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Abstract: In this paper, we study the spectral properties of polarobreathers, that is, breathers car-
rying charge in a one-dimensional semiclassical model. We adapt recently developed numerical
methods that preserve the charge probability at every step of time integration without using the
Born–Oppenheimer approximation, which is the assumption that the electron is not at equilibrium
with the atoms or ions. We develop an algorithm to obtain exact polarobreather solutions. The prop-
erties of polarobreathers, both stationary and moving ones, are deduced from the lattice and charge
variable spectra in the frequency–momentum space. We consider an efficient approach to produce
approximate polarobreathers with long lifespans. Their spectrum allows for the determination of
the initial conditions and the necessary parameters to obtain numerically exact polarobreathers. The
spectra of exact polarobreathers become extremely simple and easy to interpret. We also solve the
problem that the charge frequency is not an observable, but the frequency of the charge probability
certainly is an observable.

Keywords: nonlinear waves; discrete breathers; polarobreathers; charge transport; spectra
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1. Introduction

The subject of a charge moving when coupled to a lattice vibration has a long his-
tory [1,2]. This phenomenon is very different from Ohmic conductivity in metals and
semiconductors, where electrons in the conduction band or holes in the valence band
move freely within a crystal. In insulators, where all the bands are either occupied or
empty, but also in metals and semiconductors, an extra charge outside the bands may be
attached to some atom or ion and have a low probability of moving to another position.
The deformation it produces in the lattice can travel, and is known as a polaron [3–5]. The
charge—electron, or hole—changes its position to the same state in a neighboring atom.
Polarons were first conceived as either a static solution or coupled to phonons, which were
set in motion by an external electric field, but there are other possibilities as explained
below. There is a probability that a charge may change to the neighboring site due to
the overlapping of the electron wavefunctions in each atom, described by the transfer
integral. It is clear that if the distance between atoms decreases, there will be an increase in
the transition probability, and vice versa. Even for a symmetric vibration, the increase in
the transition probability is much larger for shorter distances than the other way around,
leading to an exponential dependence on the change in the potential barrier [6].

The level of description in which an electron or hole can be ascribed to a single atom
is called the tight-binding approximation. It allows for a semiclassical treatment, in which
the heavier atoms are described classically and the much lighter electron is described as a
quantum particle. A system can be described in terms of the atomic states, and the quantum
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Hamiltonian is expressed in terms of the energies of these states and the transfer matrices;
the latter often depend on the distance exponentially.

Large displacements of the atoms or ions in a crystal imply that the linear description
is no longer valid. This nonlinearity may lead to the apparition of localized entities or,
when traveling, solitary waves. Notable examples at the macroscopic scale are tsunamis,
which travel thousands of kilometers at jet speed in a different manner to usual sea waves.
Only slightly less impressive are tidal bores, solitary waves that travel upriver when the
incoming tide encounters the outcoming one. Moreover, rogue waves in the sea appearing
apparently from nowhere have been proven to exist by systematic satellite observations.

These solitary waves can be kinks, solitons [7,8], or breathers, also called intrinsic local-
ized modes [9–11]. Solitons and kinks have a constant profile in the moving frame, where
solitons become zero at ±∞, while kinks only at one of ±∞, and tend to a constant at the
other infinity. Breathers also have a vibrating profile. Sometimes the distinction depends on
the variables used. Important steps in breather theory were the mathematical proof of their
existence [12,13] and Floquet and band theory for breathers [14–16], which later expanded
to dark breathers [17,18] and multibreathers [19,20]. They have been obtained with classical
molecular dynamics [21,22] and ab initio molecular dynamics [23,24]. Recently, the spectral
theory of exact moving breathers was developed, showing that breathers admit a very sim-
ple description in their moving frame, where they have usually a single frequency [25,26].
On the one hand, this makes possible the interpretation of numerical spectra, and on the
other, it facilitates the integration methods.

The large displacements bringing neighboring atoms closer and increasing the proba-
bility of charge transfer between atoms in semiclassical systems lead to a strong coupling
between charge and vibrations. The combined entities are called polarobreathers [27–29],
or solectrons in some systems [30,31]. The mathematical methods are often within the
Born–Oppenheimer approximation [32], that is, supposing that the electrons are always
in an equilibrium state with the configuration of atoms around them, due to their dynam-
ics being much faster than the dynamics of the atoms. The authors have overcome this
limitation by developing efficient numerical methods for semiclassical systems, based on
splitting methods that conserve the charge probability at each step of time integration [33].
On the experimental side of polarobreathers, it was recently discovered that by bombard-
ing layered silicates and other materials with alpha particles, it was possible to measure
electrical currents in the absence of an electric field; the electrons or holes were carried by
nonlinear lattice excitations [34,35].

The purpose of this paper is to apply the theory of exact polarobreathers in their
moving frame to a semiclassical system, using numerical integration methods developed
in Ref. [33]. In this way, we clarify the polarobreather spectra, facilitate their description,
develop the mathematical methods for obtaining numerically exact polarobreathers, and
compare their spectra with the approximate ones. The results can help to identify bands in
the spectra of some materials where nonlinear vibrations couple to nonfree charges. The
lattice part of the model without the charge is given by a Frenkel–Kontorova model [36,37]
with the Lennard-Jones interaction potential, because it has been proven extremely good
for producing long-lived breathers in two-dimensional systems [38,39].

The layout of the article is as follows. Section 2 presents the semiclassical system and
its transformation into a Hamiltonian one. Section 3 deals with an important problem of
the charge description: that the charge frequencies are not an observable of the system. In
Section 4, a review of the theory of exact traveling excitations is presented. The linearization
of the system is performed in Section 5. Very useful calculations, known as tail analysis,
which advance many properties of nonlinear excitations, are presented in Sections 6 and 7
for stationary and moving polarobreathers, respectively. In Section 8, the developed numer-
ical methods to solve dynamical equations and obtain exact polarobreathers are described.
Sections 9 and 10 analyze stationary and moving polarobreathers, respectively, following a
similar pattern: generation, description of the spectrum of approximate polarobreathers,
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obtainment of exact solutions and interpretation of their spectra, stability analysis, and
path continuation. The article ends with the conclusions.

2. The Model

We consider a model of N particles, atoms or ions, with a classical and a quantum
Hamiltonian imposing periodic boundary conditions. The classical Hamiltonian is given by

HL = KE + UE + VE =
N

∑
n=1

(
1
2

p2
n + U(un) + V(1 + un+1 − un)

)
. (1)

In this equation, the variable un is the separation of the particle n from the equilibrium
position using the lattice unit as length unit; pn represents the momentum of the particle n,
pn = mvn = mu̇n equal to pn = u̇n because the mass of the particle is chosen as the mass
unit. Therefore, KE = ∑N

n=1
1
2 p2

n is the kinetic energy of the system. UE = ∑N
n=1 U(un), is

the sum of the on-site energies of the classical system with respect to their equilibrium
positions. It represents the interaction of the system with other systems, as other lay-
ers in silicates, or simply other atom chains in a crystal. Due to the periodicity of the
crystal, the simplest form for the on-site energy for a particle is given by the first-order
Fourier series, with the condition that un = 0 is a stable equilibrium with zero energy:
U(un) = U0(1− cos(ω0 un)), known as the Frenkel–Kontorova model. The depth of the
potential well is taken as unit of energy, i.e., U0 = 1, and the period T0 of small oscillations
of a particle in the potential well U(un) is taken as time unit, i.e., ω0 = 2π. The interaction
energy VE = ∑N

n=1 V(1+ un+1− un) is the sum of interaction energies between the particles
of the system, that is, the energy of the interaction of the system with itself, described as
pairs of Lennard-Jones potential between nearest neighbors. The Lennard-Jones potential
has the generic physical property of growing to infinity when the distance between particles
becomes zero and tending to a constant value, i.e., with zero derivative or zero force, when
the particles separate. The Lennard-Jones potential is given by:

V(r) = ε

((σ

r

)12
− 2
(σ

r

)6
)

.

The interaction potential has a minimum at r = σ with depth ε, being the ratio between
the interaction energy and the on-site energy. We use ε = 0.05, a value that brings about
the extraordinary mobility of breathers, both in the system without charge [38,39] and with
it [33]. We consider σ = 1, that is, also equal to the lattice constant, which is justified by the
fact that there are no forces on the lattice particles at the equilibrium position. We also add
the well depth ε to the interaction potential in order to have zero energy at the equilibrium
distance.

The quantum Hamiltonian [40] for an electron or hole added to the system is given by:

Ĥc =
N

∑
n=1

(En|n〉〈n| − J(un+1 − un)[|n〉〈n + 1|+ |n + 1〉〈n|]), (2)

with the expectation value:

Hc =
N

∑
n=1

(
Enc∗ncn − J(un+1 − un)

[
c∗ncn+1 + c∗n+1cn

])
, (3)

which is real, since c∗ncn+1 + c∗n+1cn = 2 Re(c∗ncn+1).
|cn|2 = c∗ncn is the probability that the charge is located at site n with energy En, and

the sum of probabilities adds to one, i.e.,

N

∑
n=1
|cn|2 = 1. (4)
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The complex variable cn is the n-th component of |ψ〉 = ∑n cn|n〉, where |n〉 represents
the state for which the charge is completely localized at site n. The possibility of expanding
the wave function in a basis of localized states |n〉, that is, states for which the electron is
tight-bound to a single atom of the system, consists of the tight-binding approximation.

The evolution of the wave function |ψ〉 is described by the Schrödinger equation
ih̄∂t|ψ〉 = Ĥc|ψ〉. The Hamiltonian Ĥc in (2), acting on |ψ〉 = ∑m cm|m〉, leads to:

Ĥc ∑
m

cm|m〉 = ∑
n,m

En|n〉〈n|cm|m〉 − J(un+1 − un)[|n〉〈n + 1|cm|m〉+ |n + 1〉〈n|cm|m〉],

where 〈n|cm|m〉 = cnδn,m. The left hand side of the Schrödinger equation becomes ih̄∂t|ψ〉 =
∑n ih̄ċn|n〉. Identifying the components on the basis of vectors {|n〉} in both sides of
the evolution equation, we obtain the following evolution equation for the probability
amplitudes cn’s:

iτċn = Encn − J(un+1 − un)cn+1 − J(un − un−1)cn−1, (5)

where τ is the reduced Planck constant h̄ = h/2π in scaled units, with h being the
Planck constant. In Refs. [25,41], which study a particular model for the movement of
potassium ions in a silicate layer, the scaled units for length, energy, mass, and time are
uL = 5.19 Å, the interatomic distance; uE = kee2/uL ' 2.77 eV, the electric potential
energy between two ions with unit charge e; uM = 39.1 amu, the mass of an ion; and
uT = (uMu2

L/uE)
1/2 ' 0.2 ps, the derived unit from the previous ones. In those units,

τ = h̄/uEuT ' 0.00119. In this article, we do not refer to a specific model, but we use
τ = 0.001 to have a correct order of magnitude. Note that the ratio of masses between a
proton and an electron, approximately 2000, is coherent with the fastest movement of the
electron with respect to the atoms in the lattice by a factor of 1/τ.

Equation (3) is the expected value of the Hamiltonian Ĥc (2) when the system is in
the state |ψ〉 = ∑n cn|n〉, i.e., Hc = 〈ψ|Ĥc|ψ〉. Ĥc is represented on the basis of |n〉 by a
matrix with elements 〈n|Ĥc|m〉. En = 〈n|Ĥc|n〉 are, therefore, the diagonal elements. The
off-diagonal matrix elements, also called the transfer matrix elements, are Jm,n = 〈m|Ĥc|n〉,
and are related with the probability of transition between the sites n and m. We suppose
that they are zero, except for the nearest-neighbor particles, and that they depend on the
distance between particles in the form:

Jn+1,n =J(un+1 − un) = J0 exp(−α[1 + un+1 − un])

=I0 exp(−α[un+1 − un]), with I0 = J0 exp(−α). (6)

Therefore, the transfer elements and the probability of transition between sites increase
rapidly when the particles become closer. The parameter values are α = 15, a value
corresponding to the n = 3 orbitals; and I0 = J0 exp(−α) = 5× 10−4, a good value for
an insulator at equilibrium. Both values are also very convenient for producing traveling
polarobreathers [33]. En represents the charge energy at the n-th site, and in general, it
may depend on the variables of the lattice. We keep it in the general notation, but in the
present paper, we consider it uniform and constant, which makes possible to set it to zero.
However, the nonzero value is useful, as explained below in Section 3.

The expected Hamiltonian for the lattice and the charge is given by H = HL + Hc,
with Hamiltonian equations for the lattice variables:

u̇n = pn and ṗn = − ∂H
∂un

. (7)

Therefore, the system of governing mathematical equations of the charge–lattice
interactions reads as:
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ün =−U′(un) + V′(1 + un+1 − un)−V′(1 + un − un−1)

− J′(un+1 − un)
(
c∗ncn+1 + c∗n+1cn

)
+ J′(un − un−1)

(
c∗n−1cn + c∗ncn−1

)
, (8)

iτċn =Encn − J(un+1 − un)cn+1 − J(un − un−1)cn−1, (9)

where we have omitted the explicit dependence on t from the variables.
Considering the time-dependent variables an and bn, the real and imaginary parts

of
√

2τcn, where the normalization is required, the governing Equations (8) and (9) can be
written in the canonical Hamiltonian form with the Hamiltonian:

H =
N

∑
n=1

(
1
2

p2
n + U(un) + V(1 + un+1 − un)

+
1

2τ
En

[
a2

n + b2
n

]
− 1

τ
J(un+1 − un)[anan+1 + bnbn+1]

)
, (10)

which is the sum of the lattice and charge Hamiltonians (1) and (3), respectively, in variables
un, an, pn, and bn. For the components un, an, pn, and bn of the canonical variables, the
canonical Hamiltonian equations derived from (10) are:

u̇n =pn, (11)

ȧn =
1
τ

Enbn −
1
τ

J(un+1 − un)bn+1 −
1
τ

J(un − un−1)bn−1, (12)

ṗn =−U′(un) + V′(1 + un+1 − un)−V′(1 + un − un−1)

− 1
τ

J′(un+1 − un)(anan+1 + bnbn+1) +
1
τ

J′(un − un−1)(an−1an + bn−1bn), (13)

ḃn =− 1
τ

Enan +
1
τ

J(un+1 − un)an+1 +
1
τ

J(un − un−1)an−1, (14)

for all n = 1, . . . , N. Note that the total probability (4) is conserved along the solutions of
Equations (11)–(14) as the sum:

N

∑
n=1

a2
n + b2

n = 2τ,

is conserved. We solve the canonical Hamiltonian Equations (11)–(14) with the exact charge
probability (4) conserving, symplectic numerical method of Ref. [33] described in Section 8.1,
to obtain the solution for the charge amplitude cn = (an + ibn)/

√
2τ and its probability

|cn|2 = (a2
n + b2

n)/2τ. In addition, in Section 8.2, we describe the numerical algorithm
based on nonlinear least squares for the computation of numerically exact time-periodic
stationary and moving polarobreathers.

3. Frequency Shift of the Charge Amplitudes {cn}
Let us define new probability amplitudes {c̃n} = {cn exp(−iµt)} with real µ that

does not depend on n. This change conserves the density matrix [40], that is, the products
c̃n c̃∗m = cnc∗m do not change. Consider a state vector |φ〉 = ∑n cn|n〉 and a quantum
observable, corresponding to a Hermitian operator Â. The expected value of the observable
is given by 〈A〉 = 〈φ|Â|φ〉 = ∑n,m An,mcnc∗m. It is obvious that cn and c̃n bring about the
same expected values as well as derivatives of the expected values, as in (8). There is
no physical form to detect the difference between the two sets of probability amplitudes;
the kets |φ〉 and |φ̃〉 represent the same state. They are not, however, solutions of the
same Equation (9), as can be seen by supposing that cn is a solution, and substituting
cn = c̃n exp(iµt) in (9) we obtain:
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iτ
d(c̃n exp(iµt))

dt
=Encn − J(un+1 − un)cn+1 − J(un − un−1)cn−1,

iτ ˙̃cn exp(iµt)− c̃nµτ exp(iµt) =Encn − J(un+1 − un)cn+1 − J(un − un−1)cn−1. (15)

Multiplying (15) by exp(−iµt), we arrive at the equation:

iτ ˙̃cn = (E0 + En)c̃n − J(un+1 − un)c̃n+1 − J(un − un−1)c̃n−1, (16)

where E0 = µτ. Therefore, multiplying the solution cn of (9) by exp(−iµt) brings about a
new solution to Equation (9), but with the energy level shifted up by E0 = µτ.

This is a valuable property; exact solutions cn of (9) do not need to be periodic, but
there may exist a solution c̃n = cn exp(−iµt), which is periodic and a solution of the same
evolution Equation (9) with the energy shift E0 = µτ to En, and therefore, with a frequency
shift µ = E0/τ for all the frequencies. As we have seen above, the magnitude E0 does
not appear in any physical observable. It is equivalent to fixing the gravitational potential
energy at some specific height.

The actual solution could be obtained as cn = c̃n exp(iµt) from (16), but this is actually
irrelevant, since we simply can obtain the actual energies and frequencies of the original
system (9) by subtracting E0 and E0/τ from the energy and frequency values, respectively.

4. Review of the Properties of Exact Moving Breathers and Solitons

Before analyzing the properties of polarobreathers, it is useful to review the properties
of exact moving excitations—breathers or solitons. See Refs. [25,26] for details. We focus
on the lattice variables un, but similar analysis applies to |cn|2 and cn. Figure 1 illustrates
the properties below.

Exact traveling wave: An exact traveling wave with velocity Vb is characterized by a
function or sum of functions of the form:

un = f (n−Vbt, Ωt),

with f a 2π periodic on its second one, and with the following condition below.

Fundamental time and step: There exist a fundamental time TF and an integer number
called the step s, so the profile f repeats exactly after a time TF. The velocity is then
Vb = s/TF.

Localized solutions: If f is localized in the first variable, it may be a breather, soliton, or
kink. We will refer to it as a breather for simplicity. Then, we write the second variable
as Ωbt. If it is delocalized, it is an exact extended traveling wave.

Fundamental frequency: ωF = 2π/TF. The relevant frequencies are integer multiples
of ωF, among which is the frequency associated to the velocity, i.e., the frequency at
which a traveler in the moving frame encounters particles 2πVb = sωF.

Frequency in the moving frame: Ω is the frequency in the moving frame, because if an
observer moves with the breather, then n − Vbt ≈ 0, and there remains a single
frequency Ω, Ωb for the breather. We do not take into account the variation due to
the discreteness.

Exactness: The exactness condition implies that Ω = mωF for the integer m, or mb for the
breather.

Harmonic modes: The breather, as any function of (n, t), can be expressed as a sum of
harmonic waves, also called modes uq = Aq exp

(
i[qn−ωqt]

)
, with ωq being the

laboratory frequency of each mode.
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Figure 1. Plot of the XTFT of exact breathers together with the dispersion relations for un (continuous
line) and cn (dashed line), the latter only for reference. (Left) Stationary soliton-breather. (Right)
Moving soliton-breather, resonant lines and the breather line, mb = 4. The breather frequency in the
moving frame Ωb = mbωF and the fundamental frequency ωF are also marked. In this case the step
s = 1. See Section 4 for details.

Resonant modes: Resonant modes with the breather are all the modes that advance the
step s in the time TF, that is, they are also exact with the same step and fundamental
frequency. They can be written as Aq exp(i[(qn−Vbt)−mωFt]).

Resonant lines: Therefore, the laboratory frequencies of the resonant modes are given by
ωq = mωF + qVb. They form parallel straight lines called resonant lines, with slope
Vb, and cross the vertical axis (q = 0) at Ωm = mωF, for the m integer. All modes in a
resonant line travel with speed Vb and have the same frequency in the moving frame
Ωm = mωF.

Breather line: All the modes in the spectrum of the localized exact solution un are within
one resonant line, with m = mb, that is, the breather line. Note that the breather line
ends at q = π and reappears at q = π − 2π = −π as a different resonant line.

Breather frequency in the moving frame: The breather line crosses the vertical axis (q = 0)
at Ωb = mbωF, the frequency of the breather in the moving frame.

Transformation to the moving frame: Changing the frame of reference to the one moving
with the breather, it is equivalent to the transformation ω → ωMF = ω − qVb. The
resonant lines and the breather line become horizontal lines with the frequencies in
the moving frame.

Soliton or kink: If Ωb = 0, the excitation is a kink or soliton, that is, a static profile in the
moving frame.

Wing: If a resonant line crosses the dispersion band, there is a resonant phonon, i.e., a
solution to the linearized equation, that may bring about a wing. It is an extended
wave that travels with the localized solution, becoming a pterobreather, pterosoliton,
or pterokink. The wing may be an integral part of the solution to the nonlinear
dynamical equations, that is, it will not exist without the wing [42].

Commensurability condition: The breather line frequency change for ∆q = 2π is ∆Ωb =
Vb∆q = 2πVb, the velocity frequency, which is given by sωF. Then,

Ωb
∆Ωb

=
Ωb

2πVb
=

mb
s

(17)

is a rational number. This important property allows for the determination of mb, s,
ωF, Ωb, and Vb = ∆Ωb/2π, by simple inspection of the breather spectrum. ∆Ωb is
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also the difference in frequency between the breather line and its continuation when
π → −π. The moving frame frequency and the velocity frequency are commensurate.

5. Linear Approximations

In this section we obtain, the linearized equations corresponding to the dynamical
Equations (8) and (9). We will use them to obtain the dispersion relations (DRs), also called
the phonon bands, both for the variables un and cn, while there is no dispersion relation for
ρn = |cn|2. They provide the vibrational modes at small amplitude, the phonons, and they
are necessary to understand the spectrum of larger-amplitude polarobreathers formed with
modes that separate from the linear ones, as observed in Sections 9 and 10. In general, the
larger the amplitude, the larger the separation from the phonon band.

The dispersion relations are also useful for the tail analysis used in Sections 6 and 7,
which supposes that a localized nonlinear solution has a core of large amplitude that
decreases at sites further away from the core, forming a tail of decreasing amplitude. A few
sites away from the core, when the amplitude is small enough, the lattice variables would
abide by the linear dispersion relations, with a decreasing exponential solution valid only
to one side of the core and at some distance from it. This simple method is extremely useful
for predicting the properties of nonlinear excitations, such as the increase or decrease in
frequency with respect to phonons with the same wavenumber. In this way, the properties
of the polarobreathers in Sections 9 and 10 can be easily understood.

If we expand the terms in the dynamical Equations (8) and (9) to the first order in their
variables, using ω2

0 = U′′(0) = 4π2, C = V′′(1) = 72ε = 3.6, and

J(un+1 − un) =J(0) + J′(0)(un+1 − un) + . . . = I0 − αI0(un+1 − un) + . . . ,

J′(un+1 − un) =J′(0) + J′′(0)(un+1 − un) + . . . = −αI0 + α2 I0(un+1 − un) + . . . ,

and also seeing (6), we obtain:

ün =−ω2
0un − C(2un − un+1 − un−1)

+ αI0[1− α(un+1 − un)](c∗ncn+1 + c∗n+1cn)

− αI0[1− α(un − un−1)](c∗n−1cn + c∗ncn−1), (18)

iτċn =Encn − I0[1− α(un+1 − un)]cn+1 − I0[1− α(un − un−1)]cn−1. (19)

Keeping only the linear terms in (18) and (19), the lattice and the charge decouple, and
we obtain a fully linearized system of equations:

ün =−ω2
0un − C(2un − un+1 − un−1), (20)

iτċn =Encn − I0(cn+1 + cn−1). (21)

The solutions of linear equations have an exponential form with imaginary expo-
nents if they are bounded, that is, they have the form un = exp(i[qn−ωLt]) and cn =
exp(i[qn−ωct]). The substitution of these expressions into the equations above leads to
the dispersion relations:

ωL =±
(

ω2
0 + 2C[1− cos(q)]

)1/2
= ±

(
ω2

0 + 4C sin2
( q

2

))1/2
, (22)

ωc =
E0

τ
− 2

I0

τ
cos(q). (23)

We have included these dispersion relations in Figure 1 and in all XTFT plots for
reference. Note that the variables un and cn become decoupled at the linear limit. Note also
that wavenumbers q = 0 and q = ±π correspond to stationary solutions. For q = 0, the
particles vibrate in phase with the same frequency, and for q = ±π, they vibrate with an
alternate pattern.
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There could be some doubt about which variables the linearization should be per-
formed in (18), because only the density matrix elements ρn,m = cnc∗m appear. However,
the linearization with respect to ρn,m and un results in the linear terms on ρn,m becoming
zero, and (8) does not change. There is no such problem for (19), as it is already linear in
cn terms.

In Sections 6 and 7, using the system of linearized Equations (20) and (21), we perform
the tail analysis of stationary and moving localized excitations, respectively. We will
compare the results in these sections with the present one.

6. Tail Analysis of Stationary Localized Excitations

For the tail of a stationary localized excitation, we propose the ansatz:

un = exp(−ξLn) exp(i[qn−ωLt]), cn = exp(−ξcn) exp(i[qn−ωct]), ξL,c ∈ R+, (24)

which is valid for n > 0 (for n < 0, we change the sign in front of n in the first exponentials).
Note that both ξL,c = 0 implies no localization and extended waves. With the ansatz (24) and
assumption of the constant charge energy En = E0, for all n, from the Equations (20) and (21)
we obtain the following equations for the lattice and charge frequencies:

ωL =±
(

ω2
0 + 2C[1− cosh(ξL) cos(q)] + i2C sinh(ξL) sin(q)

)1/2
, (25)

ωc =
E0

τ
− 2

I0

τ
[cosh(ξc) cos(q)− i sinh(ξc) sin(q)], (26)

respectively, where q is the wavenumber. The momentum is given by pc = τ̄q, with
τ̄ = τ/2π or h̄ in physical units. However, we will use both terms for q when there is no
confusion, as they represent the same physical observable in different units.

If the frequencies ωL,c are not real, that will imply decaying solutions; therefore, either
both ξL,c = 0, where we obtain extended solutions and the linear dispersion relations for
the lattice and charge (22) and (23), or sin(q) = 0, i.e., q = 0 or ±π, and for q = 0 from (25)
and (26), we obtain:

ωL =±
(

ω2
0 + 2C[1− cosh(ξL)]

)1/2
with |ωL| < ω0,

ωc =
E0

τ
− 2

I0

τ
cosh(ξc) <

E0

τ
− 2

I0

τ
.

(27)

From (27), it can be seen that the localization drives the frequencies below the linear
spectrum (above for negative ωL), and further away the larger the localization is.

For q = ±π, there is the opposite effect, i.e., localization increases the frequencies
above the linear spectrum (below for negative ωL). From (25) and (26):

ωL =±
(

ω2
0 + 2C[1 + cosh(ξL)]

)1/2
with |ωL| >

(
ω2

0 + 4C
)1/2

,

ωc =
E0

τ
+ 2

I0

τ
cosh(ξc) >

E0

τ
+ 2

I0

τ
.

(28)

Note that the localization parameters ξL,c do not need to be the same in (25) and (26)
and (27) and (28) for the lattice and the charge. A good estimate would be 2ξc = ξL, as in
the lattice Equation (8), the charge amplitude cn products cnc∗n±1 appear. Furthermore,

cn = exp(−ξcn) exp(i[±πn−ωct]) = (−1)n exp(−ξcn) exp(−iωct)

has the same pattern as

cn = exp(−ξcn) exp(i[±πn + ωct]) = (−1)n exp(−ξcn) exp(iωct).
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As the ±π modes are not actually traveling, the two modes will appear mixed, i.e.,

cn(±π) = A exp(−ξcn)(−1)n exp(−iωct) + B exp(−ξcn)(−1)n exp(iωct),

and

c∗n(±π) = A∗ exp(−ξcn)(−1)n exp(iωct) + B∗ exp(−ξcn)(−1)n exp(−iωct),

where A, B ∈ C. In this way, we can obtain the time dependence on the charge probability
ρn = |cn|2, i.e.,

ρn = exp(−2ξcn)
(
|A|2 + |B|2 + AB∗ exp(−2iωct) + A∗B exp(2iωct)

)
.

If we write AB∗ = |A||B| exp(iδ) for δ = arg(A)− arg(B), we obtain:

ρn = exp(−2ξcn)
(
|A|2 + |B|2 + 2|A||B| cos(2ωct− δ)

)
=(|A|2 + |B|2) exp(−2ξcn) + 2|A||B| exp(−2ξcn) cos(2ωct− δ).

In this way, we will observe in the charge probability spectrum two frequencies:
ωρ = 0, corresponding to a stationary deformation, and ωρ = 4 I0

τ cosh(ξc), where the
charge probability spectrum is independent of the E0 value. Note that as |cn|2 is an
observable, its frequencies can be measured; from them, we can deduce the difference in
frequencies from the q = π and q = 0 modes of cn, but not their actual value, because there
are no physical means of knowing which is the shift E0/τ of the cn frequencies. We choose
for our convenience the value of E0 that makes cn periodic with a commensurate period
with the lattice one. However, that selection has no physical consequences, and we will
plot the cn spectrum corresponding to E0 = 0 for simplicity.

7. Tail Analysis of Moving Localized Excitations

We can repeat the tail analysis above for the moving solutions. In this case, the trial
solutions in (24) are changed to:

un = exp(−ξL[n−Vbt]) exp(i(q[n−Vbt]−ΩLt)), (29)

cn = exp(−ξc[n−Vbt]) exp(i(q[n−Vbt]−Ωct)). (30)

These ansätze are valid for n > Vbt or for n < Vbt changing ξL,c ∈ R+ to −ξL,c.
Considering first the ansatz (29) for un, in the moving frame n = Vbt, the frequency is
ΩL, with

un+1 = exp(−ξL) exp(iq)un,

that is, un+1 is vibrating with the same frequency ΩL but with a smaller amplitude and a
difference of phase q. The general solution for a traveling breather would be a sum of terms
as un in (29), with the same frequency ΩL in the moving frame. The parameter ξL would
be also dependent on each mode. The larger ξL is, the more localized the specific localized
mode would be, and likewise for cn with the ansatz (30).

We also assume that the general solution is exact, that is, it repeats after some fun-
damental time TF displaced an integer number of sites s = VbTF, called the step. Then,
all the modes (29) have the same properties, that is, Vb, TF, and step s. The fundamental
frequency is defined as ωF = 2π/TF. The exactness condition implies that ΩL = mLωF
for the integers mL and Vb = s(ωF/2π). See Ref. [25] for more details. The fundamental
period TF could, in principle, be different for the lattice and the charge amplitude, but for
the common system to be exact, there should be integer multiples of both periods to obtain
a common fundamental period TF and step s.
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Substituting the ansatz (29) for un into the linear Equation (20), we obtain:

([qVb + ΩL] + iξLVb)
2 = ω2

0 + 2C[1− cosh(ξL) cos(q)] + i2C sinh(ξL) sin(q). (31)

Compare (31) with Equation (25) of Section 6. Expanding the left hand side of (31), we
arrive at two equations for the real and imaginary part:

ω2
L =ξ2

LV2
b + ω2

0 + 2C[1− cosh(ξL) cos(q)],

ξLVbωL =C sinh(ξL) sin(q).
(32)

For compactness, we use the laboratory frequency:

ωL = qVb + ΩL = qVb + mLωF,

of the moving mode with wavenumber q.
For delocalized waves, with ξL = 0, from (32), we recover the lattice dispersion

relation (22) and the group velocity of the linear extended waves:

ω2
L =ω2

0 + 2C[1− cos(q)], for ξc = 0,

Vb =
C sin(q)

ωL
, equal to

∂ωL
∂q

, for ξc = 0.

The latter equation indicates that there is only one mode with a given Vb: the one
where the slope of the dispersion relation is precisely Vb. This is why it is not possible to
have a coherent wave at the linear limit, as every mode has a different velocity.

As cosh(ξL) ≥ 1 and increases with the localization parameter ξL, in addition, if
π/2 < |q| < π, cos(q) < 0, and if 0 < |q| < π/2, cos(q) > 0, then from the first equation
of (32), we find that

ωL(ξL)
2 −ωL(0)2 =ξ2

LV2
b + 4C| cos(q)| sinh2

(
ξL
2

)
, for

π

2
≤ |q| ≤ π,

ωL(ξL)
2 −ωL(0)2 =ξ2

LV2
b − 4C| cos(q)| sinh2

(
ξL
2

)
, for 0 ≤ |q| < π

2
.

Therefore, it can be seen that ω2
c is above the linear frequency for the same |q| ∈ [π/2, π].

However, when |q| becomes smaller than π/2, the two terms of the nonlinear correction
have different signs, but they are also clearly above the linear frequency in a close proximity
to |q| = π/2, at which point the negative term is zero. The main conclusion is that a solution
such as the one proposed is possible below the linear spectrum, closer to q = 0, and above
the linear spectrum, closer to |q| = π. The latter would be the case for our system.

Let us analyze the ansatz for cn, given by (30). The substitution into Equation (21)
with the constant En = E0 leads to the following equation:

τωc + iτξcVb = E0 − 2I0[cosh(ξc) cos(q)− i sinh(ξc) sin(q)], (33)

where the charge amplitude laboratory frequency is given by:

ωc = qVb + Ωc = qVb + mcωF.

For the comparison with the stationary case, compare Equation (33) with (26) of the
previous section.

Equation (33) leads to two equations for the real and imaginary part:

Ec =τωc = E0 − 2I0 cos(q) cosh(ξc),

Vb =2
I0

τ
sin(q)

sinh(ξc)

ξc
.
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The first equation gives the energy of the system, and the second gives the velocity.
Note that a change in frequency ω̃c − Eo/τ, corresponding to c̃n = cn exp(iE0/τ), is the
frequency with the corresponding energy Ẽc = τω̃c − E0 for the system with Ẽ0 = 0.

For ξc = 0, we recover the linear dispersion relation (23) together with the group velocity:

Ec =τωc = E0 − 2I0 cos(q), for ξc = 0,

Vb =2
I0

τ
sin(q), equal to Vb =

∂ωc

∂q
, for ξc = 0.

Again, there is only one linear mode for a given velocity Vb, and coherent wave
packages of cn are not possible at the linear limit or close to it.

The modes with a higher localization ξc value correspond to faster propagating modes
compared to the corresponding linear ones, since sinh(ξc)/ξc > 1 for |ξc| > 0. From the
equivalent considerations above, for |q| ∈ [π/2, π], the localization energies Ec(ξc) are
above the linear energies Ec(0), and vice versa for 0 ≤ |q| < π/2, i.e.,

Ec(ξc)− Ec(0) =4I0| cos(q)| sinh2
(

ξc

2

)
> 0, for

π

2
≤ |q| ≤ π,

Ee(ξc)− Ec(0) =− 4I0| cos(q)| sinh2
(

ξc

2

)
< 0, for 0 ≤ |q| < π

2
.

8. Numerical Methods

In this section, we describe numerical methods used to solve the canonical Hamiltonian
system (11)–(14) and obtain numerically exact polarobreather solutions.

8.1. Numerical Integration of the Canonical Hamiltonian Equations

To solve the canonical Hamiltonian Equations (11)–(14) numerically, we consider the exact
charge probability (4) conserving, second-order semi-implicit splitting method PQDWDQP from
the recently proposed splitting method class specifically developed for the semiclassical Hamil-
tonian dynamics of charge transfer in nonlinear lattices [33]. The symmetric and symplecticity-
preserving method PQDWDQP is constructed by splitting the total Hamiltonian (10) in the sum
of the following Hamiltonians: H = HQ + HP + HD + HW, where

HQ =
1
2

N

∑
n=1

p2
n, (34)

HP =
N

∑
n=1

[U(un) + V(1 + un+1 − un)], (35)

HD =
1

2τ

N

∑
n=1

En

(
a2

n + b2
n

)
, (36)

HW = − 1
τ

N

∑
n=1

J(un+1 − un)(anan+1 + bnbn+1). (37)

Importantly, corresponding Hamiltonian systems associated to each Hamiltonian (34)–(36)
can be solved exactly, and solutions are identified with the analytic symplectic flows φQ

t , φP
t ,

and φD
t , respectively. Meanwhile, we solve the Hamiltonian system of (37) with the symplectic

implicit midpoint rule, whose solution we identify with the flow map ψW
h , where h > 0 is

the time step. Thus, the numerical method PQDWDQP with the flow map ψh is a symmetric
composition of flows φQ

t , φP
t , and φD

t as well as the flow map ψW
h , i.e.,

ψh = φP
h/2 ◦ φQ

h/2 ◦ φD
h/2 ◦ ψW

h ◦ φD
h/2 ◦ φQ

h/2 ◦ φP
h/2,
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where the symmetry of the method follows from the construction, symplecticity follows
from the composition of symplectic maps, and the charge probability conservation (4)
follows from the implicit midpoint step ψW

h , which preserves quadratic invariants [43].
Advancing from state (un, an, pn, bn) to a new state (Un, An, Pn, Bn) after one time

step h for all n = 1, . . . , N, the solution given by the flow φQ
h of the Hamiltonian system

associated with the split dynamics (34) reads:

Un = un + hpn, An = an, Pn = pn, Bn = bn.

Similarly, the solution given by the flow φP
h of the Hamiltonian system associated with

the split dynamics (35) reads:

Un =un,

An =an,

Pn =pn − h
[
U′(un)−V′(1 + un+1 − un) + V′(1 + un − un−1)

]
,

Bn =bn.

Notice that during the applications of the flow maps φQ
h and φP

h , only the lattice
variables un and pn get updated, while the charge variables an and bn remain unchanged.

To find the exact expression of the flow φD
h of the Hamiltonian system associated with

the Hamiltonian (36), we state the associated system of differential equations:

u̇n = 0, (38)

ȧn =
1
τ

Enbn, (39)

ṗn = 0, (40)

ḃn = − 1
τ

Enan, (41)

where n = 1, . . . , N. From (38)–(41), it is easy to see that we obtain decoupled harmonic
oscillator Equations (39) and (41) for the variables an and bn, which can be solved exactly
for all n and any initial condition (a0

n, b0
n), i.e.,

an(t) = a0
n cos(ωnt) + b0

n sin(ωnt),

bn(t) = −a0
n sin(ωnt) + b0

n cos(ωnt),

where ωn = τ−1En. Thus, the exact (explicit) solution given by the flow φD
h of the Hamilto-

nian system (38)–(41) is in the following form:

Un =un,

An =an cos(ωnh) + bn sin(ωnh),

Pn =pn,

Bn =− an sin(ωnh) + bn cos(ωnh).

If all En = 0, then the flow map φD
h is just an identity map.

We conclude this section by listing the explicit representation in the component form
of the implicit midpoint map φW

h :
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Un = un, (42)

An = an −
h
τ

(
J(un+1 − un)

Bn+1 + bn+1

2
+ J(un − un−1)

Bn−1 + bn−1

2

)
, (43)

Pn = pn −
h
τ

(
J′(un+1 − un)ζn,n+1 − J′(un − un−1)ζn,n−1

)
, (44)

Bn = bn +
h
τ

(
J(un+1 − un)

An+1 + an+1

2
+ J(un − un−1)

An−1 + an−1

2

)
, (45)

where
ζn,n′ =

1
4
[(An + an)(An′ + an′) + (Bn + bn)(Bn′ + bn′)]

and the momentum value Pn in (44) gets updated after the linear system of Equations (43) and (45),
formed from all n = 1, . . . , N, solved for the charge variables An and Bn. In what follows, all
numerical results are obtained with N = 64 and h = 0.01.

The authors of [33] also proposed fully explicit structure-preserving splitting methods
for the semiclassical Hamiltonian dynamics of charge transfer in nonlinear lattices. While
the explicit methods are computationally more efficient compared to the semi-implicit
splitting method PQDWDQP, they do not exactly conserve charge probability (4), which is
essential for obtaining numerically exact polarobreather solutions. Since numerically exact
polarobreather solutions are determined for the discrete dynamical system given by the
numerical method PQDWDQP with the time step h, the prospect for future research is to
extend proposed structure-preserving splitting methods in [33] to computationally efficient
higher-order methods [44] for the computation of exact polarobreather solutions in crystal
lattice models with realistic potentials [25].

8.2. Numerical Algorithm for Computation of Exact Polarobreathers

The numerical integration method PQDWDQP described above provides a good
means to obtain numerical solutions to (11)–(14) at discrete time instances for arbitrary
initial conditions, which are prescribed in Sections 9 and 10. Thus, we can obtain ap-
proximate stationary and moving polarobreather solutions with exact charge probability
conservation (4) and approximate energy conservation in long-time simulations using the
symplectic integrator [43]. For examples, see Sections 9.1 and 10.1.

The obtained approximate solutions can be used as initial guess solutions for the
numerical algorithm presented below to compute numerically exact polarobreather solu-
tions; see Sections 9.2 and 10.2. The developed algorithm is based on the Gauss–Newton
algorithm for nonlinear least squares [45] with constraints:

min
x,E0,λ

F(x; E0) + g(x)Tλ, (46)

with the objective function:

F(x; E0) =
1
2

f (x; E0)
T f (x; E0),

where

x(t) = (u1(t), . . . , uN(t), a1(t), . . . , aN(t), p1(t), . . . , pN(t), b1(t), . . . , bN(t))
T ∈ R4N

is the solution vector of (11)–(14) at time t with En = E0, and λ ∈ RM is a vector of Lagrange
multipliers for M number of constraints; see below (48). M = N + 2 and M = 2 for the
stationary and moving exact polarobreather calculations, respectively. In addition, we
define shift operator Ss acting on the components of vector x(t), such that

(Ssx(t))n = xn+s(t),
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taking into account the periodic boundary conditions. Then,

f (x; E0) = Ssx(TF)− x(0), (47)

where x(TF) is the numerical solution of (11)–(14) at time TF obtained with exact charge
probability (4) conserving the splitting method PQDWDQP and time step h of Section 8.1.

We recall that TF is the fundamental period and the step s = 0 for the stationary
polarobreathers, while s > 0 if the traveling polarobreather moves to the right and s < 0 if
the traveling polarobreather moves to the left. Note that the objective function in (46) is
minimized for x, Lagrange multipliers λ, and the constant charge shift energy value E0
(parameter value in the system) with the fixed value of TF and s, which are estimated from
the approximate solution spectra; see Sections 9 and 10.

The vector function g(x) ∈ RM contains imposed constraints such as the charge
probability (4) conservation, without the loss of generality bN = 0, to eliminate the charge
rotational invariance by an arbitrary angle θ, i.e., canonical Hamiltonian Equations (11)–(14)
are invariant under the transformation c̄n = cn exp(iθ). Thus,

g(x) =

 N

∑
n=1

(
a2

n + b2
n

)
− 2τ

bN

. (48)

For the computation of exact stationary polarobreathers, we also impose, in addition
to (48), that all pn = 0, which leads to time-periodic stationary polarobreather solutions
pn(TF) = pn(0) = 0. The quadratic constraint in (48) demonstrates the necessity for the
exact charge probability (4), conserving numerical methods, e.g., the use of PQDWDQP.

We consider the damped Gauss–Newton algorithm to solve the optimization problem (46),
i.e., (46) is reduced to the regularized linear least squares:

min
∆x,∆E0,λ

1
2

(
f (xk; Ek

0) + J(xk, Ek
0)

[
∆x

∆E0

])T(
f (xk; Ek

0) + J(xk, Ek
0)

[
∆x

∆E0

])
+
(

g(xk) + G(xk)∆x
)T

λ +
1
2

µ
(

∆xT∆x + ∆E0
2
)

, (49)

where µ ≥ 0 is the regularization parameter adjusted with each iteration, and k is the
iteration index, where k = 0, 1, 2, . . . , xk, and Ek

0 are the solution and energy E0 value at
the k-th iteration, respectively. J(xk, Ek

0) ∈ R4N×4N+1 is the Jacobian matrix of (47), while
G(xk) ∈ RM×4N is the Jacobian matrix of the constraint vector function g(x). The Jacobian
matrix G(xk) can easily be evaluated analytically. However, in theory, the Jacobian matrix
J(xk, Ek

0) can also be evaluated analytically but with high difficulty. Thus, we evaluate it
numerically. Accordingly, increments (descent directions) ∆x ∈ R4N and ∆E0 ∈ R.

The minimum of the linear least squares (49) is the solution to the following linear
system of equations: J(xk, Ek

0)
T J(xk, Ek

0) + µI4N+1,4N+1
G(xk)T

01,M

G(xk) 0M,1 0M,M




∆x

∆E0

λ

 =

 −J(xk, Ek
0)

T f (xk; Ek
0)

−g(xk)

,

where I and 0 are identity and zero matrices of appropriate dimensions, and

xk+1 = xk + ∆x, Ek+1
0 = Ek

0 + ∆E0.

We set the stopping criteria on the maximal absolute errors of functions f (x; E0) and g(x)
with tolerance 10−14. Thus, the converged solution satisfies (pointwise) time periodicity TF and
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the step s conditions (47), as well as the system constraints g(x), to high numerical accuracy,
which are then preserved by the numerical method PQDWDQP to perform spectral analysis.

For all µ > 0, xk, and Ek
0, the matrix J(xk, Ek

0)
T J(xk, Ek

0) + µI4N+1,4N+1 is positive
definite. If ∑N

n=1(ak
n)

2 +(bk
n)

2 > 0 with bk
N = 0, then the Jacobian matrix G(xk) has a full row

rank and the linear system above has a unique solution such that ∑N
n=1(ak+1

n )2 +(bk+1
n )2 > 0

and bk+1
N = 0, which implies that the Jacobian matrix G(xk+1) has a full row rank and the

linear system has a unique solution with xk+1 and Ek+1
0 . To verify this, assume the opposite:

∑N
n=1(ak+1

n )2 + (bk+1
n )2 = 0. This implies that ak+1

n = bk+1
n = 0 for all n, i.e., increments

∆an = −ak
n and ∆bn = −bk

n. From the unique solvability of the linear equations with xk

and Ek
0, from the linear equations, we obtain:

2
N

∑
n=1

(
∆anak

n + ∆bnbk
n

)
= −

N

∑
n=1

(
(ak

n)
2 + (bk

n)
2
)
+ 2τ,

−2
N

∑
n=1

(
ak

nak
n + bk

nbk
n

)
= −

N

∑
n=1

(
(ak

n)
2 + (bk

n)
2
)
+ 2τ,

N

∑
n=1

(ak
n)

2 + (bk
n)

2 = −2τ,

which yields a contradiction, since τ > 0. Thus, the linear system has a unique solution for
all xk and Ek

0 if x0 satisfies all constraints.
To update the regularization parameter µ after each iteration step in (49), we compute

the gain ratio value:

υ = 2
(

F(xk; Ek
0)− F(xk+1; Ek+1

0 )
)/[ ∆x

∆E0

]T(
µ

[
∆x

∆E0

]
− J(xk, Ek

0)
T f (xk; Ek

0)

)
.

The gain ratio value υ allows us to adjust the value of µ such that it decreases as we
approach the minimum of the nonlinear least squares (46). We were able to obtain satis-
factory convergence results; the numerical results demonstrated superlinear convergence
if good starting x0 and E0

0 values are provided, with the update strategy for µ, that is,
double the value of µ, if υ < 0.25, remaining the same value for the next iteration, unless
υ > 0.75, then a three-times smaller value of µ is considered. As an initial value, we chose
µ = 10−6 max

[
diag

(
J(x0, E0

0)
T J(x0, E0

0)
)]

.

9. Stationary Polarobreathers
9.1. Generation of Approximate Stationary Polarobreathers

The methods used to produce polarobreathers in this model (solving (11)–(14)) are ex-
tremely efficient; they have been used in previous works in one and two dimensions [33,38,39].
In this section, we present the method for the stationary case; the moving polarobreather case
will be presented in the following Section 10.

We introduce nonzero initial conditions only for the velocities or momenta:

(pn∗−1, pn∗ , pn∗+1, pn∗+2)
T = γ(−1, 2,−2, 1)T , γ ∈ R 6=0. (50)

The parameter γ is related with the kinetic energy delivered to the system as KE = 5γ2.
The reference index n∗ can be arbitrary because the system is periodic, but we usually take
n∗ = N/2, for visual plotting purposes. The charge wave function is located initially with
probability one, with the pattern:

(an∗ , bn∗)
T =
√

τ(1,−1)T . (51)

That is, the charge is completely localized at n∗ with probability one. This combined
pattern (50) and (51) proves to be very efficient in obtaining quite good stationary solutions
with long life. Other methods and patterns have also been investigated, for example,
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producing a local compression, which often brings about a stationary breather and two
traveling ones in opposite directions. Moreover, different patterns for the positions and
momenta have been considered. Many of them work quite well, but this is the preferred one
for simplicity and for obtaining results. We describe the results for γ = 0.4, corresponding
to the kinetic energy KE = 0.8, in scaled units. Other values of γ bring about qualitatively
similar results.

We perform the 2D discrete Fourier transform in positions and time (XTFT) of time-
series data on the variables un, |cn|2, and cn, which are represented in Figure 2-top. For
reference, the dispersion relations (22) and (23) for un and cn are also plotted with gray
solid and dashed lines, respectively. Numerical results were obtained, setting all En = 0
in (11)–(14).

As the first two quantities are real, for the XTFT components, it holds that F(−q,−ω)
= F∗(q, ω) and |F(−q,−ω)| = |F(q, ω)|, which is a symmetry that can be observed in
the corresponding two upper plots. Usually, in this case, the negative frequencies are
not represented, but here, they are included for comparison with the XTFT of cn, where
the symmetry does not hold, as cn is complex. Some main features from the top plots of
Figure 2 can be discerned:

1. For the XTFT of un, there appear two horizontal lines at ω = 0, centered around q = 0,
and some frequency ωL/2π ' 1.33 above the dispersion relation and centered around
q = ±π. This means that the un breather is composed of a soliton, that is, a static
deformation with a displacement largely in phase and a staggered vibration above
the un phonon spectrum, i.e., a nonlinear vibration, as demonstrated in Section 6. The
static solution appears due to the asymmetry of the Lennard-Jones potential well,
which makes compression harder than expansion, and therefore, oscillations with
respect to the equilibrium distance are larger for expansion than for compression.

2. For ρn = |cn|2, two horizontal lines appear, one at zero frequency, a stationary
soliton close to q = 0, that is, with nearest neighbors in phase; and also at frequency
ωρ/2π ' 0.75, close to the modes q = ±π, that is, with a staggered profile. The soliton
here is necessary, as ρn is a positive quantity, so the vibration has an alternating pattern
around a stationary one. This means that there is a small change in probability between
neighboring particles with the frequency ωρ. This was also explained in Section 6.
Depending on the nonlinearity and the system, the interchange of probability will be
larger or smaller.

3. For cn, we find three main frequencies, two of them ±ωc ' ±0.375, close to the cn
phonon spectrum, one above and the other below. The upper one is around q = ±π,
i.e., with a staggered profile; and the lower one is around q = 0, that is, with a bell
profile. These two frequencies are explained in Section 6. The other two are located at
±(ωL−ωc). These appear because the quantum Hamiltonian has the time periodicity
of un, which appears in the transfer matrix elements.

4. As deduced in Section 6 the ρn = |cn|2 frequency is equal to the difference between
the phonon frequencies ±ωc, in this case being ωρ = 2ωc. For En = E0 6= 0, the two
frequencies would be E0/τ ±ωc. See Section 3 for details.

5. There are some other lines of weaker intensity in XTFT of |cn|2, but especially for
cn. We can observe some phonons for un and even more for cn, where they occupy
the whole cn-phonon band, but not for |cn|2, as there is no dispersion relation for
|cn|2, because its evolution depends on the other terms of the density matrix ρn,m =
cnc∗m [40]. Results on the density matrix for polarobreathers will be discussed and
published elsewhere.
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Figure 2. XTFT of the lattice variables un, charge probability |cn|2, and probability amplitude cn.
(Top) Inexact stationary breather generated with γ = 0.4 and kinetic energy KE = 0.8. (Bottom) Exact
stationary breather obtained using the approximate polarobreather as an initial seed. See text.

9.2. Exact Stationary Polarobreathers

The approximate solution described above is good enough to be used as a seed in the
numerical algorithm of Section 8.2 for obtaining numerically exact polarobreathers. The
two main frequencies are ωL/2π ' 1.33 and ωρ/2π ' 0.75, with corresponding periods:
TL ' 1/1.33 and Tρ ' 1/0.75. The frequencies of cn are analyzed in a different way, which
is explained below. We can observe that the periods and frequencies are approximately
commensurate: 9Tρ ' 12 ' 16TL. Therefore, TF = 12 is a good estimate for the common
period for both un and |cn|2, and it is the fundamental time or period taken for the whole
system [25].

We suppose that En = E0 in Equations (12) and (14), with initial value E0 = (ω+
c −ω−c )τ,

where ω±c are the upper and lower frequencies above and below the cn-phonon band; see
the top right plot of Figure 2. We recall that the value of E0 also gets adjusted and found in
the damped Gauss–Newton method of Section 8.2. This is an essential degree of freedom to
obtain exact periodic solutions with the desired numerical accuracy ∼ 10−14.

The profile of the exact polarobreathers and their (lack of) change with time for un
and ρn = |cn|2 can be seen in Figure 3, where the solution is visualized in time after five
fundamental periods. The small asymmetry of ρn in Figure 3b can be observed. The XTFT
of the exact solution is plotted in Figure 2-bottom; the main features are as follows:

1. All the phonons have disappeared from the dispersion bands.
2. Extra bands have also disappeared, except for the ones described above, which have

become much more defined.
3. In the XTFT of un, the zero-frequency component corresponding to the stationary

soliton and the frequency ωL slightly above the positive phonon band, centered at ±π
(also the symmetric band at −ωL), have remained. These features are in accordance
with the theory described in Section 6.
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4. In the XTFT of cn, already shifted to E0 = 0 by the numerically found E0 value, only
two bands—±ωc slightly above the cn phonon band at q = ±π and below at q = 0,
which correspond to a hard potential case—have remained; see Section 6.

5. Furthermore, for the XTFT of cn, there is a weak negative frequency −(ωL − ωc)
corresponding to the forcing by the matrix transfer elements J(un+1 − un), which
change with ±ωL, the un frequency. The corresponding band is symmetric in q, but
does not include q = 0. This means that it is a stationary wave: the sum of waves
traveling in opposite directions with wavenumbers around q ' ±π/3 or wavelength
λ ' 6. With greater initial kinetic energy, the positive frequencies ωL also appear
above the positive phonon band and are centered at q = ±π.

6. In the XTFT plot of charge probability ρn = |cn|2, only the bands with frequencies at
zero and ωρ = ω+

c −ω−c have remained, due to the election of E0 = 0, ωρ = 2ω+
c (as

well as −ωρ, due to the symmetry).

(a) (b)

Figure 3. Exact stationary polarobreather solution illustrated in time separated by 5 fundamental
periods TF = 12. (a) Profile of the lattice variables un. (b) Profile of the charge probability ρn = |cn|2.
The periodicity and asymmetry of the exact solution can be appreciated.

We conclude that although ω±c are not observable, their difference ωρ is indeed observ-
able, and appears in the spectrum of the charge probability. Thus, ωρ may appear in the
spectrum of physical systems, providing a valuable insight into the states of extra electrons
or holes of the system.

9.3. Stability of Exact Stationary Solutions: the Switching Mode

We can numerically obtain the Floquet matrix, that is, the ∂Ssx(TF)/∂x(0) at the exact
solution. As the system is symplectic, if there is an eigenvalue λ, then 1/λ is also an
eigenvalue. As the system is also real, if λ is an eigenvalue, then so are λ∗ and 1/λ∗ as the
conjugate of 1/λ. Therefore, the eigenvalues come in quadruplets if they are complex with
|λ| 6= 1, and in pairs λ, λ∗ if |λ| = 1, or λ, 1/λ if λ is real. The perturbation of the system
with an eigenvector results in the perturbation growing as λr with r periods. Therefore, the
(linearized) system is only stable if |λ| = 1 for all eigenvalues. When changing a parameter
as the frequency, the complex eigenvalues have to leave the unit circle as a quadruplet;
therefore, for nonreal λ, two pairs of complex eigenvalues in the unit circle have to first
collide for an instability to appear. This will be a Hopf bifurcation to a set of solutions with
different periods (arg(λ)± 1)TF/2π. Most of these eigenvalues correspond to phonons
outside the core of the polarobreather. However, two eigenvalues colliding at (−1, 0) can
get out of the unit circle in a period-doubling bifurcation. Two eigenvalues can collide at
(1, 0) and get out of the circle as two real eigenvalues: one larger than one and another
smaller, corresponding to two eigenvectors: one growing and other contracting to conserve
the area in the phase space.

The system structurally has four eigenvalues at (1, 0), corresponding to two growth
modes, i.e., small changes in amplitude in un or cn; and two phase modes, corresponding
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to two small changes in phase or time origin. Their meaning is that solutions also exist
with almost the same period and slightly different amplitudes or phases.

There is a peculiarity in our Floquet matrix calculation: it is performed at TF = 16TL =
9Tρ = 12; therefore, an eigenvalue λ for the un variables with period TL appears as λ16, and
for cn, it appears as λ9 compared to the period for |cn|2. This means that instability eigen-
values appear much more grown or contracted than usual, and the numerical imprecision
for the eigenvalues at λ = 1 is amplified.

We can observe the eigenvalues of the exact polarobreathers in Figure 4a. The reference
circle appears populated with the phonon eigenvalues, and the four structural eigenvalues
exist at +1. However, there is also a pair of real instability eigenvalues, which are very
unstable, as just explained. For the breather period, they would be reduced to around 1.1
and 0.9. The corresponding two eigenvectors appear in Figure 4b for ρ = |cn|2, together
with the solution at t = 0. We observe a small asymmetry in the profile of ρn, and the
eigenvectors tend to increase the probability at the neighboring particles away from the
center of localization.

(a) (b)

Figure 4. (a) Floquet eigenvalues of an exact stationary polarobreather. The unstable eigenvalues are
so large and small because the common period TF is 16 times the breather period and 9 times the
probability period. (b) Profile of the charge probability and the stable and unstable eigenvectors of
the charge probability, where the latter corresponds to the switching mode. See text.

Long-time simulations confirm this interpretation. After some time, the polarobreather
switches a position; after some time, it switches back, and so on. Therefore, in spite of
the instability, which gets stabilized by the nonlinearity of the lattice, the breather and
charge probability are stationary. They do not disperse or travel, but experience quasi-
periodic switches between two neighboring sites. Figure 5 shows the switching behavior of
a polarobreather in a long-time simulation.

Figure 5. Long-time simulation of an exact stationary polarobreather. The alternating switching of
position and charge can be observed.
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10. Moving Polarobreathers

In this section, we follow the scheme of the previous section on stationary polaro-
breathers. In spite of the additional complications by the mobility, this will be easy to
explain based on that section.

10.1. Generation of Approximate Moving Polarobreathers

The method used to produce moving polarobreathers in this model is also extremely
efficient. We introduce as initial conditions the following initial pattern for the momenta
or velocities:

(pn∗−1, pn∗ , pn∗+1)
T = γ(−1, 2,−1)T , γ ∈ R 6=0,

while the particle displacements are set at zero. The parameter γ is a measure of the
modulus of the initial kinetic energy KE = 3γ2. The charge amplitude function with a
probability of one is initially located with the pattern (51).

Figure 6-top shows the XTFT plots obtained with γ = 0.6, KE = 1.08. They look
very similar to Figure 2-top. As already seen in Section 4, the transformation ωL → ωM =
ωL − qVb corresponds to the description of the system in the comoving frame, where all
the phonons and excitations traveling at the same velocity Vb appear as horizontal lines,
corresponding to a stationary solution with a single frequency. Quite a few bands appear.
For un and |cn|2, real numbers, we only comment on the positive part of the spectrum
due to its symmetry. One necessary objective to obtain moving exact polarobreathers is to
identify the common fundamental time TF and step s.

1. We observe the XTFT of un. There are three localized waves traveling at the same
speed, and some phonons. The three localized waves are a soliton; a breather; and with
weaker intensity, what we could call a quasilinear breather, very close to the phonon
band. We know that the soliton and main breather are characteristic components of
this system, with strong asymmetry in the coupling potential. Therefore, we discard
the weaker breather as an effect of the breather not being exact. In Section 4 it is
deduced that the breather frequency in the moving frame ΩL is the frequency of the
breather line for q = 0. The commensurability relation (17) was also obtained:

ΩL
2πVb

=
mLωF
sLωF

=
mL
sL

,

with mL and the step sL being the integers we have to find. We measure ΩL/2π ' 1.2257
and Vb ' 0.3065; then ΩL/2πVb = 3.999 ' 4. Therefore, the simplest values are

mL = 4, sL = 1,
ωF,L

2π
' 0.3065, TF,L ' 3.2626.

2. For the XTFT of |cn|2, also for positive frequencies, we observe four resonant lines
with intensity. One is the soliton, characteristic of the XTFT of a positive quantity. The
many lines are a sign of high nonlinearity, which corresponds to a very localized |cn|2,
and is therefore close to one for some n. The linear approximation is not at all valid,
and there are many harmonic frequencies.

3. For the XTFT of cn, we have to observe the frequency differences, as the solution is
invariant to a global shift in frequency, as explained in Section 3. We observe many
phonons in the dispersion band, two positive bands centered around q = ±π, and
two negative bands centered at q = 0. Two bands are very close to the phonon
band, indicating a strong interaction with the linear modes. Observing the two truly
nonlinear bands, their difference in frequency is Ωc/2π ' 0.715, corresponding to
Ωc = mcωF,c. Using the commensurability relation (17) as above and with the same
Vb ' 0.3064, we obtain:

Ωc

2πVb
=

mc

sc
' 7

3
.
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Figure 6. (Top) XTFT of un, |cn|2 and cn for an approximate polarobreather generated with γ = 0.6
and kinetic energy KE = 1.08. (Bottom) XTFT of un, |cn|2 and cn for the exact moving polarobreather
obtained using the approximate polarobreather as an initial seed. See text.

We conclude that

mc = 7, sc = 3,
ωF,c

2π
' 0.1021, TF,c ' 9.7911.

Thus, we can set the common step s = 3 and estimate the fundamental time TF = 9.79, i.e.,

TF = 9.79 ' 3TF,L ' TF,c,

as well as finding an approximate value of E0 ' 0.0028 for the computation of the
exact moving polarobreathers of the following section.

10.2. Exact Moving Polarobreathers

Using the numerical methods explained in Section 8 and the found step s and fun-
damental period TF, together with the estimated E0 value, we can obtain numerically
exact moving polarobreathers. Their XTFT is shown in Figure 6-bottom. There is a large
difference between the approximate moving polarobreather and the exact one.

1. For the XTFT of un, phonons have been eliminated, and only a well localized soliton
breather remains.

2. For the XTFT of |cn|2, only a soliton remains, meaning that in the moving frame, it is
reduced to a static deformation, corresponding to a charge probability traveling without
vibration. The other part of the solution is a uniform probability spread through the
lattice, indicating a small probability that the charge could appear at any site n.

3. For the XTFT of cn, two intensity bands remain: one around q = 0, and a stronger one
centered at q = ±π. The difference in frequencies is exactly the breather frequency,
indicating that there is no vibration of cn, except the one driven by the change in the
transfer elements Jn,n+1, which depend on un.
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To summarize, there is a common fundamental period TF, during which the polaro-
breather repeats itself with a shift of s = 3 sites. In TF, the breather at un repeats three
times, and in the moving frame performs mL = 4 oscillations for each repetition, totaling
12 repetitions. In the same duration of time TF, the cn variable oscillates mc = 7 times,
while advancing sc = 3 sites. There is no vibration in |cn|2; there is just the translation
with velocity Vb of the static profile with about half the probability located at a single site,
and the rest is uniformly shared by the rest of lattice particles. The periodicity of the exact
polarobreather solution can be appreciated in Figure 7, where the particle displacements un
(Figure 7a) and the charge probability |cn|2 (Figure 7b) are illustrated in time separated by
five fundamental periods TF = 9.79.

(a) (b)

Figure 7. Profiles of an exact moving polarobreather in time separated by 5 fundamental periods
TF = 9.79. (a) un, with high localization and staggered profile. (b) |cn|2, corresponding to a charge
probability localized at five sites and peaking at one site.

10.3. Stability of Moving Polarobreathers

Most of the properties for the eigenvalues of the Floquet matrix for the moving exact
polarobreather are the same as in the stationary case (see Section 9.3), as we are observing
the system in the moving frame where it is stationary. Eigenvalues of the Floquet matrix
are illustrated in Figure 8. There is also a difference; now, we should expect six structural
eigenvalues at the eigenvalue (1, 0). They correspond to the growth and phase mode for
un and cn, and two new eigenvalues associated with a small change of the velocity. The
latter imply that there exists another solution with a small change in the velocity Vb. This
solution will not be an exact solution that will appear with the change in TF for constant s.
The stability of the exact moving polarobreather can be observed in a very long-time
simulation, shown in Figure 9.

Figure 8. Floquet eigenvalues for the moving exact polarobreather. The six structural eigenvalues
at (1, 0) can be seen, with some imprecision due to the numerical error and the long time used for the
common TF for all the variables. See text.
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10.4. Path Continuation

By changing the parameters TF and keeping the step and the ratio between the un
and cn periods, it is possible to obtain exact solutions with similar characteristics with a
different fundamental frequency ωF, both for increasing and decreasing frequencies. For
the decreasing frequencies, the convergence stops as the un frequency approaches the
phonon band. For increasing frequencies, the path continuation also eventually stops to
converge. These results will be published elsewhere.

Figure 9. Long-time simulation of an exact moving polarobreather showing its stability.

11. Conclusions

We considered a classical model without charge that shows long-lived traveling
breathers, and used it to construct a semiclassical model adding the coupling to a charged
quantum particle—electron or hole. We analyzed the system and advanced its properties
through linear and tail analysis. We adapted recent numerical methods developed by the
authors to produce efficient symplectic algorithms that preserve symplecticity and charge
conservation at every time step. They allow for efficient integration of the dynamical
equations without the Born–Oppenheimer approximation, i.e., both the lattice and the
charge are out of equilibrium. We constructed initial conditions for the lattice variables and
the charge amplitude that bring about long-lived polarobreathers. The analysis of their
spectra allows important parameters to be obtained not only for exact stationary solutions,
but in particular for traveling ones, such as the step, fundamental frequency, and frequency
in the moving frame, both for the lattice and charge variables. We developed a method
for obtaining numerically exact polarobreathers, using as an initial seed the approximate
solutions and the parameters found in their spectra. An important aspect of this method is
dealing with the system invariance under a change in the frequency of the charge amplitude.
The spectrum of the exact polarobreathers is much more simplified, leaving only a breather
and a soliton for the lattice variables, a soliton for the charge probability, and two breather-
like exact solutions for the charge amplitude, with a frequency difference that matches the
breather one and corresponds to a soliton and a breather with a frequency shift. However,
for approximate polarobreathers that might appear in real systems, the charge probability
shows small oscillations with frequencies that can be related to the frequencies of the charge
amplitude. The obtained results may allow for the identification of charge coupling and its
properties in the spectrum of real systems.
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26. Bajārs, J.; Archilla, J.F.R. Frequency-momentum representation of moving breathers in a two dimensional hexagonal lattice.

Physica D 2022, 441, 133497. [CrossRef]
27. Kalosakas, G.; Aubry, S. Polarobreathers in a generalized Holstein model. Physica D 1998, 113, 228–232. [CrossRef]
28. Cuevas, J.; Kevrekidis, P.G.; Frantzeskakis, D.J.; Bishop, A.R. Existence of bound states of a polaron with a breather in soft

potentials. Phys. Rev. B 2006, 74, 064304. [CrossRef]

http://doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1103/PhysRevE.83.041124
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1038/nature03038
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1088/0951-7715/7/6/006
http://dx.doi.org/10.1088/0951-7715/9/6/007
http://dx.doi.org/10.1016/S0167-2789(96)00261-8
http://dx.doi.org/10.1016/S0167-2789(98)00073-6
http://dx.doi.org/10.1016/j.wavemoti.2007.04.004
http://dx.doi.org/10.1016/j.physd.2007.05.003
http://dx.doi.org/10.1103/PhysRevE.87.042202
http://dx.doi.org/10.1103/PhysRevE.69.046613
http://dx.doi.org/10.1103/PhysRevLett.97.157406
http://dx.doi.org/10.1103/PhysRevB.84.144303
http://dx.doi.org/10.1088/0031-8949/89/04/044003
http://dx.doi.org/10.1103/PhysRevB.90.045432
http://dx.doi.org/10.1134/S1063783416030203
http://dx.doi.org/10.1103/PhysRevE.100.022206
http://www.ncbi.nlm.nih.gov/pubmed/31574752
http://dx.doi.org/10.1016/j.physd.2022.133497
http://dx.doi.org/10.1016/S0167-2789(97)00273-X
http://dx.doi.org/10.1103/PhysRevB.74.064304


Axioms 2023, 12, 437 26 of 26

29. Chetverikov, A.P.; Ebeling, W.; Velarde, M.G. Nonlinear soliton-like excitations in two-dimensional lattices and charge transport.
Eur. Phys. J.-Spec. Top. 2013, 222, 2531–2546. [CrossRef]

30. Velarde, M.G.; Ebeling, W.; Chetverikov, A.P. Thermal solitons and solectrons in 1D anharmonic lattices up to physiological
temperatures. Int. J. Bifurc. Chaos 2008, 18, 3815–3823. [CrossRef]

31. Ros, O.G.C.; Cruzeiro, L.; Velarde, M.G.; Ebeling, W. On the possibility of electric transport mediated by long living intrinsic
localized solectron modes. Eur. Phys. J. B 2011, 80, 545–554.

32. Ashcroft, N.W.; Mermim, N.D. Solid State Physics, 1st ed.; Cengage Learning: Boston, MA, USA, 1976.
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