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Abstract: This paper proposed a closed-form solution for the 2D transient heat conduction in a
rectangular cross-section of an infinite bar with the general Dirichlet boundary conditions. The
boundary conditions at the four edges of the rectangular region are specified as the general case
of space–time dependence. First, the physical system is decomposed into two one-dimensional
subsystems, each of which can be solved by combining the proposed shifting function method with
the eigenfunction expansion theorem. Therefore, through the superposition of the solutions of the
two subsystems, the complete solution in the form of series can be obtained. Two numerical examples
are used to investigate the analytic solution of the 2D heat conduction problems with space–time-
dependent boundary conditions. The considered space–time-dependent functions are separable in
the space–time domain for convenience. The space-dependent function is specified as a sine function
and/or a parabolic function, and the time-dependent function is specified as an exponential function
and/or a cosine function. In order to verify the correctness of the proposed method, the case of
the space-dependent sinusoidal function and time-dependent exponential function is studied, and
the consistency between the derived solution and the literature solution is verified. The parameter
influence of the time-dependent function of the boundary conditions on the temperature variation is
also investigated, and the time-dependent function includes harmonic type and exponential type.

Keywords: analytic solution; 2D heat conduction; space–time-dependent dependent; Dirichlet
boundary conditions; shifting function method
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1. Introduction

The application of heat conduction problems with time-dependent boundary condi-
tions can be broadly applied in a wide range of engineering fields, such as time-varying
heating on walls or plate panels, laser heating on solids, and the design of mechanical
parts (such as those in turbines and engines [1,2]). In general, the types of time-dependent
boundary conditions at the boundary surface include (1) the first type: specified tempera-
ture distribution (Dirichlet boundary condition); (2) the second type: specified heat flux
distribution; and (3) the third type: convective heat exchange with the environment at a
specified temperature. There are many methods to solve these three types of problems,
such as pure numerical method, approximate method, and exact method. The literature
review focuses on the study of 1D and 2D transient heat conduction problems with various
time-dependent boundary conditions, as shown below.

For one-dimensional heat conduction problems with different kinds of time-dependent
boundary conditions, these problems cannot be solved directly by the variable separation
method due to the nonhomogeneity of boundary conditions. In the early 1970s, Ivanov and
Salomatov [3,4] and Postol’Nik [5] were the first to transform the governing differential
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equation of the linear one-dimensional system into a nonlinear equation by introducing new
variables. After neglecting the nonlinear terms, they obtained an approximated solution
that they said was valid for the system with the Biot number less than 0.25. At the same
time, Kozlov [6] used the Laplace transformation technique to study the problem with
the Biot function in a rational combination of sine, cosine, polynomial and exponential
functions. Although exact series solutions can be obtained for a given transformation
system, great difficulties arise in the inversion of the transformation function, which
is often not so straightforward. In addition, various approximation methods such as
the iterative perturbation method [7], the eigenfunction expansion method [8], and the
Lie point symmetry analysis method [9] have been used to study such heat conduction
problems. Later in 2010, Lee and colleagues [10–12] proposed an integration-free solution
method, which is an extension of the shifting function method developed in their previous
research [13], to derive an analytic closed solution for the heat conduction with time-
dependent boundary conditions of the second and the third types. Using the same method,
they [14–16] had successfully performed one-dimensional inverse estimation of the heat
treatment problem with unknown time-dependent boundary conditions of various types.

For the two-dimensional heat conduction problems with time-dependent boundary
conditions, a considerable amount of work can be found in the literature on the develop-
ment of exact, approximate, and numerical methods. In some advanced heat conduction
books [17–19], some classical techniques such as Laplace transform, Duhamel’s theorem,
and Green’s function have been proposed to solve them. Applying the Laplace transform
starts with finding the solution of a 2D problem with nonhomogeneous boundary condi-
tions in the transformed domain. Taking the inverse Laplace transform from the complex
domain always has difficulties. The typical surveys included Zhu [20], Zhu et al. [21], and
Sutradhar et al. [22] who dealt with the time derivative term in the diffusion equation by
using the Laplace transform techniques. On the other hand, using Duhamel’s theorem [17],
an auxiliary 2D problem with associated nonhomogeneous boundary conditions must first
be solved. Therefore, the result will be obtained by differentiating under the integration.
Similarly, Green’s function solution method [17] requires the derivation of the associated
Green’s function, which satisfies a differential equation with a delta function and homoge-
neous boundary conditions. To obtain the general solution, the associated Green’s function
must be directionally differentiated and integrated over the space and time domains. In ad-
dition, some numerical techniques, such as finite difference method and boundary element
method, have also been used to solve 2D heat conduction problems with time-dependent
boundary conditions. Bulgakov et al. [23] used the finite difference method to advance the
solution in the time domain with the numerical schemes based on the boundary element
method, while Walker [24] applied the diffusion fundamental solution combined with the
time integration to solve the diffusion equation. Later, Chen et al. [25] applied the method
of fundamental solutions for diffusion equations by using the modified Helmholtz funda-
mental solution. Burgess and Mahajerin [26] used the fundamental collocation method to
solve the problems of arbitrary shapes subjected to arbitrary initial conditions and mixed
time-dependent boundary conditions. The time-dependent fundamental solutions for
diffusion equations were directly used by Young et al. [27] to obtain the solution as a linear
combination of the fundamental solution of the diffusion operator. On the other hand, Cole
and Yen [28] involved the method of Green’s function to obtain fast-converging expressions
for the temperature and heat flux in a rectangular plate. Beck et al. [29] have developed the
transient temperatures of the plates under time-varying heating conditions to an integer
power at a surface. Lei et al. [30] presented a space–time generalized finite difference
method (GFDM) to solve the transient heat conduction problem by integrating direct
space–time discretization techniques into the meshless GFDM. Alam et al. [31] proposed a
novel generalized (G’/G) extension technique for two nonlinear evolution equations: the
(2+1) dimensional Konopelchenko–Dubrovsky (KD) equation and the (2+1) dimensional
Kadomtsev–Petviashvili (KP) equations and obtained some new precise answers. The
secured answers include a particular variety of solitary wave solutions. Islam et al. [32]
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applied a modified (G’/G) expansion method to seek new calculations of the Zakharov–
Kuznetsov (ZK) equations developed in electrical engineering. Illustrated by 3D and
contour plots, the mathematical results clearly demonstrate the complete honesty and high
performance of the proposed algorithm. Krishnan et al. [33] proposed a technique based
on eigenfunction expansion for solving 1D phase change heat transfer problems with time-
dependent temperature or heat flux boundary conditions. By using Duhamel’s theorem,
Belekar et al. [34] derived an analytic solution for the transient axisymmetric temperature
distribution in a cylindrical geometry with time-dependent boundary conditions.

To the best of the authors’ knowledge, there is no literature formulating an analytic
solution for the 2D heat conduction problems with the general Dirichlet boundary condi-
tions specifying space–time-dependent dependent boundary conditions at the four edges
of rectangular region. This paper develops a simplified exact solution method for the
transient heat conduction in a rectangular cross-section of an infinite bar with space–time-
dependent dependent boundary conditions using the shifting function method proposed
by Lee and colleagues [10–16]. The study focuses on the 2D heat conduction problems with
the general Dirichlet boundary conditions. For the two-dimensional problem, the original
two-dimensional system is separated into two independent one-dimensional subsystems.
The boundary conditions of the subsystems can then be changed from nonhomogeneous to
homogeneous using the shifting function method, and an analytic solution can be derived
using the eigenfunction expansion theorem. The solutions obtained from the two separate
subsystems are combined to construct the solution of the original two-dimensional system.
Finally, a numerical example is given, and the correctness of the obtained solution is veri-
fied via comparison with the literature [27]. Other case studies illustrate the feasibility of
this approach.

The contributions of this paper are as follows:

(1) Lee and colleagues [10–16] used the shifting function method to derive an analytic
solution for the heat conduction with time-dependent boundary conditions. They
also performed an inverse estimation of a heat treatment problem with unknown
time-dependent boundary conditions. However, their research is limited to the scope
of one-dimensional heat conduction problems. The greatest contribution of this work
is the first investigation of the analytic solution to 2D heat conduction problems with
the general Dirichlet boundary conditions by using the proposed method, combining
the shifting function method with the expansion theorem method. The applicability of
the present method is in solving the heat conduction problems of a rectangular cross-
section of an infinite rod with specified space–time-dependent dependent boundary
conditions at the four edges of the rectangular region;

(2) Some advanced heat conduction books [17–19] proposed some classical techniques
such as the Laplace transform, Duhamel’s theorem, and Green’s function to solve
the heat conduction problem. However, they are limited to the integration situation
during the solution process. The correctness of the solution in this study is verified by
comparing it with the results of Young et al. [27]. To the best of the authors’ knowledge,
the other cases in this paper have never been presented in past studies. Although the
number of series expansion terms determines the accuracy of the solution, the case
study shows that the proposed method has good convergence to the solution using
series expansion and can quickly reach a convergence value. The influence of the
parameters of the time-dependent boundary function on the temperature variation is
also studied.

2. Mathematical Modeling

Consider the transient heat conduction for a rectangular cross-section in an infinite
bar with the space–time-dependent Dirichlet boundary conditions on its four sides and no
heat generation in the medium. Figure 1 shows the geometry, the boundary conditions and
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initial condition of a rectangular cross-section in an infinite bar. The governing equation,
boundary conditions and initial condition of the problem are as follows:

k
[

∂2T(x, y, t)
∂x2 +

∂2T(x, y, t)
∂y2

]
= ρc

∂T(x, y, t)
∂t

in 0 < x < Lx, 0 < y < Ly, t > 0, (1)

T(0, y, t) = f1(y, t) at x = 0, 0 ≤ y ≤ Ly, (2)

T(Lx, y, t) = f2(y, t) at x = Lx, 0 ≤ y ≤ Ly, (3)

T(x, 0, t) = f3(x, t) at y = 0, 0 ≤ x ≤ Lx, (4)

T(x, Ly, t) = f4(x, t) at y = Ly, 0 ≤ x ≤ Lx, (5)

T(x, y, 0) = T0(x, y) at t = 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly (6)

where T(x, y, t) denotes the temperature function, x and y are the two-dimensional space
variables, Lx and Ly are the thicknesses of the rectangular region at x and y directions,
respectively, and t is the time variable. In addition, k is the thermal conductivity, ρ is the mass
density, and c is the specific heat. It is noted that fi(y, t) i = 1, 2 and fi(x, t) i = 3, 4 denote
the general case of space–time-dependent temperatures prescribed along the surfaces at
the left and right ends and bottom and top ends, respectively. Furthermore, considering
the matching of the boundary conditions with the initial conditions, one has

f1(y, 0) = T0(0, y), f2(y, 0) = T0(Lx, y), f3(x, 0) = T0(x, 0), f4(x, 0) = T0(x, Ly). (7)
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3. The Solution Methodology

A dimensionless form of the 2D heat conduction system is first derived and split
into two subsystems, each of which can be solved as a 1D problem. By properly in-
troducing the shifting functions, the second-order governing differential equation with
space–time-dependent boundary conditions are transformed into the differential equation
with homogeneous boundary conditions.

3.1. The Dimensionless Form of Physical System

The dimensionless parameters are defined as follows:

θ(X, Y, τ) =
T(x, y, t)

Tr
, τ =

αt
L2

y
, X =

x
Lx

, Y =
y
Ly

, Lr =
Ly

Lx
, F1(Y, τ) =

f1(y, t)
Tr

,

F2(Y, τ) =
f2(y, t)

Tr
, F3(X, τ) =

f3(x, t)
Tr

, F4(X, τ) =
f4(x, t)

Tr
, θ0(X, Y) =

T0(x, y)
Tr

. (8)

The dimensionless form of the boundary-initial value problem is derived as follows:[
L2

r
∂2θ(X, Y, τ)

∂X2 +
∂2θ(X, Y, τ)

∂Y2

]
=

∂θ(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (9)

θ(0, Y, τ) = F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (10)

θ(1, Y, τ) = F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (11)

θ(X, 0, τ) = F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (12)

θ(X, 1, τ) = F4(X, τ) at Y = 1, 0 ≤ X ≤ 1, (13)
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θ(X, Y, 0) = θ0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (14)

F1(Y, 0) = θ0(0, Y), F2(Y, 0) = θ0(1, Y), F3(X, 0) = θ0(X, 0), F4(X, 0) = θ0(X, 1) (15)

where the parameter α = k
ρ c in Equation (8) represents the thermal diffusivity and Tr is the

reference temperature.

3.2. Principle of Superposition

Due to the linear property of the boundary value problem, the physical system can
be divided into two subsystems, A and B along the X and Y directions by using the
superposition principle, as shown in Figure 2; θ(X, Y, τ) is spilt into two parts as follows:

θ(X, Y, τ) = θa(X, Y, τ) + θb(X, Y, τ). (16)
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For the subsystem A, the governing equation, boundary conditions and initial condi-
tion for the heat conduction problem are[

L2
r

∂2θa(X, Y, τ)

∂X2 +
∂2θa(X, Y, τ)

∂Y2

]
=

∂θa(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (17)

θa(0, Y, τ) = F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (18)

θa(1, Y, τ) = F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (19)

θa(X, 0, τ) = 0 at Y = 0, 0 ≤ X ≤ 1, (20)

θa(X, 1, τ) = 0 at Y = 1, 0 ≤ X ≤ 1, (21)

θa(X, Y, 0) = θa0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (22)

Likewise, for the subsystem B, the governing equation, boundary conditions and
initial condition for the heat conduction problem are[

L2
r

∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
=

∂θb(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (23)

θb(0, Y, τ) = 0 at X = 0, 0 ≤ Y ≤ 1, (24)

θb(1, Y, τ) = 0 at X = 1, 0 ≤ Y ≤ 1, (25)

θb(X, 0, τ) = F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (26)

θb(X, 1, τ) = F4(X, τ) at Y = 1, 0 ≤ X ≤ 1, (27)

θb(X, Y, 0) = θ0(X, Y)− θa0(X, Y) = θb0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (28)

For the two similar subsystems, first solve the subsystem A, and then solve the
subsystem B, listed in the Appendix A for brevity.

3.3. Reduced to One-Dimensional Problem

Considering the two homogeneous boundary conditions at the opposite edges of
the rectangular region, namely, Y = 0 and Y = 1, one can reasonably assume that
the temperature θa(X, Y, τ) and dimensionless quantities Fi(Y, τ) (i = 1, 2) defined in
Equations (18) and (19) are

θa(X, Y, τ) =
∞

∑
m=1

[θm(X, τ) sin(mπY)], (29)

Fi(Y, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπY)

]
, (i = 1, 2) (30)

where Fi,m(τ) (i = 1, 2) is defined as

Fi,m(τ) = 2
∫ 1

0
Fi(Y, τ) sin(mπY)dY, (i = 1, 2). (31)
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Thus, θm(X, τ) in Equation (29) is determined by satisfying the boundary conditions
on both sides X = 0 and X = 1 (Equations (18) and (19)) and the governing equation.
After substituting Equations (29) and (30) back into Equations (17)–(19), we can obtain the
following results

∂θm(X, τ)

∂τ
− L2

r
∂2θm(X, τ)

∂X2 + m2π2θm(X, τ) = 0 in 0 < X < 1, τ > 0, (32)

θm(0, τ) = F1,m(τ) at X = 0, (33)

θm(1, τ) = F2,m(τ) at X = 1, (34)

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY at τ = 0. (35)

3.4. The Shifting Function Method
3.4.1. Change of Variable

To solve the second-order partial differential equation (Equation (32)) with nonho-
mogeneous boundary conditions (Equations (33) and (34)), the shifting function method
developed by Lee and colleagues [10] is extended by employing the following transforma-
tion equation

θm(X, τ) = θm(X, τ) +
2

∑
i=1

[gi,m(X)Fi,m(τ)]. (36)

where θm(X, τ) is a transformed function and gi,m(X) (i = 1, 2) represents the two shift
functions that need to be specified.

Substituting Equation (36) into Equations (32)–(34) can obtain

.
θm(X, τ) +

2
∑

i=1
[gi,m(X)

.
Fi,m(τ)]− L2

r{θ
′′

m(X, τ) +
2
∑

i=1
[g′′i,m(X)Fi,m(τ)]}

+m2π2{θm(X, τ) +
2
∑

i=1
[gi,m(X)Fi,m(τ)]} = 0

(37)

where the double primes are used to represent the twice differentiation with respect to X
and the dots represent the differentiation with respect to τ, respectively.

The associated boundary conditions become

θm(0, τ) +
2

∑
i=1

[gi,m(0)Fi,m(τ)] = F1,m(τ), (38)

θm(1, τ) +
2

∑
i=1

[gi,m(1)Fi,m(τ)] = F2,m(τ). (39)

3.4.2. The Shifting Functions

For the convenience of analysis, the shifting functions are specially selected so that
they satisfy the following differential equations and boundary conditions

g′′i,m(X) = 0, i = 1, 2, 0 < X < 1, (40)

gi,m(0) = δi1, gi,m(1) = δi2 (41)

where δij is the Kronecker delta. Therefore, two shifting functions can be easily determined as

g1,m(X) = 1− X, g2,m(X) = X (42)
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After substituting Equations (40)–(42) back into Equations (37)–(39) yields a differential
equation for θm(X, τ) as below:

.
θm(X, τ)− L2

r θ
′′

m(X, τ) + m2π2θm(X, τ) = Gm(X, τ) (43)

and the homogeneous boundary conditions become

θm(0, τ) = 0, θm(1, τ) = 0 (44)

where Gm(X, τ) in Equation (43) is defined as

Gm(X, τ) = −
2

∑
i=1
{gi,m(X)[

.
Fi,m(τ) + m2π2Fi,m(τ)]}. (45)

Moreover, the initial condition can be transformed as

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY−

2

∑
i=1

[gi,m(X)Fi,m(0)]. (46)

3.4.3. The Eigenfunction Expansion Theorem

The solution θm(X, τ) specified by Equations (43) and (44) can be expressed by apply-
ing the method of separation variable as

θm(X, τ) =
∞

∑
n=1

[θmn(X)Tmna(τ)] (47)

where the space variable θmn(X) satisfies the following Sturm–Liouville eigenvalue problem

θ
′′
mn(X) + ω2

nθmn(X) = 0, 0 < X < 1, (48)

θmn(0) = 0 at X = 0, (49)

θmn(1) = 0 at X = 1. (50)

It is noted that the eigenfunctions θmn(X) (n = 1, 2, 3, · · · ) and the corresponding
eigenvalues are

θmn(X) = sin ωnX, ωn = nπ, (n = 1, 2, 3, · · · ) (51)

In addition, the eigenfunctions form an orthogonal set in the interval [0, 1] as

∫ 1

0
θmi(X) θmj(X)dX =

{
0 for i 6= j,
1
2 for i = j.

(52)

Substituting Equation (47) into Equation (43), multiplying it by θmn(X), and integrating
from 0 to 1, one will obtain the following differential equation

.
Tmna(τ) + λ2

mnaTmna(τ) = γmna(τ) (53)

where λmna and γmna(τ) are given as

λmna =
√

m2 + n2L2
r π, (54)
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γmna(τ) = 2
∫ 1

0 θmn(X)Gm(X, τ)dX

= −2
nπ

{
[

.
F1,m(τ)− (−1)n

.
F2,m(τ)] + m2π2[F1,m(τ)− (−1)nF2,m(τ)]

}
.

(55)

Tmna(0) is determined from the initial condition of the transformed function defined
in Equation (46) as

Tmna(0) = 2
∫ 1

0 θmn(X)θm(X, 0)dX
= 4
∫ 1

0 sin(nπX)
∫ 1

0 θa0(X, Y) sin(mπY)dYdX− 2
nπ [F1,m(0)− (−1)nF2,m(0)].

(56)

Therefore, the general solution to Equation (53) with the above initial conditions is

Tmna(τ) = e−λ2
mnaτTmna(0) +

∫ τ

0
e−λ2

mna(τ−φ)γmna(φ)dφ. (57)

3.5. The Analytic Solution

After substituting the solution of the transformed function in Equation (47), and the
shifting functions in Equation (42), back into Equations (36) and (29), we can derive the
closed-form solution for the θa(X, Y, τ) subsystem as follows:

θa(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY). (58)

Due to the high symmetry with the θa(X, Y, τ) subsystem, the solution form of the
θb(X, Y, τ) subsystem can be easily obtained through a similar derivation process (see
Appendix A for details) as

θb(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)} sin(mπX). (59)

Finally, adding the solutions of the two subsystems, the analytic solution for the 2D
heat conduction in a rectangular region with the general Dirichlet boundary conditions is
obtained as follows:

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY)

+
∞
∑

m=1

{
∞
∑

n=1
[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)

}
sin(mπX).

(60)

From the above derivation process, it can be seen that the assumptions in Equations (29)
and (A5) have restrictions on the boundary conditions and initial condition; that is, these
values at the four corners of the rectangular region should be zero. If the values of the
boundary conditions and initial condition at the four corners of the rectangular region are
not zero, they should be zeroed first.

4. Examples and Verification

To illustrate the advantages of the proposed method, two examples with different
types of space-dependent boundary conditions are examined in detail below:

4.1. The Space-Dependent Boundary Conditions of Periodical Type

Example 1: Consider a linear 2D heat conduction problem in a rectangular region (Lx = Ly =
Lr = 1) subject to the space–time-dependent boundary conditions and initial condition as follows:

T(0, y, t) = f1(y, t) = [sin(π y)]η1(αt) at x = 0, 0 ≤ y ≤ 1, (61)
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T(1, y, t) = f2(y, t) = [sin(π y)]η2(αt) at x = 1, 0 ≤ y ≤ 1, (62)

T(x, 0, t) = f3(x, t) = [sin(π x)]η3(αt) at y = 0, 0 ≤ x ≤ 1, (63)

T(x, 1, t) = f4(x, t) = [sin(π x)]η4(αt) at y = 1, 0 ≤ x ≤ 1, (64)

T(x, y, 0) = sin π x + sin π y at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (65)

Following the present solution procedure and using the dimensionless parameters
defined in Equation (8), we can change the space–time-dependent boundary and initial
conditions to

θ(0, Y, τ) = F1(Y, τ) =
sin(π Y)

Tr
η1(τ) at X = 0, 0 ≤ Y ≤ 1, (66)

θ(1, Y, τ) = F2(Y, τ) =
sin(π Y)

Tr
η2(τ) at X = 1, 0 ≤ Y ≤ 1, (67)

θ(X, 0, τ) = F3(X, τ) =
sin(π X)

Tr
η3(τ) at Y = 0, 0 ≤ X ≤ 1, (68)

θ(X, 1, τ) = F4(X, τ) =
sin(π X)

Tr
η4(τ) at Y = 1, 0 ≤ X ≤ 1, (69)

θ(X, Y, 0) =
[sin(π X) + sin(π Y)]

Tr
at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (70)

The temperature θ(X, Y, 0) is divided into two parts as follows:

θa0(X, Y, 0) =
sin(π Y)

Tr
, θb0(X, Y, 0) =

sin(π X)

Tr
. (71)

In this case, using one-term expansion (m = n = 1) in the analytic solution derived
from Equation (60), the solution is derived as

θ(X, Y, τ) = [sin(πX)T11a(τ) + (1− X)F1,1(τ) + XF2,1(τ)] sin(πY)
+[sin(πY)T11b(τ) + (1−Y)F3,1(τ) + YF4,1(τ)] sin(πX)

(72)

where the associated dimensionless quantity Fi,1(τ) (i = 1, 2, 3, 4) is

Fi,1(τ) =
ηi(τ)

Tr
, i = 1, 2, 3, 4 (73)

T11a(0) and T11b(0) are determined from the initial conditions of the transformed
functions defined in Equations (46) and (A25) as

T11a(0) =
4
π
− 2

π
[η1(0) + η2(0)], T11b(0) =

4
π
− 2

π
[η3(0) + η4(0)] (74)

Likewise, from Equations (54) and (55), and Equations (A23) and (A24), one obtains

λ11a = λ11b =
√

2π, (75)

γ11a(τ) = − 2
π
{ .

η1(τ) +
.
η2(τ) + π2[η1(τ) + η2(τ)]}, γ11b(τ) = − 2

π
{ .

η3(τ) +
.
η4(τ) + π2[η3(τ) + η4(τ)]}, (76)
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Therefore, one can obtain

T11a(τ) =
4
π

e−2π2τ − 2
π
[η1(τ) + η2(τ)] + 2π

∫ τ

0
e−2π2(τ−φ)[η1(φ) + η2(φ)]dφ, (77)

T11b(τ) =
4
π

e−2π2τ − 2
π
[η3(τ) + η4(τ)] + 2π

∫ τ

0
e−2π2(τ−φ)[η3(φ) + η4(φ)]dφ. (78)

(Case 1): Consider the time-dependent functions to be of exponential type, as follows:

ηi(τ) = e−π2τ , (i = 1, 2, 3, 4). (79)

From Equations (77) and (78) one obtains

T11a(τ) = T11b(τ) = 0. (80)

The solution from the dimensionless form of Equation (72) becomes

θ(X, Y, τ) =
[sin(πX) + sin(πY)]e−π2τ

Tr
. (81)

Substituting this back into dimensional form would be

T(x, y, t) = [sin(πx) + sin(πy)]e−απ2t. (82)

It can be seen that the solution obtained in Equation (82) is exactly the same form as
that given by Young et al. [25].

(Case 2): Consider the time-dependent functions to be of periodic type, as follows:

ηi(τ) = cos(ωiτ), (i = 1, 2, 3, 4). (83)

One obtains

γ11a(τ) = − 2
π
[−ω1 sin(ω1τ)−ω2 sin(ω2τ) + π2 cos(ω1τ) + π2 cos(ω2τ)], (84)

γ11b(τ) = − 2
π
[−ω3 sin(ω3τ)−ω4 sin(ω4τ) + π2 cos(ω3τ) + π2 cos(ω4τ)] (85)

T11a(τ) =
2
π e−2π2τ(

2π4+ω2
1

4π4+ω2
1
+

2π4+ω2
2

4π4+ω2
2
)− 2

π [
(2π4+ω2

1) cos(ω1π)−π2ω1 sin(ω1π)

4π4+ω2
1

+
(2π4+ω2

2) cos(ω2π)−π2ω2 sin(ω2π)

4π4+ω2
2

],
(86)

T11b(τ) =
2
π e−2π2τ(

2π4+ω2
3

4π4+ω2
3
+

2π4+ω2
4

4π4+ω2
4
)− 2

π [
(2π4+ω2

3) cos(ω3π)−π2ω3 sin(ω3π)

4π4+ω2
3

+
(2π4+ω2

4) cos(ω4π)−π2ω4 sin(ω4π)

4π4+ω2
4

].
(87)

Therefore, the exact solution in dimensionless form becomes

θ(X, Y, τ) = [sin(πX)T11a(τ) + (1− X) cos(ω1τ)
Tr

+ X cos(ω2τ)
Tr

] sin(πY)

+[sin(πY)T11b(τ) + (1−Y) cos(ω3τ)
Tr

+ Y cos(ω4τ)
Tr

] sin(πX).
(88)

Three cases including ωi = π(i = 1, 2, 3, 4), ωi = 5(i = 1, 2, 3, 4), and ωi = 7
(i = 1, 2, 3, 4) will be considered in the numerical analysis. Figure 3 illustrates the
temperature-time variation in the middle of a rectangular region with various param-
eter values of ωi(i = 1, 2, 3, 4), which shows the oscillating behavior, as expected. In
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addition, the larger the parameter value of ωi(i = 1, 2, 3, 4), the more frequent the temper-
ature fluctuation.
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Figure 3. Temperature variation in the middle of the rectangular region with various parameters of
harmonic-type time-dependent boundary conditions (Case 2 of Example 1).

4.2. The Space-Dependent Boundary Conditions of Parabolic Type

Example 2: Consider a 2D transient heat conduction problem in a rectangular region (Lx = Ly =
Lr = 1).

The boundary and initial conditions are listed as follows:

T(0, y, t) = f1(y, t) = (y− y2)η1(αt) at x = 0, 0 ≤ y ≤ 1, (89)

T(1, y, t) = f2(y, t) = (y− y2)η2(αt) at x = 1, 0 ≤ y ≤ 1, (90)

T(x, 0, t) = f3(x, t) = (x− x2)η3(αt) at y = 0, 0 ≤ x ≤ 1, (91)

T(x, 1, t) = f4(x, t) = (x− x2)η4(αt) at y = 1, 0 ≤ x ≤ 1, (92)

T(x, y, 0) = (x− x2) + (y− y2) at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (93)

Using the dimensionless parameters generates

θ(0, Y, τ) =
Y−Y2

Tr
η1(τ) ≡ F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (94)

θ(1, Y, τ) =
Y−Y2

Tr
η2(τ) ≡ F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (95)
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θ(X, 0, τ) =
X− X2

Tr
η3(τ) ≡ F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (96)

θ(X, 1, τ) =
X− X2

Tr
η4(τ) ≡ F4(X, τ) at Y = 0, 0 ≤ X ≤ 1, (97)

θ(X, Y, 0) =
(X− X2) + (Y−Y2)

Tr
at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (98)

and separating θ(X, Y, 0) into two parts yields

θa0(X, Y, 0) =
Y−Y2

Tr
, θb0(X, Y, 0) =

X− X2

Tr
. (99)

Following the same solution procedure, the associated dimensionless quantity Fi,m(τ)
(i = 1, 2, 3, 4) becomes

Fi,m(τ) =
4[1− (−1)m]

m3π3Tr
ηi(τ), i = 1, 2, 3, 4. (100)

To determine Tmna(τ) and Tmnb(τ), one derives first

λmna = λmnb =
√

m2 + n2π, (101)

Tmna(0) =
8[1− (−1)m]

m3nπ4Tr
[1− (−1)n − η1(0) + (−1)nη2(0)], (102)

Tmnb(0) =
8[1− (−1)m]

m3nπ4Tr
[1− (−1)n − η3(0) + (−1)nη4(0)], (103)

γmna(τ) =
−8[1− (−1)m]

m3nπ4Tr
{ .

η1(τ)− (−1)n .
η2(τ) + m2π2[η1(τ)− (−1)nη2(τ)]}, (104)

γmnb(τ) =
−8[1− (−1)m]

m3nπ4Tr
{ .

η3(τ)− (−1)n .
η4(τ) + m2π2[η3(τ)− (−1)nη4(τ)]}. (105)

Accordingly, the solutions for Tmna(τ) and Tmnb(τ) are

Tmna(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnaτ − η1(τ) + (−1)nη2(τ)]

+n2π2
∫ τ

0 e−λ2
mna(τ−φ)[η1(φ)− (−1)nη2(φ)]dφ},

(106)

Tmnb(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnbτ − η3(τ) + (−1)nη4(τ)]

+n2π2
∫ τ

0 e−λ2
mnb(τ−φ)[η3(φ)− (−1)nη4(φ)]dφ}.

(107)

Therefore, the exact solution in dimensionless form is

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX)Tmna(τ)] + 4(1− X) [1−(−1)m ]

m3π3Tr
η1(τ) + 4X [1−(−1)m ]

m3π3Tr
η2(τ)} sin(mπY)

+
∞
∑

m=1
{

∞
∑

n=1
[sin(nπY)Tmnb(τ)] + 4(1−Y) [1−(−1)m ]

m3π3Tr
η3(τ) + 4Y [1−(−1)m ]

m3π3Tr
η4(τ)} sin(mπX).

(108)

Considering the time-dependent term of exponential type as

ηi(τ) = e−diτ , (i = 1, 2, 3, 4), (109)
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one has

Tmna(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnaτ − e−d1τ + (−1)ne−d2τ ]

+n2π2[ e−d1τ−e−λ2
mnaτ

λ2
mna−d1

− (−1)n e−d2τ−e−λ2
mnaτ

λ2
mna−d2

]},
(110)

Tmnb(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnbτ − e−d3τ + (−1)ne−d4τ ]

+n2π2[ e−d3τ−e−λ2
mnbτ

λ2
mnb−d3

− (−1)n e−d4τ−e−λ2
mnbτ

λ2
mnb−d4

]}
(111)

where di (i = 1, 2, 3, 4).represents four arbitrary constants. Tables 1–3 shows the tempera-
ture variation of the midpoint of the rectangular region under the three kinds of exponential
parameters of di (i = 1, 2, 3, 4). It can be found that the solutions developed converge to
convergence values as the number of series terms (m = n) increases. The temperature at
0 ≤ τ ≤ 1.2 are the same between 10 and 20 terms expansion. The results converge when
10 terms expansion is used. By comparing the temperature at 0 ≤ τ ≤ 1.2 between 5 and
10 terms expansion in each table of Tables 1–3, one can see that when 5 terms expansion
is used, the error of the solution evaluated is less than 1%. Therefore, 5 terms expansion
(m = n) of the series will be taken for the numerical analysis below. Figure 4 illustrates the
temperature variation in the middle of the rectangular region with respect to time τ for
three different kinds of di (i = 1, 2, 3, 4). It is seen from Figure 4 that the temperature curve
of the set of di = 1 (i = 1, 2, 3, 4) decays faster than the other two curves, and the trend of
the temperature curves of three sets is the same.

Table 1. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−τ ,
(i = 1, 2, 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.229 0.246 0.243 0.243 0.243
0.2 0.174 0.189 0.187 0.187 0.187
0.4 0.138 0.150 0.148 0.148 0.148
0.6 0.113 0.123 0.121 0.121 0.121
0.8 0.0921 0.100 0.0989 0.0994 0.0994
1.0 0.0754 0.0823 0.0810 0.0814 0.0814
1.2 0.0618 0.0674 0.0663 0.0666 0.0666

Table 2. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−τ ,
(i = 1, 2); ηi(τ) = e−2τ , (i = 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.249 0.263 0.261 0.261 0.261
0.2 0.203 0.215 0.213 0.213 0.213
0.4 0.176 0.184 0.183 0.183 0.183
0.6 0.154 0.159 0.159 0.159 0.159
0.8 0.133 0.136 0.136 0.136 0.136
1.0 0.113 0.115 0.115 0.115 0.115
1.2 0.0954 0.0969 0.0967 0.0968 0.0968
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Table 3. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−iτ ,
(i = 1, 2, 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.285 0.295 0.293 0.293 0.293
0.2 0.251 0.257 0.256 0.256 0.256
0.4 0.229 0.230 0.230 0.230 0.230
0.6 0.202 0.201 0.202 0.202 0.202
0.8 0.174 0.172 0.172 0.172 0.172
1.0 0.147 0.145 0.146 0.146 0.146
1.2 0.123 0.121 0.122 0.122 0.122
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5. Conclusions

A closed form solution of the transient heat conduction in a rectangular cross-section
in an infinite bar with the general space–time-dependent boundary conditions has been
developed in terms of series expansion. The main advantages of the proposed solution
method is that differentiation and/or integration of the Green’s function is not required
and the solution of the auxiliary 2D problem with associated nonhomogeneous bound-
ary conditions is avoided. Two examples are given to illustrate the applicability of the
method and the example of space-dependent boundary for periodic function is shown to
be consistent with results in the literature.

The new findings of the present study are as follows:

(1) The proposed approach combining the shifting function method and the expansion
theorem method can derive an analytic solution for the 2D heat conduction in a
rectangular cross-section of an infinite bar with the general Dirichlet boundary condi-
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tions specifying space–time-dependent boundary conditions at the four edges of the
rectangular region;

(2) The series expansion derived from the proposed method has a good convergence to
reach the convergence values. For space-dependent boundary with the parabolic-type
case, one can take five terms of the series to obtain the series solutions within 1% error;

(3) When considering the time-dependent boundary of harmonic function, the fluctuation
of the temperature variation increases as the frequency of the harmonic function
increases. When considering the time-dependent boundary of exponential function,
e−diτ , a smaller coefficient di will result in a lower and faster drop in temperature.

The analytic solution for the 2D heat conduction problems with general Dirichlet
boundary conditions is obtained using the proposed method. However, the values of the
boundary conditions and initial condition at the four corners of the rectangular region
should be zero, which limits the applicability of this study. Transforming the temperature
function before using the method proposed in this paper may overcome this limitation.
A method that can be applied to the case for non-zero values at the four corners will be
proposed in the near future.
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Nomenclature

A, B two subsystems
c specific heat (W · s/kg·◦C)
di(i = 1, 2, 3, 4) four arbitrary constants
fi(y, t), i = 1, 2 temperatures along the surface at the left end and the right end of the

rectangular region
fi(x, t), i = 3, 4 temperatures along the surface at the bottom end and the top end

of the rectangular region
Fi(Y, τ), i = 1, 2 dimensionless quantity defined in Equation (8)
Fi(X, τ), i = 3, 4 dimensionless quantity defined in Equation (8)
Fi,m(τ), i = 1, 2 dimensionless quantity defined in Equation (31)
Fi,m(τ), i = 3, 4 dimensionless quantity defined in Equation (A7)
gi,m(X), i = 1, 2 shifting function
gi,m(Y), i = 3, 4 shifting function
Gm(X, τ) nonhomogeneous term in the differential equation of the transformed

system defined in Equation (43)
k thermal conductivity (W/m·◦C)
Lr aspect ratio, Ly/Lx defined in Equation (8)
Lx, Ly thickness of the two-dimensional rectangular region at x- and

y- directions (m)
T(x, y, t) temperature function (◦C)
Tmna(τ), Tmnb(τ) dimensionless time variable of the transformed function defined in

Equations (53) and (A22)
Tr reference temperature (◦C)
T0(x, y) initial temperature (◦C)
t time variable (s)
x space variable in x-direction of a rectangular region (m)
X dimensionless space variable in x-direction of a rectangular region
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y space variable in y-direction of a rectangular region (m)
Y dimensionless space variable in y-direction of a rectangular region
α thermal diffusivity (m2/s)
φ auxiliary integration variable
γmna(τ), γmnb(τ) dimensionless quantity defined in Equations (55) and (A24)
ηi(i = 1, 2, 3, 4) time-dependent boundary condition
λmna, λmnb n-th eigenvalues depend on ωn defined in Equations (54) and (A23)
θ dimensionless temperature
θ0 dimensionless initial temperature
θa, θb dimensionless temperatures for subsystems A and B
θm(X, τ) generalized Fourier coefficient defined in Equation (29)
θm(X, τ) transformed function defined in Equation (36)
θmn(X, τ) n-th eigenfunction of the transformed function defined in Equation (47)
ρ density (kg/m3)
τ dimensionless time
ωn n-th eigenvalue for Sturm–Liouville problem defined in Equation (48).
Subscripts
0, 1, 2, 3, 4, a, b, i, m, n, r described in the article

Appendix A. Analytic Solution of the Subsystem B

For the subsystem B, the boundary value problem is as follows:[
L2

r
∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
=

∂θb(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (A1)

θb(0, Y, τ) = 0, θb(1, Y, τ) = 0, (A2)

θb(X, 0, τ) = F3(X, τ), θb(X, 1, τ) = F4(X, τ), (A3)

θb(X, Y, 0) = θ0(X, Y)− θa0(X, Y) = θb0(X, Y). (A4)

Because the boundary conditions of the rectangular region at two opposite edges
X = 0 and X = 1 are homogeneous, the temperature θb(X, Y, τ) and the dimensionless
quantities F3(X, τ), F4(X, τ) defined in Equation (A3), can be expressed as

θb(X, Y, τ) =
∞

∑
m=1

[θm(Y, τ) sin(mπX)], (A5)

Fi(X, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπX)

]
, (i = 3, 4) (A6)

where m denotes a positive integer and Fi,m(τ) (i = 3, 4) is given as

Fi,m(τ) = 2
∫ 1

0
Fi(X, τ) sin(mπX)dX, (i = 3, 4). (A7)

Substituting Equations (A5) and (A6) back into Equations (A1)–(A4), one obtains

∂θm(Y, τ)

∂τ
− ∂2θm(Y, τ)

∂Y2 + m2π2L2
r θm(Y, τ) = 0, (A8)

θm(0, τ) = F3,m(τ), θm(1, τ) = F4,m(τ), (A9)

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX. (A10)
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To find the solution for the second-order differential Equation (A8) with nonhomoge-
neous boundary conditions (A9), one uses the shifting function method by taking

θm(Y, τ) = θm(Y, τ) +
4

∑
i=3

gi,m(Y)Fi,m(τ) (A11)

where θm(Y, τ) is the transformed function while gi,m(Y) (i = 3, 4) indicates the shifting
function to be specified.

Substituting Equation (A11) back into Equations (A8)–(A10), one obtains

.
θm(Y, τ) +

4
∑

i=3
gi,m(Y)

.
Fi,m(τ)−

[
θ
′′
m(Y, τ) +

4
∑

i=3
g′′i,m(Y)Fi,m(τ)

]
+m2π2L2

r [θm(Y, τ) +
4
∑

i=3
gi,m(Y)Fi,m(τ)] = 0.

(A12)

The associated boundary conditions become

θm(0, τ) + g3,m(0)F3,m(τ) + g4,m(0)F4,m(τ) = F3,m(τ), (A13)

θm(1, τ) + g3,m(1)F3,m(τ) + g4,m(1)F4,m(τ) = F4,m(τ) (A14)

As in the derivation process, the two shifting functions are determined as

g3,m(Y) = 1−Y, g4,m(Y) = Y. (A15)

After substituting Equation (A15) into Equations (A12)–(A14), one has the differential
equation for θm(Y, τ) as

.
θm(Y, τ)− θ

′′
m(Y, τ) + m2π2L2

r θm(Y, τ) = Gm(Y, τ), (A16)

and the associated homogeneous boundary conditions as

θm(0, τ) = 0, θm(1, τ) = 0. (A17)

Gm(Y, τ) is defined as

Gm(Y, τ) = −
4

∑
i=3

[
m2π2L2

r gi,m(Y)Fi,m(τ) + gi,m(Y)
.
Fi,m(τ)

]
. (A18)

Moreover, the initial condition is transformed to be

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX−

4

∑
i=3

[gi,m(Y)Fi,m(0)]. (A19)

The solution θm(Y, τ) specified by Equations (A16)–(A19) can be expressed in the form
of eigenfunctions as

θm(Y, τ) =
∞

∑
n=1

θmn(Y)Tmnb(τ) (A20)

where θmn(Y) is
θmn(Y) = sin nπY. (A21)

Substituting Equation (A20) into Equation (A16), multiplying it by θmn(Y), and inte-
grating from 0 to 1, one will obtain

.
Tmnb(τ) + λ2

mnbTmnb(τ) = γmnb(τ) (A22)
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where λmnb and γmnb(τ) are

λmnb =
√

m2L2
r + n2π, (A23)

γmnb(τ) = 2
∫ 1

0 θmn(Y)Gm(Y, τ)dY

= −2
nπ

{
[

.
F3,m(τ)− (−1)n

.
F4,m(τ)

]
+ m2π2L2

r
[
F3,m(τ)− (−1)nF4,m(τ)]

}
.

(A24)

Note that Tmnb(0) can be determined from the initial condition of the transformed
function defined in Equation (A19) as

Tmnb(0) = 4
∫ 1

0
sin(nπY)

∫ 1

0
θb0(X, Y) sin(nπX)dXdY− 2

nπ
[F3,m(0)− (−1)nF4,m(0)]. (A25)

The general solution of Equation (A22) with the initial condition above is

Tmnb(τ) = e−λ2
mnbτTmnb(0) +

∫ τ

0
e−λ2

mnb(τ−φ)γmnb(φ)dφ. (A26)
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