaccard coefficient metrics, whose values
were 0.90 and 0.81, respectively. By contrasting the accuracy in the training and testing
stages, there is evidence of variation rates corresponding to the compared strategies. In
Figure 6, the variation differences in accuracy in the training and testing stages for the
contrasted strategies are illustrated.

The values of the accuracy rates show how competitive the feature subset was at
classifying stenosis cases. It is remarkable how some feature subsets give evidence of
possible overfitting training, such as the Hybrid-TS, since the training accuracy was 0.93
against 0.78 when using testing cases. In contrast, the proposed method achieved a low
difference in performance in the training and testing phases compared with the Hybrid-TS
and the Hybrid-GA techniques, which was 0.06, indicating that the achieved subset with
11 features is highly suitable for the classification task.
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Figure 6. Variation rate computed as the difference in accuracy between training and testing phases
for the applied strategies.



Axioms 2023, 12, 462 14 of 18

In order to evaluate the subset of 11 features achieved by the proposed hybrid BUMDA-
SA method in the automatic feature selection stage, the Antczak database was used. In
Table 5, the confusion matrix obtained from the proposed method using the Antczak
database is presented.

Table 5. Confusion matrix of 700 testing cases, which corresponds to the Antczak database, using the
subset of 11 features obtained by the proposed method.

Real Class

Positive Negative Total

Predicted Class

Positive 246 18 264

Negative 25 251 276

Total 271 269 540

On the other hand, in Table 6, the results obtained by the proposed method and
different strategies in the testing stage using the Antczak database are presented.

Based on the results presented in Table 6, the highest accuracy and Jaccard coefficient
rates were achieved with the proposed method, whose values were 0.92 and 0.85 respec-
tively. This result is relevant to show that the feature subset found by the proposed hybrid
BUMDA-SA method is suitable. Consequently, it is important to mention that according
to the results presented in Tables 4 and 6, the GA and UMDA techniques achieved very
closed accuracy rates in contrast with the proposed method. However, the reduction rate,
which is related to the number of selected features, was overcome by the proposed method
when it was contrasted with the other methods. In addition, the proposed method also
achieved the highest Jaccard coefficient rate compared with the others. It is important to
mention these findings in order to show the importance of the use of a hybrid strategy in
this multiobjective problem, where is required to keep or improve a high accuracy rate in
the classification task, and at the same time, the use of a minimum number of features.

Table 6. Automatic classification testing rates achieved by the proposed method and different
strategies using the Antczak database in terms of accuracy and Jaccard coefficient.

Method Number of
Features Reduction Rate Accuracy Jaccard

Coefficient

GLNet [62] – – 0.72 0.63
UNet [63] – – 0.76 0.72

CNN-16C [18] – – 0.86 0.74
SVM 49 0.00 0.69 0.46

UMDA 20 0.59 0.86 0.75
GA 19 0.61 0.85 0.73
TS 35 0.32 0.76 0.57
ILS 26 0.46 0.81 0.66
SA 27 0.44 0.82 0.68

BUMDA 19 0.61 0.88 0.79
Hybrid GA 13 0.73 0.85 0.74
Hybrid TS 29 0.41 0.78 0.64
Hybrid ILS 22 0.55 0.81 0.68
Proposed

(BUMDA-SA) 11 0.78 0.92 0.85

Finally, in Table 7, the set of 11 features obtained by the proposed method is de-
scribed, along with the frequency selection rate obtained from the statistical analysis of the
30 independent runs.
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Table 7. Frequency rate and description of the set of 11 features obtained from the proposed hybrid
BUMDA-SA method.

Feature Number Feature Name Feature Type Frequency Rate

1 Min Intensity 0.63
10 Sum Average Texture 0.47
11 Sum Variance Texture 0.43

42 Number of
Bifurcation Points Morphological 0.20

24 Radon Sum Average Texture-Radon 0.13

16 Information Measure
of Correlation 1 Texture 0.10

43
Gray Level

Coefficient of
Variation

Morphological 0.10

48 Max Stdev. of Vessel
Length Morphological 0.10

15 Difference Entropy Texture 0.07

29 Radon Difference
Entropy Texture-Radon 0.07

48
Radon Information

Measure of
Correlation 2

Texture-Radon 0.03

According to the results presented in Table 7, the Min, Sum Average and Sum Variance
features, which correspond to intensity and texture, have the highest frequency selection rates,
followed by the Bifurcation Points and Radon-Sum features, which corresponds to morphology
and Radon-based texture, respectively. This analysis is relevant since it allows us to remark on
the importance of performing the automatic feature selection process with a high number of
features involving different feature types such as texture, intensity and morphology.

5. Conclusions

In this paper, a novel method for the automatic classification of coronary stenosis
in X-ray angiograms was introduced. The method is based on feature selection using
a hybrid evolutionary algorithm and a support vector machine for classification. The
hybrid method was used to explore the high-dimensional search space O(2n) of a bank
of 49 features involving properties of intensity, texture, and morphology. To determine
the best evolutionary method, a comparative analysis in terms of feature reduction rate
and classification accuracy was performed using a training set of X-ray images. From the
analysis, the method using BUMDA and SA achieved the best performance, selecting a
subset of 11 features and achieving a feature reduction rate of 77.5%, and a classification
accuracy of 0.96. Moreover, two different databases of coronary stenosis were used; the first
one was provided by the Mexican Social Security Institute (IMSS), containing 500 images;
and the second database is publicly available, with 2700 patches. In the experimental results,
the proposed method, using the set of 11 selected features, was compared with different
state-of-the-art classification methods, achieving an accuracy and Jaccard coefficient of 0.90
and 0.81 in the first database and 0.92 and 0.85 in the second one, respectively. Finally, it
is important to point out that considering the execution time obtained by the proposed
method when testing images (0.02 s per image), the proposed method can be useful in
assisting cardiologists in clinical practice or as part of a computer-aided diagnostic system.
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