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1. Introduction

In 1929, Lidstone [1] introduced a generalization of Taylor’s theorem that approximates
an entire function f in a neighborhood of two points instead of one. That is

f (x) =
∞

∑
n=0

[
f (2n)(1)Λn(x) + f (2n)(0)Λn(1− x)

]
, (1)

where Λn(x) is a unique polynomial of degree 2n + 1, and called a Lidstone polynomial.
In [2], Whittaker proved that an entire function of an exponential type of less than π has a
convergent Lidstone series expansion in any compact set of the complex plane. Buckholtz
and Shaw [3] provided some conditions for (1) to hold. Other authors worked on this
problem (see, e.g., [4–10]). They presented different sufficient and necessary conditions
for the representation of functions by this series. We mention, in particular, the result of
Widder [10]. He proved that if f is a real-valued function satisfying

(−1)k f (2k)(x) ≥ 0 (k ∈ N0) (2)

in an interval of length greater than π, then it has a Lidstone series expansion (1) (such a
function is known as completely convex). Furthermore, he defined the class of minimal
completely convex functions, and then he proved that a real-valued function f (x) could be
expanded in an absolutely convergent Lidstone series if and only if it is the difference of
two minimal completely convex functions.

Recently, the Lidstone expansion theorem was generalized in quantum calculus (as
can be seen in [11–17]). The quantum calculus (Jackson calculus or q-calculus [18]) is
an extension of the traditional calculus, and it has been used by many researchers in
different branches of science and engineering (as can be seen in, e.g., [19–24]). It has a lot
of applications in different mathematical areas such as orthogonal polynomials, number
theory, hypergeometric functions, theory of finite differences, gamma function theory,
Sobolev spaces, Bernoulli and Euler polynomials, operator theory, and quantum mechanics.
For the basic definitions and notations applicable in the q-calculus, see Section 2.
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In [11], Ismail and Mansour proved the following q-analog of the Lidstone expansion
theorem.

Theorem 1. Assume that the function f (z) is an entire function of q−1-exponential growth of
order 1 and a finite type α less than ξ1, or it is an entire function of q−1-exponential growth of an
order of less than 1. Then, f (z) has a convergent q-Lidstone representation

f (z) =
∞

∑
n=0

[
D2n

q−1 f (1)An(z)− D2n
q−1 f (0)Bn(z)

]
, (3)

where (An)n and (Bn)n are the q-Lidstone polynomials defined, respectively, by the generating
functions

Eq(zw)− Eq(−zw)

Eq(w)− Eq(−w)
=

∞

∑
n=0

An(z)w2n, (4)

Eq(zw)Eq(−w)− Eq(−zw)Eq(w)

Eq(w)− Eq(−w)
=

∞

∑
n=0

Bn(z)
wn

[n]q!
. (5)

Moreover, A0(z) = z, B0(z) = 1− z, and for n ∈ N, An(z) and Bn(z) satisfy the q-difference
equation

D2
q−1 yn(z) = yn−1(z) with yn(0) = yn(1) = 0. (6)

In [16], AL-Towailb and Mansour proved that the condition

Dn
q−1 f (0) = o(ξn

1 ) as n→ ∞ (7)

is both sufficient and necessary for expanding an entire function f (z) in the q-Lidstone
series

f (1)A0(z)− f (0)B0(z) + D2
q−1 f (1)A1(z)− D2

q−1 f (0)B1(z) + . . . ,

and we noted that Condition (7) is insufficient for the convergence of the following arrange-
ment of the q-Lidstone series:

∞

∑
n=0

D2n
q−1 f (1)An(z)−

∞

∑
n=0

D2n
q−1 f (0)Bn(z),

and not necessary for the convergence of (3). This paper aimed to obtain a sufficient and
necessary condition for a real-valued function to have an absolutely convergent q-Lidstone
series expansion (3). To achieve this aim, we introduced generalizations for the class of
completely convex functions (2) on a closed interval of form [0, a] (a > 0), and the class
of minimal completely convex functions on the interval [0, 1]. This paper is organized as
follows. The following section gives the essential notions and basic definitions of q-calculus.
Section 3 contains some properties and basic results on q-Lidstone polynomials, which
we need in our investigation. In Section 4, we define a q-analog of the class of completely
convex functions for the difference operator Dq−1 . Then, we study the relation of this
class to a problem of the representation of functions by the q-Lidstone series. In Section 5,
we provide a necessary and sufficient condition for a real function to have an absolutely
convergent q-Lidstone series expansion.

2. Preliminaries

In this section, we recall some definitions, notations, and results in the q-calculus,
which we need in our investigations (see [25]).

Throughout this paper, q is a positive number less than one, and we use the following
standard notations:

N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .} = N∪ {0}.
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The sets Aq and A∗q are defined by Aq := {qn : n ∈ N0} and A∗q := Aq ∪ {0}. For
a ∈ C, n ∈ N0,

(a; q)∞ =
∞

∏
j=0

(1− aqj), (a; q)n :=
(a; q)∞

(aqn; q)∞
,

and the q-numbers [n]q and q-factorial [n]q! are defined by

[n]q =
1− qn

1− q
, [n]q! =

n

∏
k=1

[k]q.

Let µ ∈ C. A set A ⊂ C is called µ-geometric set if µz ∈ A for any z ∈ A. If f is a
function defined on a q-geometric set A, then Jackson’s q-difference operator is defined by

Dq f (z) =


f (z)− f (qz)
(1− q)z

, z ∈ A− {0};

f ′(0), z = 0,
(8)

provided that f is differentiable at zero. Furthermore, Jackson [26] introduced the following
q-integrals for a function f defined on a q-geometric set A:

∫ b

a
f (t) dqt :=

∫ b

0
f (t)dqt−

∫ a

0
f (t) dqt (a, b ∈ R),

where ∫ z

0
f (t) dqt := (1− q)

∞

∑
n=0

zqn f (zqn),

provided that the series converges at z = a and z = b.
Jackson’s q-trigonometric functions Sinqz and Cosqz are defined by

Sinqz :=
∞

∑
n=0

(−1)n qn(2n+1)

(q; q)2n+1
(z(1− q))2n+1,

Cosqz :=
∞

∑
n=0

(−1)n qn(2n−1)

(q; q)2n
(z(1− q))2n,

(9)

where Eq(·) is one of Jackson’s q-exponential function defined by

Eq(z) =
∞

∑
n=0

q
n(n−1)

2
(z(1− q))n

(q; q)n
= (−z(1− q); q)∞ (z ∈ C). (10)

We use {ξk}k∈N to denote the positive zeros of Sinqz arranged in increasing order of
magnitude. One can verify that Sinqz has no zeroes on |z| < q−3/2, i.e., the first positive
zeros ξ1 > q−3/2.

Lemma 1. For any x ∈ [0, 1], we have

Sinqξ1x ≤ ξ1x. (11)

Proof. Let f (x) = ξ1x − Sinqξ1x, x ∈ [0, 1]. Then, Dq−1 f (x) = ξ1(1 − Cosqξ1x) ≥ 0.
Therefore, by using (8), we obtain

f (x) ≤ f (
x
q
) (x ∈ [0, 1]),

which implies f (x) ≥ lim
n→∞

f (qnx) = 0. Then, Inequality (11) holds.
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3. Some Results on q-Lidstone Polynomials

We start this section by recalling some properties of the q-Lidstone polynomials An(x)
and Bn(x) from [14,16,17], for which we need to prove the main results.

Proposition 1 ([16]). Let {ξk}k∈N be the sequence of the positive zeros of Sinq(x) and m ∈ N0.
Then,

(−1)n−1 An(x) =
2Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

+O(ξ−(2n+1)
2 ); (12)

(−1)n−1Bn(x) =
Sinq(ξ1x)Cosq(ξ1)

(1− q)(ξ1)2n+1Sin′q(ξ1)
+O(ξ−2n

1 (2n)−m), (13)

for a sufficiently large n.

Proposition 2 ([17]). If f ∈ C2n
q ([0, 1]), then

f (x) =
n−1

∑
m=0

[
D2m

q−1 f (1)Am(x)− D2m
q−1 f (0)Bm(x)

]
+
∫ 1

0
Gn(x, qt)D2n

q−1 f (q2t) dqt, (14)

where

G(x, t) = G1(x, t) =
{
−qt(1− x), 0 ≤ t < x ≤ 1;
−qx (1− t), 0 ≤ x < t ≤ 1,

(15)

Gn(x, qt) =
∫ 1

0
G(x, qy) Gn−1(qy, qt) dqy (n ∈ N). (16)

Moreover, ∫ 1

0
Gn(x, qt) dqt = An(x)− Bn(x) (n ∈ N). (17)

Remark 1 ([14]). For x ∈ [0, 1] and n ∈ N0, we have

(−1)n An(x) ≥ 0 and (−1)n−1Bn(x) ≥ 0. (18)

Proposition 3. Let ξ1 be the smallest positive zero of Sinq(x). Then, there exist some constants
M1 and M2 and a positive integer n0 such that the following inequalities hold

0 ≤ (−1)n An(x) ≤ M1

ξ2n
1

; (19)

0 ≤ (−1)n−1Bn(x) ≤ M2

ξ2n
1

, (20)

for all x ∈ [0, 1] and n ≥ n0.

Proof. From (12), there is a positive real number C1 and n0 ∈ N such that∣∣∣(−1)n−1 An(x)− 2
Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

∣∣∣ ≤ C1

ξ2n
2

, (21)

for all x ∈ [0, 1] and n ≥ n0. Consequently,

0 ≤ (−1)n An(x) ≤ C1

ξ2n
2
− 2

Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

. (22)
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Note that ξ1 < ξ2 and Sinq(ξ1x) is bounded on [0, 1]. Then, from (22), we obtain

0 ≤ (−1)n An(x) ≤ C1

ξ2n
1

+
2

ξ2n+1
1

∣∣∣Sinq(ξ1x)
Sin′q(ξ1)

∣∣∣
≤ C1

ξ2n
1

+
C2

ξ2n
1

=
M1

ξ2n
1

.
(23)

Similarly, we obtain (20) from (13).

Proposition 4. There exists a constant M such that

0 ≤
∫ 1

0
(−1)n Gn(x, qt) dqt ≤ M

ξ2n
1

.

Proof. The proof follows immediately from Equation (17) and Proposition 3.

Proposition 5. For any fixed point x0 ∈ (0, 1) and sufficiently large n, there exist some constants
M1 and M2 such that

(−1)n An(x0) ≥
M1

ξ2n
1

; (24)

(−1)n−1Bn(x0) ≥
M2

ξ2n
1

. (25)

Proof. From (12), we obtain

(−1)n An(x)ξ2n+1
1 = L(x) +O(( ξ1

ξ2
)2n+1) (n→ ∞),

where L(x) = −2Sinq(ξ1x)
Sin′q(ξ1)

. Notice, for any fixed x0 ∈ (0, 1), L(x0) > 0 and

lim
n→∞

(−1)n An(x0)ξ
2n+1
1 = L(x0).

This implies that the sequence (−1)n An(x0)ξ
2n+1
1 is bounded below by a positive

number. I.e., (24) holds. Similarly, we obtain the Inequality (25) from (13).

Now, using the previous results, we prove the following theorem.

Theorem 2. If the series

S = a0 A0(x) + b0B0(x) + a1 A1(x) + b1B1(x) + . . . (26)

converges for a single value x0 ∈ (0, 1), then the series ∑∞
n=0(−1)n

[
an+bn

ξ2n
1

]
is absolutely convergent.

Proof. Since the series (26) converges for x0 ∈ (0, 1), we have

lim
n→∞

an An(x0) = 0, lim
n→∞

bnBn(x0) = 0.

Then, from the inequalities (24) and (25), we obtain

an = O(ξ2n
1 ) and bn = O(ξ2n

1 ). (27)
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From (12), (13), and (27), we conclude that the series

S1 =
∞

∑
n=0

{
an

[
An(x0) +

2(−1)nSinq(ξ1x0)

ξ2n+1
1 Sin′q(ξ1)

]
+ bn

[
Bn(x0) +

(−1)nCosqξ1Sinq(ξ1x0)

(1− q)ξ2n+1
1 Sin′q(ξ1)

]}

converges absolutely. This implies that S1 − S is also convergent. Notice that

S1 − S =
∞

∑
n=0

[2Sinq(ξ1x0)

ξ1Sin′q(ξ1)

(−1)n

ξ2n
1

an +
Cosqξ1Sinq(ξ1x0)

(1− q)ξ1Sin′q(ξ1)

(−1)n

ξ2n
1

bn

]
>

2Sinq(ξ1x0)

ξ1Sin′q(ξ1)

∞

∑
n=0

[ (−1)n

ξ2n
1

an +
(−1)n

ξ2n
1

bn

]
.

Therefore, we obtain the result.

4. A q-Analog of Completely Convex Function

In this section, by C∞
q [0, a], we mean the space of all functions defined on [0, a] such

that Dn
q−1 f (x) is defined and continuous at zero.

Definition 1. A real-valued function f , defined on the interval [0, a] (a > 0), is said to be a
q-completely convex function if f ∈ C∞

q [0, a] and

(−1)nD2n
q−1 f (aqk) ≥ 0 (for all {n, k} ⊂ N0). (28)

Example 1. The functions f (x) = Sinqξ1x, defined in (9), are q-completely convex on the interval
[0, 1]. Indeed, one can verify that

(−1)nD2n
q−1 f (x) = (−1)nD2n

q−1Sinqξ1x = ξ2n
1 Sinq(ξ1 x) > 0, (29)

for all x ∈ [0, 1] and n ∈ N0.

In the following, we prove certain properties of q-completely convex functions.

Proposition 6. If a function f ∈ C∞
q [0, a] is q-completely convex, then

(−1)nD2n
q−1 f (0) ≥ 0 (n ∈ N0). (30)

Proof. The proof follows directly by taking the limit as k→ ∞ in (28) and using that D2n
q−1 f

is continuous at zero for all n ∈ N0.

Proposition 7. Let f ∈ C∞
q (0, 1) be a q-completely convex function on [0, 1]. Then, for a suffi-

ciently large n, we have

D2n
q−1 f (0) = O(ξ2n

1 ); (31)

D2n
q−1 f (1) = O(ξ2n

1 ). (32)

Proof. From Proposition 1 and Inequality (28), every term of (14) is non-negative. Therefore,

0 ≤ An(x) D2n
q−1 f (0) ≤ f (x); (33)

0 ≤ (−Bn(x))D2n
q−1 f (1) ≤ f (x) (x ∈ [0, 1]; n ∈ N0). (34)
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Thus, by using (24) and (33), we obtain

0 ≤ (−1)nD2n
q−1 f (0) ≤ f (x0)

(−1)n An(x0)
≤ Kξ2n

1 (n→ ∞),

for some constant K > 0 and x0 ∈ (0, 1). Then, we have (31). Similarly, we obtain the
asymptotic behavior in (32).

Proposition 8. Let f be a q-completely convex function on [0, 1]. Then, there exists a positive
constant C such that for all x ∈ Aq

0 ≤ (−1)nD2n
q−1 f (x) ≤ C

(
ξ1

x

)2n
, (35)

where ξ1 is the smallest positive zero of Sinq(x).

Proof. If f is q-completely convex on [0, 1], then it is q-completely convex on [0, x] for
all x ∈ Aq. Consequently, the function f̃ (t) := f (xt) is q-completely convex on [0, 1].
Therefore, from Proposition (7), we have

0 ≤ (−1)nD2n
q−1 f̃ (1) = (−1)nx2nD2n

q−1 f (x) = O(ξ2n
1 ),

which is nothing else but (35).

Lemma 2. Let f (x) and −D2
q−1 f (x) be non-negative on A∗q , and continuous at 0. Assume that

there exists a number x0 ∈ Aq such that f (x0) ≤ α (α ∈ R). Then,

f (x) ≤ (1 + q)α
(1− q)x0

, for all x ∈ A∗q .

Proof. First, let x ∈ A∗q and x ≥ x0. Then, by using the assumption D2
q−1 f (x) ≤ 0, we have

∫ x

x0

D2
q f (

t
q2 ) dqt ≤ 0.

Therefore, Dq f (x) ≤ Dq f (x0), and∫ x

x0

Dq f (t) dqt ≤ (x− x0)Dq f (x0) (x ∈ A∗q , x0 ≤ x). (36)

Since f (x) ≥ 0 on A∗q , from (8) and Inequality (36), we obtain

f (x) ≤ f (x0) +
(x− x0)

(1− q)x0
f (x0) =

x− x0q
(1− q)x0

f (x0) <
α

(1− q)x0
, (37)

for all x ∈ A∗q and x0 ≤ x. Similarly, if x ∈ A∗q and x < x0, then

f (x) ≤ x0 − x
(1− q)x0

f (qx0) <
f (qx0)

(1− q)x0
. (38)

On the other hand, since D2
q−1 f (x) ≤ 0, we have

(1 + q) f (qx) ≥ q f (x) + f (q2x) (x ∈ A∗q).
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Therefore, from the condition f (x) ≥ 0, we obtain

(1 + q) f (qx) ≥ q f (
x
q
) + f (qx) > f (qx) (x ∈ A∗q). (39)

So, from the inequalities (38) and (39), we obtain

f (x) <
(1 + q)α
(1− q)x0

(x ∈ A∗q , x < x0). (40)

Hence, the relations (37) and (40) yield the required result.

Corollary 1. If f ∈ C∞
q [0, 1] is a q-completely convex function, then there exists a positive constant

M such that
0 ≤ (−1)nD2n

q−1 f (x) ≤ Mξ2n
1 (n ∈ N0, x ∈ A∗q). (41)

Proof. The proof follows from Proposition 8 and Lemma 2 by taking x0 = 1 and M =
1+q
1−q C.

Lemma 3. If f ∈ C∞
q [0, 1] is a q-completely convex function on [0, 1], then there exists a constant

K > 0 such that
|Dn

q−1 f (x)| ≤ Kξn
1 (x ∈ A∗q), (42)

where ξ1 is the smallest positive zero of Sinq(z).

Proof. From Corollary 1, it suffices to prove (42) when n is an odd integer. We set g(x) =
(−1)nD2n

q−1 f (x). Since f (x) is a q-completely convex on 0 ≤ x ≤ 1, again from Corollary 1,
there exists the constant M > 0 (independent of n) such that for all x ∈ A∗q

0 ≤ g(x) ≤ Mξ2n
1 , (43)

0 ≤ −D2
q−1 g(x) ≤ Mξ2n+2

1 .

Therefore, for every x ∈ A∗q − {1}, we have

0 ≤
∫ q2

qx
−D2

q−1 g(t) dqt ≤ Mq(q− x)ξ2n+2
1 .

So, by using the fundamental theorem of the q-calculus, we obtain

0 ≤ (−1)nD2n+1
q−1 f (x)− (−1)nD2n+1

q−1 f (1) ≤ Mξ2n+2
1 ,

and hence,

(−1)nD2n+1
q−1 f (1) ≤ (−1)nD2n+1

q−1 f (x) ≤ (−1)nD2n+1
q−1 f (1) + Mξ2n+2

1 ,

for all x ∈ A∗q − {1}. Consequently,

|D2n+1
q−1 f (x)| ≤ |D2n+1

q−1 f (1)|+ Mξ2n+2
1 . (44)

On the other hand, since D2
q−1 g(x) < 0, one can verify that for all x ∈ A∗q

(1 + q)g(
x
q
) ≥ g(x) + qg(

x
q2 ),
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and then
qg(

x
q
) ≤ (1 + q)g(x)− g(qx) (x ∈ A∗q).

Thus, if x = 1, we obtain∣∣∣∣(D2n
q−1 f )(

1
q
)

∣∣∣∣ = (−1)n(D2n
q−1 f )(

1
q
) ≤ (1 + q)

q

∣∣∣D2n
q−1 f (1)

∣∣∣. (45)

Hence, from (8), (43) and (45), we have∣∣∣D2n+1
q−1 f (1)

∣∣∣ = |Dq−1 g(1)| ≤ |g(1)|+ |g(1/q)|
1/q− 1

≤ 2q + 1
q

Mξ2n
1 . (46)

However, ξ1 > q−3/2, this implies∣∣∣D2n+1
q−1 f (1)

∣∣∣ ≤ √q(2q + 1)Mξ2n+1
1 . (47)

By substituting (47) in (44), we obtain

|D2n+1
q−1 f (x)| ≤ √q(2q + 1)Mξ2n+1

1 + Mξ2n+2
1 ≤ M1Mξ2n+1

1 ,

for all n ∈ N and x ∈ A∗q , where M1 =
√

q(2q + 1) + q−3/2.
Since D2n+1

q−1 f (x) is continuous at zero, then we obtain D2n+1
q−1 f (x) = O(ξ2n+1

1 ) for a
sufficiently large n. This completes the proof.

Theorem 3. Let f ∈ C∞
q [0, 1] be a q-completely convex on [0, 1]. If f is analytic at zero, then the

following q-Lidstone series expansion holds for all x ∈ [0, 1].

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
. (48)

Moreover, f (x) is the restriction of an entire function of q−1-exponential growth of order 1
and a finite type less than ξ1 and the expansion (48) holds for all x on the entire complex plane.

Proof. Since f is analytic at 0, there exists 0 < c < 1 and the open interval Ωc = (−c, c)
such that f (x) has the Maclaurin series expansion

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn =
∞

∑
n=0

q
n(n−1)

2
Dn

q−1 f (0)

[n]q!
xn (x ∈ Ωc). (49)

From Lemma 3, there exists a constant K such that

∣∣∣ f (x)
∣∣ ≤ ∞

∑
n=0

∣∣∣q n(n−1)
2

Dn
q−1 f (0)

[n]q!
xn
∣∣∣ ≤ K

∞

∑
n=0

q
n(n−1)

2
(ξ1x)n

[n]q!
= K Eq(ξ1x), (50)

where Eq(.) is Jackson’s q-exponential function defined in (10). Notice that, by the known
properties of Eq(.) (see [11]), Eq(x) is an entire function that has a q−1-exponential growth of
order 1, and it converges everywhere in the complex plane. Therefore, f (x) is the restriction
of an entire function of q−1-exponential growth of order 1 and a finite type less than ξ1. So,
according to Theorem 1, we obtain the result.

5. A q-Analog of Minimal Completely Convex Function

Definition 2. A real-valued function f ∈ C∞
q [0, 1] is a minimal q-completely convex on [0, 1] if it

is q-completely convex in the interval [0, 1], and if the function g(x) = f (x)− ε Sinqξ1x is not
q-completely convex for any ε > 0.
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For example, the function f (x) = Sinqx is a minimal q-completely convex in 0 ≤ x ≤ 1
while the function f (x) = Sinqξ1x is not because for any 0 < ε < 1 and x ∈ (0, 1),

(−1)nD2n
q−1

(
Sinqξ1x− ε Sinqξ1x

)
= (1− ε)ξ2n

1 Sinq(ξ1x) > 0.

Theorem 4. Let n ∈ N0, (an)n and (bn)n be two sequences of non-negative integers. Assume that
the series

∞

∑
n=0

[
(−1)nan An(x)− (−1)nbn Bn(x)

]
converges to a function f (x), 0 ≤ x ≤ 1. Then, f (x) is a minimal q-completely convex on the
interval [0, 1].

Proof. From the assumption, we have

f (x) =
∞

∑
n=0

[
(−1)nan An(x)− (−1)nbn Bn(x)

]
, 0 ≤ x ≤ 1. (51)

Taking the q−1-derivative for (51) 2k times and using (6), we obtain

(−1)kD2k
q−1 f (x) =

∞

∑
n=k

(−1)n−kan An−k(x)− (−1)n−kbn Bn−k(x)

=
∞

∑
m=0

(−1)mam+k Am(x)− (−1)mbm+k Bm(x).
(52)

From Proposition 5, since (an)n and (bn)n are positive sequences, the right-hand side
of Equation (52) is non-negative, and f (x) is q-completely convex in [0, 1]. On the other
hand, from Proposition 3 and Equation (52), there exists a constant M > 0 such that

(−1)kD2k
q−1 f (x) ≤ M

∞

∑
m=0

[
am+k + bm+k

]
ξ−2m

1 = Mξ2k
1

∞

∑
n=k

an + bn

ξ2n
1

. (53)

According to Theorem 2, the power series Tk = ∑∞
n=k

an+bn
ξ2n

1
converges to zero as

k→ ∞. Hence, for given ε > 0 and x0 ∈ Aq, there exists an integer k0 ∈ N such that

MTk − ε Sinq(ξ1x0) < 0 (k ≥ k0).

This implies from (53) that the function

(−1)kD2k
q−1

(
f (x)− ε Sinq(ξ1x)

)
= (−1)kD2k

q−1 f (x)− ε ξ2k
1 Sinq(ξ1x)

is negative at x0. Therefore, the function f is a minimal q-completely convex in [0, 1].

Theorem 5. If f (x) is a minimal q-completely convex function on [0, 1], then it can be expanded
into a convergent q-Lidstone series:

f (x) = f (1)A0(x)− f (0)B0(x) + D2
q−1 f (1)A1(x)− D2

q−1 f (0)B1(x) + . . . . (54)

Proof. We denote by Sn(x) the nth partial sum of the series (54). Then, from the hypothesis
on f (x) and Equation (14), we obtain

Sn(x) ≤ f (x) (0 ≤ x ≤ 1, n ∈ N0).



Axioms 2023, 12, 412 11 of 13

Moreover, for each x, Sn(x) is a non-decreasing function of n. Thus, lim
n→∞

Sn(x) exists

and tends towards some function. To prove the result, we prove that

lim
n→∞

Sn(x) = f (x) (x ∈ [0, 1]).

Suppose the contrary, and assume that for some x0 ∈ [0, 1]

f (x0)− lim
n→∞

Sn(x0) = 4 > 0.

Then, by using Equation (14), we have

f (x0)− S2n(x0) =
∫ 1

0
Gn(x0, qt)D2n

q−1 f (q2t) dqt ≥ 4 (n ∈ N). (55)

Since f (x) is a minimal q-completely convex function on [0, 1], then f (x)− ε Sinqξ1x
is not q-completely convex in 0 ≤ x ≤ 1 for any ε > 0. That is, there exists n0 ∈ N and
t0 ∈ Aq,

(−1)n0 D2n0
q−1 f (t0)− ε ξ2n0

1 Sinq(ξ1t0) < 0.

From Inequality (11), we have

(−1)n0 D2n0
q−1 f (t0) < ε ξ2n0+1

1 t0.

By applying Lemma 2 on the function g(x) = (−1)n0 D2n0
q−1 f (x), we obtain

(−1)n0 D2n0
q−1 f (t) ≤ 1 + q

1− q
ε ξ2n0+1

1 (t ∈ Aq).

Therefore, by choosing ε < 1−q
(1+q)ξ1 M 4, where M is the constant of Proposition 4, we

obtain

0 ≤
∫ 1

0
Gn0(x0, qt)D2n0

q−1 f (q2t) dqt < 4,

which contradicts Inequality (55), and then the result is proved.

The following theorem is the main result of this section.

Theorem 6. A real function f (x) can be represented by an absolutely convergent q-Lidstone series
if and only if it is the difference of two minimal q-completely convex functions on [0, 1].

Proof. First, assume that f (x) = g(x) − h(x), where g(x) and h(x) are both minimal
q-completely convex functions on [0, 1]. According to Theorem 5, we have

g(x) =
∞

∑
n=0

[
D2n

q−1 g(1)An(x)− D2n
q−1 g(0)Bn(x)

]
, (56)

h(x) =
∞

∑
n=0

[
D2n

q−1 h(1)An(x)− D2n
q−1 h(0)Bn(x)

]
. (57)

Notice that each series only has positive terms. Thus, by subtracting (57) from (56),
we obtain an absolutely convergent q-Lidstone series whose sum is f (x).

Conversely, assume that f (x) can be represented by an absolutely convergent q-
Lidstone series

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
. (58)
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Set an = D2n
q−1 f (1), bn = D2n

q−1 f (0), and

g(x) =
∞

∑
n=0

[
(−1)n{|an| − (−1)nan} An(x) + (−1)n+1{|bn| − (−1)nbn} Bn(x)

]
, (59)

h(x) =
∞

∑
n=0

[
(−1)n|an| An(x) + (−1)n+1|bn| Bn(x)

]
. (60)

Since series in (58) is absolutely convergent, then the two series in (59) and (60) both
converge. Furthermore, note that every term of these series is positive. Hence, by using
Theorem 4, g(x) and h(x) are minimal q-completely convex functions on [0, 1]. Since
f (x) = h(x)− g(x), the proof is complete.

6. Conclusions

We introduced the class of q-completely convex functions in the interval [0, a], with
the functions satisfying the inequality

(−1)nD2n
q−1 f (aqk) ≥ 0 ({n, k} ⊂ N0)).

This class of functions is a generalization of the class of completely convex functions
introduced by Widder [10]. First, we presented some properties of a q-completely convex
function, and then we proved that such a function could be expanded in a convergent
q-Lidstone series:

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
.

Furthermore, we obtained a necessary and sufficient condition for a function f (x)
to have an absolutely convergent q-Lidstone series expansion by introducing the class of
minimal q-completely convex functions.
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