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Abstract: In this study, we consider different types of convex-exponent products of elements of a
certain class of log-harmonic mapping and then find sufficient conditions for them to be starlike
log-harmonic functions. For instance, we show that, if f is a spirallike function, then choosing a
suitable value of γ, the log-harmonic mapping F(z) = f (z)| f (z)|2γ is α-spiralike of order ρ. Our
results generalize earlier work in the literature.
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1. Introduction

Let E be the open unit disk E = {z ∈ C : |z| < 1} andH(E) denote the linear space of
all analytic functions defined on E. Additionally, let A be a subclass consisting of f ∈ H(E)
such that f (0) = f ′(0)− 1 = 0.

A C2-function defined in E is said to be harmonic if ∆ f = 0, and a log-harmonic
function f is a solution of the nonlinear elliptic partial differential equation

f z

f
= a

fz

f
, (1)

where the second dilation function a ∈ H(E) is such that |a(z)| < 1 for all z ∈ E. In the
above formula, f z means ( fz). Observe that f is log-harmonic if log f is harmonic. The au-
thors in [1] have proven that, if f is a non-constant log-harmonic mapping that vanishes
only at z = 0, then f should be in the form

f (z) = zm|z|2mβh(z)g(z), (2)

where m is a nonnegative integer, Reβ > − 1
2 , while h and g are analytic functions inH(E)

satisfying g(0) = 1 and h(0) 6= 0. The exponent β in (2) depends only on a(0) and is
given by

β = a(0)
1 + a(0)

1− |a(0)|2 . (3)

We remark that f (0) 6= 0 if and only if m = 0 and that a univalent log-harmonic
mapping in E vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2βh(z)g(z),
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where Reβ > − 1
2 and 0 /∈ hg(E).

Recently, the class of log-harmonic functions has been extensively studied by many
authors; for instance, see [1–10].

The Jacobian of log-harmonic function f is given by

J f (z) = | fz|2(1− |a(z)|2) (4)

and is positive. Therefore, all non-constant log-harmonic mappings are sense-preserving in
the unit disk E. Let B denote the class of functions a ∈ H(E) with |a(z)| < 1 and B0 denote
a ∈ B such that a(0) = 0.

It is easy to see that, if f (z) = zh(z)g(z), then the functions h and g, and the dilation
a satisfy

zg′(z)
g(z)

= a(z)
(

1 +
zh′(z)
h(z)

)
. (5)

Definition 1. (See [2].) Let f = z|z|2βh(z)g(z) be a univalent log-harmonic mapping. We say
that f is a starlike log-harmonic mapping of order α if

∂ arg f (reiθ)

∂θ
= Re

z fz − z fz

f
> α, 0 ≤ α < 1

for all z ∈ E. Denote by STLH(α) the class of all starlike log-harmonic mappings.

By taking β = 0 and g(z) = 1 in Definition 1, we obtain the class of starlike analytic
functions in A, which we denote by S∗(α).

The following lemma shows the relationship of the classes STLH(α) and S∗(α).

Lemma 1. (See [2].) Let f (z) = z|z|2βh(z)g(z) be a log-harmonic mapping on E, 0 /∈ hg(E).
Then, f ∈ STLH(α) if and only if ϕ(z) = zh(z)

g(z) ∈ S∗(α).

In [2], the authors studied the class of α − spirallike functions and proved that, if
f (z) = z|z|2βh(z)g(z) is a log-harmonic mapping on E, 0 /∈ hg(E), then f is α− spirallike if

Re
(

e−iα z fz − z fz

f

)
> 0, 0 ≤ α < 1

for all z ∈ E. We remark that a simply connected domain Ω in C containing the origin is
said to be α− spirallike, −π

2 < α < π
2 if w exp(−teiα) ∈ Ω for all t ≥ 0 whenever w ∈ Ω

and that f is an α− spirallike function, if f (E) is an α-spiralike domain. Motivated by this,
we define the class of α− spirallike log-harmonic mappings of order ρ as follows:

Definition 2. Let f (z) = z|z|2βh(z)g(z) be a univalent log-harmonic mapping on E, with
0 /∈ hg(E). Then, we say that f is an α− spirallike log-harmonic mapping of order ρ (0 ≤ ρ < 1) if

Re
(

e−iα z fz − z fz

f (z)

)
> ρ cos α (z ∈ E)

for some real α(|α| < π
2 ). The class of these functions is denoted by Sα

LH(ρ). Furthermore, we
define Sα

LH(1) =
⋂

0≤ρ<1 Sα
LH(ρ).

Additionally, we denote by Sα(ρ) the subclass of all f ∈ A such that f is α-spiralike of
order ρ and Sα(1) =

⋂
0≤ρ<1 Sα(ρ).
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Lemma 2. ([2]) If f (z) = z|z|2βh(z)g(z) is log-harmonic on E and 0 /∈ hg(E), with Reβ > − 1
2 ,

then f ∈ Sα
LH(ρ) if and only if ψ(z) = zh(z)

g(z)e2iα ∈ Sα(ρ).

In the celebrated paper [11], the authors introduce a new way of studying harmonic
functions in Geometric Function Theory. Additionally, many authors investigated the linear
combinations of harmonic functions in a plane; see, for example, [12–14]. In Section 2 of this
paper, taking the convex-exponent product combination of two elements, a specified class
of new log-harmonic functions is constructed. Indeed, we show that, if f (z) = zh(z)ḡ(z) is
spirallike log-harmonic of order ρ, then by choosing suitable parameters of α and γ, the
function F(z) = f (z)| f (z|2γ is log-harmonic spirallike of order α. Additionally, in Section 3,
we provide some examples that are constructed from Section 2.

2. Main Results

Theorem 1. Let f (z) = zh(z)g(z) ∈ STLH(ρ), (0 ≤ ρ < 1) with respect to a ∈ B0,
φ ∈ S∗(γ), (0 ≤ γ < 1) and α, β be real numbers with α + β = 1. Then, F(z) = f (z)αK(z)β is
starlike log-harmonic mapping of order αρ + βγ with respect to a, where

K(z) = φ(z) exp
{

2Re
∫ z

0

a(s)
1− a(s)

φ′(s)
φ(s)

ds
}

.

Proof. By definition of F, we have

Fz

F
= α

fz

f
+ β

Kz

K
and

Fz

F
= α

fz

f
+ β

Kz

K
. (6)

Additionally direct computations show that

Kz

K
=

1
1− a(z)

φ′(z)
φ(z)

, and
Kz

K
=

a(z)
1− a(z)

φ′(z)
φ(z)

. (7)

Now, in view of Equations (6) and (7),

â(z) =
Fz
F
Fz
F

=
α

fz
f
+ β Kz

K

α
fz
f + β Kz

K

= a(z)
α

fz
f + β Kz

K

α
fz
f + β Kz

K

= a(z).

On the other hand,

Re
zFz − zFz

F
= Re

(
α

z fz

f
+ β

zKz

K

)
− Re

(
α

z fz

f
+ β

zKz

K

)

= αRe

(
z fz

f
− z fz

f

)
+ βRe

(
zKz

K
− zKz

K

)
> αρ + βγ.

The above relation shows that F is a log-harmonic starlike function of order αρ + βγ,
and the proof is complete.

Theorem 2. Let f (z) = zh(z)g(z) ∈ Sβ
LH(ρ) with respect to a ∈ B0 and γ be a constant with

Reγ > − 1
2 . Then, F(z) = f (z)| f (z)|2γ is an α− spirallike log-harmonic mapping of order ρ

with respect to

â(z) =
(1 + γ̄)a(z) + γ̄

1 + γ + γa(z)
,

where |β| < π
2 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.
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Proof. By definition of F, we have

F(z) = f (z)| f (z)|2γ = z1+γzγH(z)G(z),

where
H(z) = h1+γ(z)gγ(z) and G(z) = hγ̄(z)g1+γ̄(z).

With a straightforward calculation and using Equation (5),

zFz

F
= (1 + γ)

(
1 +

zh′(z)
h(z)

)
+ γ

zg′(z)
g(z)

=

(
1 +

zh′(z)
h(z)

)
((1 + γ) + γa(z)),

and

z̄Fz̄

F
= γ

(
1 +

zh′(z)
h(z)

)
+ (1 + γ)

zg′(z)
g(z)

=

(
1 +

zh′(z)
h(z)

)
(γ + (1 + γ)a(z)).

If we consider

â(z) =

(
z̄Fz̄(z)
F(z)

)
zFz(z)
F(z)

,

then

â(z) =
γ̄ + (1 + γ̄)a(z)
(1 + γ) + γa(z)

.

Now, in view of |a(z)| < 1, it easy to see that |â(z)| < 1 provided that
∣∣∣ γ

1+γ

∣∣∣ < 1,

which evidently holds |γ|2 < |1 + γ|2 since Reγ > − 1
2 , and this means that F is a log-

harmonic function.
Additionally, by putting

ψ(z) =
zH(z)

G(z)e2iα ,

we have

ψ(z) =
zH(z)

G(z)e2iα =
zh(z)1+γg(z)γ

(hγ̄(z)g1+γ̄(z))e2iα .

Then, we obtain

e−iα zψ′(z)
ψ(z)

= e−iα + [(1 + γ)e−iα − γeiα]
zh′(z)
h(z)

− [(1 + γ)eiα − γe−iα]
zg′(z)
g(z)

= (−γe−iα + γ̄eiα) + [(1 + γ)e−iα − γeiα]

(
1 +

zh′(z)
h(z)

)
− [(1 + γ)eiα − γe−iα]

zg′(z)
g(z)

.

The condition on α ensures that

(1 + γ)e−iα − γeiα =
cos α

cos β
e−iβ and (1 + γ)eiα − γe−iα =

cos α

cos β
eiβ,

because by letting γ = γ1 + iγ2, the first equality holds true if and only if

cos β cos α− i(1 + 2γ1) sin α cos β + i2γ2 cos β cos α = cos α cos β− i cos α sin β

or, equivalently, after simplification

2γ2 cot β− (1 + 2γ1) tan α cot β = −1
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or

α = tan−1
(

tan β + 2Imγ

1 + 2Reγ

)
.

Thus, by hypothesis,

Re{e−iα zψ′(z)
ψ(z)

} = cos α

cos β
Re
(

e−iβ(1 +
zh′(z)
h(z)

)− eiβ zg′(z)
g(z)

)
> ρ cos α

and it follows that F is an α-spirallike log-harmonic mapping of order ρ in which the
dilation is â(z).

Theorem 3. Let fk(z) = zhk(z)gk(z) ∈ Sβ
LH(ρ) with k = 1, 2 and with respect to the same

a ∈ B0 and γ be a constant with Reγ > − 1
2 . Moreover, let

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then, F(z) = Fλ
1 (z)F1−λ

2 (z) is an α-spirallike log-harmonic mapping of order ρ with
respect to

â(z) =
(1 + γ̄)a(z) + γ̄

1 + γ + γa(z)
,

where |β| < π
2 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.

Proof. According to the definitions of F1 and F2, we have

Fλ
1 (z) = ( f1(z)| f1(z)|2γ)λ

= (z|z|2γh1+γ
1 (z)gγ

1 (z)h
γ
1 (z)g1+γ

1 (z))
λ

and

F1−λ
2 (z) = ( f2(z)| f2(z)|2γ)1−λ

= (z|z|2γh1+γ
2 (z)gγ

2 (z)h
γ
2 (z)g1+γ

2 (z))
1−λ

.

Putting the values of Fλ
1 and F1−λ

2 on F, we obtain

F(z) = (z|z|2γh1+γ
1 (z)gγ

1 (z)h
γ
1 (z)g1+γ

1 (z))
λ
(z|z|2γh1+γ

2 (z)gγ
2 (z)h

γ
2 (z)g1+γ

2 (z))
1−λ

= z|z|2γH(z)G(z),

where
H(z) = h1(z)λ(1+γ)g1(z)λγh2(z)(1−λ)(1+γ)g2(z)(1−λ)γ (8)

and
G(z) = h1(z)

λγg1(z)
λ(1+γ)h2(z)

(1−λ)γg2(z)
(1−λ)(1+γ). (9)

Now, we show that the second dilation of F i.e., µ(z) satisfies the condition |µ(z)| < 1.
For this, since

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

,
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we have

µ(z) =
λ

F1z(z)
F1(z)

+ (1− λ) F2z(z)
F2(z)

λ
F1z(z)
F1(z)

+ (1− λ) F2z(z)
F2(z)

=
λ[γ(1 + zh′1

h1
) + (1 + γ)

zg′1
g1

] + (1− λ)[γ(1 + zh′2
h2

) + (1 + γ)
zg′2
g2

]

λ[(1 + γ)(1 + zh′1
h1

) + γ
zg′1
g1

] + (1− λ)[(1 + γ)(1 + zh′2
h2

) + γ
zg′2
g2

]

=
λ(1 + zh′1

h1
)[γ + (1 + γ)a(z)] + (1− λ)(1 + zh′2

h2
)[γ + (1 + γ)a(z)]

λ(1 + zh′1
h1

)[(1 + γ) + γa(z)] + (1− λ)(1 + zh′2
h2

)[(1 + γ) + γa(z)]

=
[λ(1 + zh′1

h1
) + (1− λ)(1 + zh′2

h2
)][γ + (1 + γ)a(z)]

[λ(1 + zh′1
h1

) + (1− λ)(1 + zh′2
h2

)][(1 + γ) + γa(z)]

=
[γ + (1 + γ)a(z)]
[(1 + γ) + γa(z)]

=
(1 + γ)

(1 + γ)

a(z) + γ
1+γ

1 + a(z)γ
1+γ

,

(10)

and the condition Reγ > − 1
2 ensures that |µ(z)| < 1 in E, which implies that F is a locally

univalent log-harmonic mapping. Now, to prove

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

we have to show that ψ(z) = zH(z)
G(z)e2iα ∈ Sα(ρ). However, a direct calculation shows that

ψ(z) =
zH(z)

G(z)e2iα =
[zhλ(1+γ)

1 (z)gλγ
1 (z)h(1−λ)(1+γ)

2 (z)g(1−λ)γ
2 (z)]

[hλγ
1 (z)gλ(1+γ)

1 (z)h(1−λ)γ
2 (z)g(1−λ)(1+γ)

2 (z)]e2iα
.

Now,

e−iα zψ′(z)
ψ(z)

= e−iα
[

1 + λ(((1 + γ)− e2iαγ)
zh′1(z)
h1(z)

− ((1 + γ)e2iα − γ)
zg′1(z)
g1(z)

)

]
+ e−iα

[
(1− λ)(((1 + γ)− e2iαγ)

zh′2(z)
h2(z)

− ((1 + γ)e2iα − γ)
zg′2(z)
g2(z)

)

]
= −γe−iα + eiαγ̄

+ λ

[
((1 + γ)e−iα − eiαγ)(1 +

zh′1(z)
h1(z)

)− ((1 + γ)eiα − γe−iα)
zg′1(z)
g1(z)

]
+ (1− λ)

[
((1 + γ)e−iα − eiαγ)(1 +

zh′2(z)
h2(z)

)− ((1 + γ)eiα − γe−iα)
zg′2(z)
g2(z)

]
.

By hypothesis, we know that

(1 + γ)e−iα − γeiα =
cos α

cos β
e−iβ and (1 + γ)eiα − γe−iα =

cos α

cos β
eiβ,
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so
Re{e−iα zψ′(z)

ψ(z)
}

= λ
cos α

cos β
Re
(

e−iβ(1 +
zh′1(z)
h1(z)

)− eiβ zg′1(z)
g1(z)

)
+ (1− λ)

cos α

cos β
Re
(

e−iβ(1 +
zh′2(z)
h2(z)

)− eiβ zg′1(z)
g1(z)

)
> ρ cos α

and the proof is completed.

Theorem 4. Let fk(z) = zhk(z)gk(z) ∈ Sβ
LH(ρ) with respect to ak ∈ B0(k = 1, 2). Moreover,

suppose that Reγ > − 1
2 ,

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

If

Re

[
(1− a1(z)a2(z))

(
1 +

zh′1(z)
h1(z)

)(
1 +

zh′2(z)
h2(z)

)]
≥ 0 ( f or any z ∈ E),

then
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(ρ),

where |β| < π
2 , 0 ≤ λ ≤ 1 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.

Proof. Using the same argument as in Theorem 3, we have

F(z) = z|z|2γH(z)G(z),

where H(z) and G(z) are defined by Equations (8) and (9). Now, we show that the second
dilation of F, i.e., µ(z), satisfies the condition |µ(z)| < 1. For this, since

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

,

using a similar argument to the relation Equation (10) of Theorem 3, we have

|µ(z)| =

∣∣∣∣∣∣λ(1 +
zh′1
h1

)[γ + (1 + γ)a1(z)] + (1− λ)(1 + zh′2
h2

)[γ + (1 + γ)a2(z)]

λ(1 + zh′1
h1

)[(1 + γ) + γa1(z)] + (1− λ)(1 + zh′2
h2

)[(1 + γ) + γa2(z)]

∣∣∣∣∣∣.
However, by hypothesis, we obtain∣∣∣∣λ(1 + zh′1

h1
)[(1 + γ) + γa1(z)] + (1− λ)(1 +

zh′2
h2

)[(1 + γ) + γa2(z)]
∣∣∣∣2

−
∣∣∣∣λ(1 + zh′1

h1
)[γ + (1 + γ)a1(z)] + (1− λ)(1 +

zh′2
h2

)[γ + (1 + γ)a2(z)]
∣∣∣∣2

= (2Reγ + 1)

(
λ2
∣∣∣∣1 + zh′1

h1

∣∣∣∣2(1− |a1|2) + (1− λ)2
∣∣∣∣1 + zh′2

h2

∣∣∣∣2(1− |a2|2)
)

+ (2Reγ + 1)

(
2λ(1− λ)Re[(1− a1a2)(1 +

zh′1
h1

)(1 +
zh′2
h2

)]

)
> 0.
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Therefore, |µ(z)| < 1 in E, which implies that F is a locally univalent mapping.
Moreover, by following a similar proof to that in Theorem 3, we observe that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

and the proof is completed.

Theorem 5. Let fk(z) = zhk(z)gk(z) be univalent log-harmonic functions with respect to
ak ∈ B0(k = 1, 2) and Reγ > − 1

2 . Moreover, suppose that zhkgk = φk(z), where

φk(z) = zexp
{

2
∫ z

0

ak(t)
t(1− ak(t))

dt
}

and
F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then,
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1)

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1+2Reγ

)
.

Proof. Since zhkgk = φk(z), by definition of ak(z) and φk(z), we obtain

1 +
zh′k(z)
hk(z)

=
1

1− ak(z)
(k = 1, 2).

Let

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

.

Using a similar argument to the relation in Equation (10) of Theorem 3, we obtain

|µ(z)| =
∣∣∣∣λ(1− a2(z))[γ + (1 + γ)a1(z)] + (1− λ)((1− a1(z))[γ + (1 + γ)a2(z)]

λ(1− a2(z))[(1 + γ) + γa1(z)] + (1− λ)(1− a1(z))[(1 + γ) + γa2(z)]

∣∣∣∣.
Now, |µ(z)| < 1 is equivalent to

ψ(λ) := |λ(1− a2(z))[(1 + γ) + γa1(z)] + (1− λ)(1− a1(z))[(1 + γ) + γa2(z)]|2

− |λ(1− a2(z))[γ + (1 + γ)a1(z)] + (1− λ)((1− a1(z))[γ + (1 + γ)a2(z)]|2

= (2Reγ + 1)[λ2|1− a2(z)|2(1− |a1(z)|2)
+ 2λ(1− λ)Re[(1− a2(z))(1− a1(z))(1− a1(z)a2(z))]

+ (1− λ)2|1− a1(z)|2(1− |a2(z)|2)] > 0.

However, by taking the derivative of ψ(λ), we have

ψ′(λ) = 2(2Reγ + 1)[
Re[(1− a2(z))(1− a1(z))(1− a1(z)a2(z))]− |1− a1(z)|2(1− |a2(z)|2)

]
,

which shows that ψ is a continuous monotonic function of λ in the interval [0, 1]. Since

ψ(0) = (2Reγ + 1)|1− a2(z)|2(1− |a1(z)|2) > 0
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and
ψ(1) = (2Reγ + 1)|1− a1(z)|2(1− |a2(z)|2) > 0,

we deduce that ψ(λ) > 0 for all λ ∈ [0, 1], which implies that F is a locally univalent
mapping. Now, to prove

F = Fλ
1 F1−λ

2 ∈ Sα
LH (11)

we have to show that ψ(z) = zH(z)
G(z)e2iα ∈ Sα(1), where H(z) and G(z) are defined by

Equations (8) and (9). A direct computation such as that in Theorem 3 shows that

(1 + γ)e−iα − γeiα

cos α
=

(1 + γ)eiα − γe−iα

cos α
= 1.

Additionally, we note that

1 +
zh′1
h1
−

zg′1
g1

= 1 +
zh′2
h2
− zg′2

g2
= 1.

Using these relation and the same argument as that made in Theorem 3, we obtain
ψ(z) = zH(z)

G(z)e2iα ∈ Sα(1), and the proof is complete.

Theorem 6. Let fk(z) = zhk(z)gk(z)(k = 1, 2) be log-harmonic functions with respect to
ak ∈ B0. Moreover, suppose that zhkgk = z and

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then,
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
(1+2Reγ)

)
.

Proof. Since zhkgk = z, by definition of ak(z), we obtain

1 +
zh′k(z)
hk(z)

=
1

1 + ak(z)
(k = 1, 2).

Using the same argument as that in Theorem 5, we obtain our result, but we omit the
details.

3. Examples

We provide several examples in this section.

Example 1. Let Reγ > − 1
2 and

f (z) = z
(1 + z)[cos β(1−ρ)eiβ−1]

(1− z)(1−ρ) cos βeiβ (1 + z)[(1−ρ) cos βeiβ−e2iβ ](1− z)(1−ρ) cos βeiβ
.

Then, it is easy to see that f is a β-spirallike log-harmonic mapping of order ρ with respect to
a(z) = −ze−2iβ. Now, Theorem 2 implies that the function F(z) = f (z)| f (z)|2γ is a α-spirallike
log-harmonic mapping of order ρ with respect to

â(z) =
−(1 + γ̄)ze−2iβ + γ̄

(1 + γ)− γe−2iβz
,
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where

α = tan−1
(

tan β + 2Imγ

1 + 2Reγ

)
.

The image in Example 1 is shown in Figure 1.

Figure 1. Image of F(z) for β = 0.5, ρ = 1, and γ = 0.25 in Example 1.

Example 2. Let Reγ > − 1
2 , 0 < a < 1, f1 be the function defined in Example 1 and

f2(z) = z
(1 + z)[cos β

(1+a−2ρ)
1+a eiβ−1]

(1− az)
(1+a−2ρ)

1+a cos βeiβ
(1 + z)[

(1+a−2ρ)
1+a cos βeiβ−e2iβ ](1− az)

(1+a−2ρ)
a(1+a) cos βeiβ

.

Then, it is easy to see that f1 and f2 are β-spirallike log-harmonic mappings of order ρ with
respect to a2(z) = a1(z) = −ze−2iβ. Additionally, suppose that

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then, Theorem 3 shows that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

where 0 ≤ λ ≤ 1 and α = tan−1
(

tan β+2Imγ
(1+2Reγ)

)
.

Example 3. Let Reγ > − 1
2 ,

f1(z) =
z

|1 + z|

√
1− z̄
1− z

and
f2(z) =

z
1− z

eRe 1
1−z .

Firstly, we show that f1 and f2 are log-harmonic starlike functions of order 1/2 with respect
to a1(z) = −z and a2(z) = z

2−z , respectively. A direct computation shows that

z( f1)z

f1
=

1
1− z2 ,

(
z̄( f1)z̄

f1

)
=
−z

1− z2

z( f2)z

f2
=

2− z
2(1− z2)

,
(

z̄( f2)z̄

f2

)
=

z
2(1− z2)

.
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Therefore, we obtain(
z̄( f1)z̄

f1

)
= a1(z)

z( f1)z

f1
and

(
z̄( f2)z̄

f2

)
= a2(z)

z( f2)z

f2
,

and this means that f1 and f2 are locally univalent log-harmonic functions. Additionally,

Re
z( f1)z − z̄( f1)z̄

f1
= Re

(
1

1− z2 +
z

1− z2

)
= Re

1
1− z

>
1
2

,

and

Re
z( f2)z − z̄( f2)z̄

f2
= Re

(
2− z

2(1− z2)
− z

2(1− z2)

)
= Re

1
1 + z

>
1
2

.

Hence, f1 and f2 are starlike log-harmonic functions of order 1/2. Additionally, let

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Since for z = reiθ ,

Re(1− a1a2)(1 +
zh′1
h1

)(1 +
zh′2
h2

)

= (1− |z|2)Re
1

(1− z̄)2
1

1− z2 =
1− |z|2
|1− z|2 Re

1
(1− z̄)(1 + z)

=
1− r2

|1− reiθ|2
(1− r2) > 0.

Theorem 4 implies that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(

1
2
),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1+2Reγ

)
.

The images in Example 2–4 are shown in Figures 2–4.

Example 4. Let Reγ > 1
2 , a1(z) = z, and h1(z) = g1(z) = 1

1−z . Moreover, let a2(z) = −z
and h2(z) = g2(z) = 1

1+z . Then, it is easy to verify that all conditions of Theorem 5 are satisfied.
Hence, according to Theorem 5, by taking

F1(z) =
z|z|2γ

(1− z)1+2γ(1− z̄)1+2γ

and

F2(z) =
z|z|2γ

(1 + z)1+2γ(1 + z̄)1+2γ
,

we have
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1−ρ+2Reγ

)
.

Example 5. Let Reγ > − 1
2 , a1(z) = −z and h1(z) = 1

1−z , g(z) = 1 − z. Moreover, let
a2(z) = z and h2(z) = 1

1+z , g2(z) = 1 + z. Then, it is easy to verify that all conditions of
Theorem 6 are satisfied. Hence, according to Theorem 6, by taking



Axioms 2023, 12, 409 12 of 13

F1(z) =
z|z|2γ(1− z̄)

(1− z)
and F2(z) =

z|z|2γ(1 + z̄)
(1 + z)

,

we have
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1−ρ+2Reγ

)
.

Figure 2. Images of f1(z) and f2(z) in Example 3.

Figure 3. Images of F1(z) and F2(z) for γ = 1 + i in Example 3.

Figure 4. Image of F(z) for γ = 1 + i and λ = 0.5 in Example 3.
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4. Conclusions

In this paper, we have shown that, if f (z) = zh(z)ḡ(z) is spirallike log-harmonic of
order ρ, then by choosing suitable parameters of α and γ, the function F(z) = f (z)| f (z|2γ

is log-harmonic spirallike of order α. Moreover, we provide some examples for the
obtained results.
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