Article

New Criteria for Convex-Exponent Product of Log-Harmonic Functions

Rasoul Aghalary ${ }^{1}$, Ali Ebadian ${ }^{1}$, Nak Eun Cho ${ }^{2, *}$ and Mehri Alizadeh ${ }^{3}$
1 Department of Mathematics, Faculty of Science, Urmia University, Urmia 57561-51818, Iran; r.aghalary@urmia.ac.ir (R.A.); a.ebadian@urmia.ac.ir (A.E.)
2 Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
3 Department of Mathematics, Faculty of Science, Payame Noor University, Tehran 19556-43183, Iran; a.alizadeh@pnu.ac.ir
* Correspondence: necho@pknu.ac.kr

Citation: Aghalary, R.; Ebadian, A.; Cho, N.E.; Alizadeh, M. New Criteria for Convex-Exponent Product of Log-Harmonic Functions. Axioms 2023, 12, 409. https://doi.org/ 10.3390/axioms12050409

Academic Editor: Georgia Irina Oros
Received: 3 April 2023
Revised: 20 April 2023
Accepted: 20 April 2023
Published: 22 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this study, we consider different types of convex-exponent products of elements of a certain class of log-harmonic mapping and then find sufficient conditions for them to be starlike log-harmonic functions. For instance, we show that, if f is a spirallike function, then choosing a suitable value of γ, the log-harmonic mapping $F(z)=f(z)|f(z)|^{2 \gamma}$ is α-spiralike of order ρ. Our results generalize earlier work in the literature.

Keywords: product; log-harmonic function; convex-exponent combination; starlike and spirallike functions

MSC: 30C45; 30C80

1. Introduction

Let E be the open unit disk $E=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(E)$ denote the linear space of all analytic functions defined on E. Additionally, let \mathcal{A} be a subclass consisting of $f \in \mathcal{H}(E)$ such that $f(0)=f^{\prime}(0)-1=0$.

A C^{2}-function defined in E is said to be harmonic if $\Delta f=0$, and a log-harmonic function f is a solution of the nonlinear elliptic partial differential equation

$$
\begin{equation*}
\frac{\bar{f}_{\bar{z}}}{\bar{f}}=a \frac{f_{z}}{f} \tag{1}
\end{equation*}
$$

where the second dilation function $a \in \mathcal{H}(E)$ is such that $|a(z)|<1$ for all $z \in E$. In the above formula, $\bar{f}_{\bar{z}}$ means $\overline{\left(f_{\bar{z}}\right)}$. Observe that f is \log-harmonic if $\log f$ is harmonic. The authors in [1] have proven that, if f is a non-constant log-harmonic mapping that vanishes only at $z=0$, then f should be in the form

$$
\begin{equation*}
f(z)=z^{m}|z|^{2 m \beta} h(z) \bar{g}(z) \tag{2}
\end{equation*}
$$

where m is a nonnegative integer, $\operatorname{Re} \beta>-\frac{1}{2}$, while h and g are analytic functions in $\mathcal{H}(E)$ satisfying $g(0)=1$ and $h(0) \neq 0$. The exponent β in (2) depends only on $a(0)$ and is given by

$$
\begin{equation*}
\beta=\bar{a}(0) \frac{1+a(0)}{1-|a(0)|^{2}} . \tag{3}
\end{equation*}
$$

We remark that $f(0) \neq 0$ if and only if $m=0$ and that a univalent log-harmonic mapping in E vanishes at the origin if and only if $m=1$, that is, f has the form

$$
f(z)=z|z|^{2 \beta} h(z) \bar{g}(z),
$$

where $\operatorname{Re} \beta>-\frac{1}{2}$ and $0 \notin h g(E)$.
Recently, the class of log-harmonic functions has been extensively studied by many authors; for instance, see [1-10].

The Jacobian of log-harmonic function f is given by

$$
\begin{equation*}
J_{f}(z)=\left|f_{z}\right|^{2}\left(1-|a(z)|^{2}\right) \tag{4}
\end{equation*}
$$

and is positive. Therefore, all non-constant log-harmonic mappings are sense-preserving in the unit disk E. Let B denote the class of functions $a \in \mathcal{H}(E)$ with $|a(z)|<1$ and B_{0} denote $a \in B$ such that $a(0)=0$.

It is easy to see that, if $f(z)=z h(z) \overline{g(z)}$, then the functions h and g, and the dilation a satisfy

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=a(z)\left(1+\frac{z h^{\prime}(z)}{h(z)}\right) \tag{5}
\end{equation*}
$$

Definition 1. (See [2].) Let $f=z|z|^{2 \beta} h(z) \overline{g(z)}$ be a univalent log-harmonic mapping. We say that f is a starlike log-harmonic mapping of order α if

$$
\frac{\partial \arg f\left(r e^{i \theta}\right)}{\partial \theta}=\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>\alpha, \quad 0 \leq \alpha<1
$$

for all $z \in E$. Denote by $S T_{L H}(\alpha)$ the class of all starlike log-harmonic mappings.
By taking $\beta=0$ and $g(z)=1$ in Definition 1, we obtain the class of starlike analytic functions in \mathcal{A}, which we denote by $S^{*}(\alpha)$.

The following lemma shows the relationship of the classes $S T_{L H}(\alpha)$ and $S^{*}(\alpha)$.
Lemma 1. (See [2].) Let $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$ be a log-harmonic mapping on $E, 0 \notin h g(E)$. Then, $f \in S T_{L H}(\alpha)$ if and only if $\varphi(z)=\frac{z h(z)}{g(z)} \in S^{*}(\alpha)$.

In [2], the authors studied the class of α-spirallike functions and proved that, if $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$ is a log-harmonic mapping on $E, 0 \notin h g(E)$, then f is α - spirallike if

$$
\operatorname{Re}\left(e^{-i \alpha} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right)>0, \quad 0 \leq \alpha<1
$$

for all $z \in E$. We remark that a simply connected domain Ω in \mathbb{C} containing the origin is said to be $\alpha-$ spirallike, $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ if $w \exp \left(-t e^{i \alpha}\right) \in \Omega$ for all $t \geq 0$ whenever $w \in \Omega$ and that f is an α-spirallike function, if $f(E)$ is an α-spiralike domain. Motivated by this, we define the class of α-spirallike log-harmonic mappings of order ρ as follows:

Definition 2. Let $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$ be a univalent log-harmonic mapping on E, with $0 \notin h g(E)$. Then, we say that f is an α - spirallike log-harmonic mapping of order $\rho(0 \leq \rho<1)$ if

$$
\operatorname{Re}\left(e^{-i \alpha} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f(z)}\right)>\rho \cos \alpha \quad(z \in E)
$$

for some real $\alpha\left(|\alpha|<\frac{\pi}{2}\right)$. The class of these functions is denoted by $S_{L H}^{\alpha}(\rho)$. Furthermore, we define $S_{L H}^{\alpha}(1)=\bigcap_{0 \leq \rho<1} S_{L H}^{\alpha}(\rho)$.

Additionally, we denote by $S^{\alpha}(\rho)$ the subclass of all $f \in \mathcal{A}$ such that f is α-spiralike of order ρ and $S^{\alpha}(1)=\bigcap_{0 \leq \rho<1} S^{\alpha}(\rho)$.

Lemma 2. ([2]) If $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$ is \log-harmonic on E and $0 \notin h g(E)$, with $\operatorname{Re} \beta>-\frac{1}{2}$, then $f \in S_{L H}^{\alpha}(\rho)$ if and only if $\psi(z)=\frac{z h(z)}{g(z)^{e^{2 i \alpha}}} \in S^{\alpha}(\rho)$.

In the celebrated paper [11], the authors introduce a new way of studying harmonic functions in Geometric Function Theory. Additionally, many authors investigated the linear combinations of harmonic functions in a plane; see, for example, [12-14]. In Section 2 of this paper, taking the convex-exponent product combination of two elements, a specified class of new log-harmonic functions is constructed. Indeed, we show that, if $f(z)=z h(z) \bar{g}(z)$ is spirallike log-harmonic of order ρ, then by choosing suitable parameters of α and γ, the function $F(z)=f(z) \mid f\left(\left.z\right|^{2 \gamma}\right.$ is log-harmonic spirallike of order α. Additionally, in Section 3, we provide some examples that are constructed from Section 2.

2. Main Results

Theorem 1. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L H}(\rho),(0 \leq \rho<1)$ with respect to $a \in B_{0}$, $\phi \in S^{*}(\gamma),(0 \leq \gamma<1)$ and α, β be real numbers with $\alpha+\beta=1$. Then, $F(z)=f(z)^{\alpha} K(z)^{\beta}$ is starlike log-harmonic mapping of order $\alpha \rho+\beta \gamma$ with respect to a, where

$$
K(z)=\phi(z) \exp \left\{2 \operatorname{Re} \int_{0}^{z} \frac{a(s)}{1-a(s)} \frac{\phi^{\prime}(s)}{\phi(s)} d s\right\}
$$

Proof. By definition of F, we have

$$
\begin{equation*}
\frac{F_{z}}{F}=\alpha \frac{f_{z}}{f}+\beta \frac{K_{z}}{K} \quad \text { and } \quad \frac{F_{\bar{z}}}{F}=\alpha \frac{f_{\bar{z}}}{f}+\beta \frac{K_{\bar{z}}}{K} . \tag{6}
\end{equation*}
$$

Additionally direct computations show that

$$
\begin{equation*}
\frac{K_{z}}{K}=\frac{1}{1-a(z)} \frac{\phi^{\prime}(z)}{\phi(z)}, \quad \text { and } \quad \frac{\overline{K_{\bar{z}}}}{\bar{K}}=\frac{a(z)}{1-a(z)} \frac{\phi^{\prime}(z)}{\phi(z)} . \tag{7}
\end{equation*}
$$

Now, in view of Equations (6) and (7),

$$
\hat{a}(z)=\frac{\frac{\overline{F_{z}}}{\bar{F}}}{\frac{F_{z}}{F}}=\frac{\alpha \frac{\overline{f_{z}}}{\bar{f}}+\beta \frac{\overline{K_{\bar{z}}}}{\bar{K}}}{\alpha \frac{f_{z}}{f}+\beta \frac{K_{z}}{K}}=a(z) \frac{\alpha \frac{f_{z}}{f}+\beta \frac{K_{z}}{K}}{\alpha \frac{f_{z}}{f}+\beta \frac{K_{z}}{K}}=a(z) .
$$

On the other hand,

$$
\begin{aligned}
\operatorname{Re} \frac{z F_{z}-\bar{z} F_{\bar{z}}}{F} & =\operatorname{Re}\left(\alpha \frac{z f_{z}}{f}+\beta \frac{z K_{z}}{K}\right)-\operatorname{Re}\left(\alpha \frac{z \overline{f_{\bar{z}}}}{\bar{f}}+\beta \frac{z \overline{K_{\bar{z}}}}{\bar{K}}\right) \\
& =\alpha \operatorname{Re}\left(\frac{z f_{z}}{f}-\frac{z \overline{f_{\bar{z}}}}{\bar{f}}\right)+\beta \operatorname{Re}\left(\frac{z K_{z}}{K}-\frac{z \overline{K_{\bar{z}}}}{\bar{K}}\right) \\
& >\alpha \rho+\beta \gamma .
\end{aligned}
$$

The above relation shows that F is a log-harmonic starlike function of order $\alpha \rho+\beta \gamma$, and the proof is complete.

Theorem 2. Let $f(z)=z h(z) \overline{g(z)} \in S_{L H}^{\beta}(\rho)$ with respect to $a \in B_{0}$ and γ be a constant with $\operatorname{Re} \gamma>-\frac{1}{2}$. Then, $F(z)=f(z)|f(z)|^{2 \gamma}$ is an $\alpha-$ spirallike log-harmonic mapping of order ρ with respect to

$$
\hat{a}(z)=\frac{(1+\bar{\gamma}) a(z)+\bar{\gamma}}{1+\gamma+\gamma a(z)}
$$

where $|\beta|<\frac{\pi}{2}$ and $\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)$.

Proof. By definition of F, we have

$$
F(z)=f(z)|f(z)|^{2 \gamma}=z^{1+\gamma} \bar{z}^{\gamma} H(z) \overline{G(z)}
$$

where

$$
H(z)=h^{1+\gamma}(z) g^{\gamma}(z) \quad \text { and } \quad G(z)=h^{\bar{\gamma}}(z) g^{1+\bar{\gamma}}(z)
$$

With a straightforward calculation and using Equation (5),

$$
\frac{z F_{z}}{F}=(1+\gamma)\left(1+\frac{z h^{\prime}(z)}{h(z)}\right)+\gamma \frac{z g^{\prime}(z)}{g(z)}=\left(1+\frac{z h^{\prime}(z)}{h(z)}\right)((1+\gamma)+\gamma a(z))
$$

and

$$
\frac{\bar{z} F_{\bar{z}}}{F}=\gamma\left(1+\frac{\overline{z h^{\prime}(z)}}{\overline{h(z)}}\right)+(1+\gamma) \frac{\overline{z g^{\prime}(z)}}{\overline{g(z)}}=\left(1+\frac{\overline{z h^{\prime}(z)}}{\overline{h(z)}}\right)(\gamma+(1+\gamma) \overline{a(z)}) .
$$

If we consider

$$
\hat{a}(z)=\frac{\overline{\left(\frac{z F_{z}(z)}{F(z)}\right)}}{\frac{z F_{z}(z)}{F(z)}}
$$

then

$$
\hat{a}(z)=\frac{\bar{\gamma}+(1+\bar{\gamma}) a(z)}{(1+\gamma)+\gamma a(z)}
$$

Now, in view of $|a(z)|<1$, it easy to see that $|\hat{a}(z)|<1$ provided that $\left|\frac{\bar{\gamma}}{1+\bar{\gamma}}\right|<1$, which evidently holds $|\gamma|^{2}<|1+\bar{\gamma}|^{2}$ since $\operatorname{Re} \gamma>-\frac{1}{2}$, and this means that F is a logharmonic function.

Additionally, by putting

$$
\psi(z)=\frac{z H(z)}{G(z)^{e^{2 i \alpha}}}
$$

we have

$$
\psi(z)=\frac{z H(z)}{G(z)^{e^{2 i \alpha}}}=\frac{z h(z)^{1+\gamma} g(z)^{\gamma}}{\left(h \bar{\gamma}(z) g^{1+\bar{\gamma}}(z)\right)^{e^{2 i \alpha}}} .
$$

Then, we obtain

$$
\begin{aligned}
& e^{-i \alpha} \frac{z \psi^{\prime}(z)}{\psi(z)}=e^{-i \alpha}+\left[(1+\gamma) e^{-i \alpha}-\bar{\gamma} e^{i \alpha}\right] \frac{z h^{\prime}(z)}{h(z)}-\left[(1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}\right] \frac{z g^{\prime}(z)}{g(z)} \\
& =\left(-\gamma e^{-i \alpha}+\bar{\gamma} e^{i \alpha}\right)+\left[(1+\gamma) e^{-i \alpha}-\bar{\gamma} e^{i \alpha}\right]\left(1+\frac{z h^{\prime}(z)}{h(z)}\right) \\
& -\left[(1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}\right] \frac{z g^{\prime}(z)}{g(z)} .
\end{aligned}
$$

The condition on α ensures that

$$
(1+\gamma) e^{-i \alpha}-\bar{\gamma} e^{i \alpha}=\frac{\cos \alpha}{\cos \beta} e^{-i \beta} \text { and }(1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}=\frac{\cos \alpha}{\cos \beta} e^{i \beta},
$$

because by letting $\gamma=\gamma_{1}+i \gamma_{2}$, the first equality holds true if and only if

$$
\cos \beta \cos \alpha-i\left(1+2 \gamma_{1}\right) \sin \alpha \cos \beta+i 2 \gamma_{2} \cos \beta \cos \alpha=\cos \alpha \cos \beta-i \cos \alpha \sin \beta
$$ or, equivalently, after simplification

$$
2 \gamma_{2} \cot \beta-\left(1+2 \gamma_{1}\right) \tan \alpha \cot \beta=-1
$$

or

$$
\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)
$$

Thus, by hypothesis,

$$
\operatorname{Re}\left\{e^{-i \alpha} \frac{z \psi^{\prime}(z)}{\psi(z)}\right\}=\frac{\cos \alpha}{\cos \beta} \operatorname{Re}\left(e^{-i \beta}\left(1+\frac{z h^{\prime}(z)}{h(z)}\right)-e^{i \beta} \frac{z g^{\prime}(z)}{g(z)}\right)>\rho \cos \alpha
$$

and it follows that F is an α-spirallike log-harmonic mapping of order ρ in which the dilation is $\hat{a}(z)$.

Theorem 3. Let $f_{k}(z)=z h_{k}(z) \overline{g_{k}}(z) \in S_{L H}^{\beta}(\rho)$ with $k=1,2$ and with respect to the same $a \in B_{0}$ and γ be a constant with $\operatorname{Re} \gamma>-\frac{1}{2}$. Moreover, let

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \quad \text { and } \quad F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma} .
$$

Then, $F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z)$ is an α-spirallike log-harmonic mapping of order ρ with respect to

$$
\hat{a}(z)=\frac{(1+\bar{\gamma}) a(z)+\bar{\gamma}}{1+\gamma+\gamma a(z)}
$$

where $|\beta|<\frac{\pi}{2}$ and $\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)$.
Proof. According to the definitions of F_{1} and F_{2}, we have

$$
\begin{aligned}
F_{1}^{\lambda}(z) & =\left(f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma}\right)^{\lambda} \\
& =\left(z|z|^{2 \gamma} h_{1}^{1+\gamma}(z) g_{1}^{\gamma}(z) \overline{h_{1}^{\bar{\gamma}}(z) g_{1}^{1+\bar{\gamma}}(z)}\right)^{\lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
F_{2}^{1-\lambda}(z) & =\left(f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma}\right)^{1-\lambda} \\
& =\left(z|z|^{2 \gamma} h_{2}^{1+\gamma}(z) g_{2}^{\gamma}(z) \overline{h_{2}^{\bar{\gamma}}(z) g_{2}^{1+\bar{\gamma}}(z)}\right)^{1-\lambda}
\end{aligned}
$$

Putting the values of F_{1}^{λ} and $F_{2}^{1-\lambda}$ on F, we obtain

$$
\begin{aligned}
F(z) & =\left(z|z|^{2 \gamma} h_{1}^{1+\gamma}(z) g_{1}^{\gamma}(z) \overline{h_{1}^{\bar{\gamma}}(z) g_{1}^{1+\bar{\gamma}}(z)}\right)^{\lambda}\left(z|z|^{2 \gamma} h_{2}^{1+\gamma}(z) g_{2}^{\gamma}(z){\overline{h_{2}^{\gamma}}(z) g_{2}^{1+\bar{\gamma}}(z)}^{1-\lambda}\right. \\
& =z|z|^{2 \gamma} H(z) \overline{G(z)},
\end{aligned}
$$

where

$$
\begin{equation*}
H(z)=h_{1}(z)^{\lambda(1+\gamma)} g_{1}(z)^{\lambda \gamma} h_{2}(z)^{(1-\lambda)(1+\gamma)} g_{2}(z)^{(1-\lambda) \gamma} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
G(z)=h_{1}(z)^{\lambda \bar{\gamma}} g_{1}(z)^{\lambda(1+\bar{\gamma})} h_{2}(z)^{(1-\lambda) \bar{\gamma}} g_{2}(z)^{(1-\lambda)(1+\bar{\gamma})} . \tag{9}
\end{equation*}
$$

Now, we show that the second dilation of F i.e., $\mu(z)$ satisfies the condition $|\mu(z)|<1$. For this, since

$$
\mu(z)=\frac{\frac{\overline{F_{z}}(z)}{\bar{F}(z)}}{\frac{F_{z}(z)}{F(z)}}
$$

we have

$$
\begin{align*}
& \mu(z)=\frac{\lambda \frac{\overline{F_{1 z}(z)}}{\overline{F_{1}}(z)}+(1-\lambda) \frac{\overline{F_{2 \bar{z}}(z)}}{\overline{F_{2}(z)}}}{\lambda \frac{F_{1 z}(z)}{F_{1}(z)}+(1-\lambda) \frac{F_{2 z}(z)}{F_{2}(z)}} \\
& =\frac{\lambda\left[\bar{\gamma}\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)+(1+\bar{\gamma}) \frac{z g_{1}^{\prime}}{g_{1}}\right]+(1-\lambda)\left[\bar{\gamma}\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)+(1+\bar{\gamma}) \frac{z g_{2}^{\prime}}{g_{2}}\right]}{\lambda\left[(1+\gamma)\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)+\gamma \frac{z g_{1}^{\prime}}{g_{1}}\right]+(1-\lambda)\left[(1+\gamma)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)+\gamma \frac{z g_{2}^{\prime}}{g_{2}}\right]} \\
& =\frac{\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)[\bar{\gamma}+(1+\bar{\gamma}) a(z)]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)[\bar{\gamma}+(1+\bar{\gamma}) a(z)]}{\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)[(1+\gamma)+\gamma a(z)]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)[(1+\gamma)+\gamma a(z)]} \tag{10}\\
& =\frac{\left[\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\right][\bar{\gamma}+(1+\bar{\gamma}) a(z)]}{\left[\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\right][(1+\gamma)+\gamma a(z)]} \\
& =\frac{[\bar{\gamma}+(1+\bar{\gamma}) a(z)]}{[(1+\gamma)+\gamma a(z)]} \\
& =\frac{(1+\bar{\gamma})}{(1+\gamma)} \frac{a(z)+\frac{\bar{\gamma}}{1+\bar{\gamma}}}{1+\frac{a(z) \gamma}{1+\gamma}}
\end{align*}
$$

and the condition $\operatorname{Re} \gamma>-\frac{1}{2}$ ensures that $|\mu(z)|<1$ in E, which implies that F is a locally univalent log-harmonic mapping. Now, to prove

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(\rho),
$$

we have to show that $\psi(z)=\frac{z H(z)}{G(z)^{2 i \alpha}} \in S^{\alpha}(\rho)$. However, a direct calculation shows that

$$
\psi(z)=\frac{z H(z)}{G(z)^{e^{2 i \alpha}}}=\frac{\left[z h_{1}^{\lambda(1+\gamma)}(z) g_{1}^{\lambda \gamma}(z) h_{2}^{(1-\lambda)(1+\gamma)}(z) g_{2}^{(1-\lambda) \gamma}(z)\right]}{\left[h_{1}^{\lambda \bar{\gamma}}(z) g_{1}^{\lambda(1+\bar{\gamma})}(z) h_{2}^{(1-\lambda) \bar{\gamma}}(z) g_{2}^{(1-\lambda)(1+\bar{\gamma})}(z)\right]^{e^{2 i \alpha}}} .
$$

Now,

$$
\begin{aligned}
& e^{-i \alpha} \frac{z \psi^{\prime}(z)}{\psi(z)} \\
& =e^{-i \alpha}\left[1+\lambda\left(\left((1+\gamma)-e^{2 i \alpha} \bar{\gamma}\right) \frac{z h_{1}^{\prime}(z)}{h_{1}(z)}-\left((1+\bar{\gamma}) e^{2 i \alpha}-\gamma\right) \frac{z g_{1}^{\prime}(z)}{g_{1}(z)}\right)\right] \\
& +e^{-i \alpha}\left[(1-\lambda)\left(\left((1+\gamma)-e^{2 i \alpha} \bar{\gamma}\right) \frac{z h_{2}^{\prime}(z)}{h_{2}(z)}-\left((1+\bar{\gamma}) e^{2 i \alpha}-\gamma\right) \frac{z g_{2}^{\prime}(z)}{g_{2}(z)}\right)\right] \\
& =-\gamma e^{-i \alpha}+e^{i \alpha} \bar{\gamma} \\
& +\lambda\left[\left((1+\gamma) e^{-i \alpha}-e^{i \alpha} \bar{\gamma}\right)\left(1+\frac{z h_{1}^{\prime}(z)}{h_{1}(z)}\right)-\left((1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}\right) \frac{z g_{1}^{\prime}(z)}{g_{1}(z)}\right] \\
& +(1-\lambda)\left[\left((1+\gamma) e^{-i \alpha}-e^{i \alpha} \bar{\gamma}\right)\left(1+\frac{z h_{2}^{\prime}(z)}{h_{2}(z)}\right)-\left((1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}\right) \frac{z g_{2}^{\prime}(z)}{g_{2}(z)}\right]
\end{aligned}
$$

By hypothesis, we know that

$$
(1+\gamma) e^{-i \alpha}-\bar{\gamma} e^{i \alpha}=\frac{\cos \alpha}{\cos \beta} e^{-i \beta} \text { and }(1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}=\frac{\cos \alpha}{\cos \beta} e^{i \beta},
$$

so

$$
\begin{aligned}
\operatorname{Re}\left\{e^{-i \alpha} \frac{z \psi^{\prime}(z)}{\psi(z)}\right\} & \\
& =\lambda \frac{\cos \alpha}{\cos \beta} \operatorname{Re}\left(e^{-i \beta}\left(1+\frac{z h_{1}^{\prime}(z)}{h_{1}(z)}\right)-e^{i \beta} \frac{z g_{1}^{\prime}(z)}{g_{1}(z)}\right) \\
& +(1-\lambda) \frac{\cos \alpha}{\cos \beta} \operatorname{Re}\left(e^{-i \beta}\left(1+\frac{z h_{2}^{\prime}(z)}{h_{2}(z)}\right)-e^{i \beta} \frac{z g_{1}^{\prime}(z)}{g_{1}(z)}\right) \\
& >\rho \cos \alpha
\end{aligned}
$$

and the proof is completed.
Theorem 4. Let $f_{k}(z)=z h_{k}(z) \bar{g}_{k}(z) \in S_{L H}^{\beta}(\rho)$ with respect to $a_{k} \in B_{0}(k=1,2)$. Moreover, suppose that $\operatorname{Re} \gamma>-\frac{1}{2}$,

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \text { and } F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma}
$$

If

$$
\operatorname{Re}\left[\left(1-a_{1}(z) \bar{a}_{2}(z)\right)\left(1+\frac{z h_{1}^{\prime}(z)}{h_{1}(z)}\right) \overline{\left(1+\frac{z h_{2}^{\prime}(z)}{h_{2}(z)}\right)}\right] \geq 0 \quad(\text { for any } z \in E)
$$

then

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(\rho),
$$

where $|\beta|<\frac{\pi}{2}, 0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)$.
Proof. Using the same argument as in Theorem 3, we have

$$
F(z)=z|z|^{2 \gamma} H(z) \overline{G(z)},
$$

where $H(z)$ and $G(z)$ are defined by Equations (8) and (9). Now, we show that the second dilation of F, i.e., $\mu(z)$, satisfies the condition $|\mu(z)|<1$. For this, since

$$
\mu(z)=\frac{\frac{\bar{F}_{\bar{z}}(z)}{\bar{F}(z)}}{\frac{F_{z}(z)}{F(z)}},
$$

using a similar argument to the relation Equation (10) of Theorem 3, we have

$$
|\mu(z)|=\left|\frac{\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{1}(z)\right]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{2}(z)\right]}{\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)\left[(1+\gamma)+\gamma a_{1}(z)\right]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\left[(1+\gamma)+\gamma a_{2}(z)\right]}\right| .
$$

However, by hypothesis, we obtain

$$
\begin{aligned}
& \left|\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)\left[(1+\gamma)+\gamma a_{1}(z)\right]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\left[(1+\gamma)+\gamma a_{2}(z)\right]\right|^{2} \\
& -\left|\lambda\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{1}(z)\right]+(1-\lambda)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{2}(z)\right]\right|^{2} \\
& =(2 \operatorname{Re} \gamma+1)\left(\lambda^{2}\left|1+\frac{z h_{1}^{\prime}}{h_{1}}\right|^{2}\left(1-\left|a_{1}\right|^{2}\right)+(1-\lambda)^{2}\left|1+\frac{z h_{2}^{\prime}}{h_{2}}\right|^{2}\left(1-\left|a_{2}\right|^{2}\right)\right) \\
& +(2 \operatorname{Re} \gamma+1)\left(2 \lambda(1-\lambda) \operatorname{Re}\left[\left(1-a_{1} \bar{a}_{2}\right)\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right)\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)\right]\right)>0 .
\end{aligned}
$$

Therefore, $|\mu(z)|<1$ in E, which implies that F is a locally univalent mapping. Moreover, by following a similar proof to that in Theorem 3, we observe that

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(\rho),
$$

and the proof is completed.
Theorem 5. Let $f_{k}(z)=z h_{k}(z) \bar{g}_{k}(z)$ be univalent log-harmonic functions with respect to $a_{k} \in B_{0}(k=1,2)$ and $\operatorname{Re} \gamma>-\frac{1}{2}$. Moreover, suppose that $z h_{k} g_{k}=\phi_{k}(z)$, where

$$
\phi_{k}(z)=z \exp \left\{2 \int_{0}^{z} \frac{a_{k}(t)}{t\left(1-a_{k}(t)\right)} d t\right\}
$$

and

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \quad \text { and } \quad F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma}
$$

Then,

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(1)
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)$.

Proof. Since $z h_{k} g_{k}=\phi_{k}(z)$, by definition of $a_{k}(z)$ and $\phi_{k}(z)$, we obtain

$$
1+\frac{z h_{k}^{\prime}(z)}{h_{k}(z)}=\frac{1}{1-a_{k}(z)} \quad(k=1,2) .
$$

Let

$$
\mu(z)=\frac{\frac{\bar{F}_{z}(z)}{\bar{F}(z)}}{\frac{F_{z}(z)}{F(z)}} .
$$

Using a similar argument to the relation in Equation (10) of Theorem 3, we obtain

$$
|\mu(z)|=\left|\frac{\lambda\left(1-a_{2}(z)\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{1}(z)\right]+(1-\lambda)\left(\left(1-a_{1}(z)\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{2}(z)\right]\right.}{\lambda\left(1-a_{2}(z)\right)\left[(1+\gamma)+\gamma a_{1}(z)\right]+(1-\lambda)\left(1-a_{1}(z)\right)\left[(1+\gamma)+\gamma a_{2}(z)\right]}\right|
$$

Now, $|\mu(z)|<1$ is equivalent to

$$
\begin{aligned}
& \psi(\lambda):=\left|\lambda\left(1-a_{2}(z)\right)\left[(1+\gamma)+\gamma a_{1}(z)\right]+(1-\lambda)\left(1-a_{1}(z)\right)\left[(1+\gamma)+\gamma a_{2}(z)\right]\right|^{2} \\
& -\mid \lambda\left(1-a_{2}(z)\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{1}(z)\right]+(1-\lambda)\left(\left.\left(1-a_{1}(z)\right)\left[\bar{\gamma}+(1+\bar{\gamma}) a_{2}(z)\right]\right|^{2}\right. \\
& =(2 \operatorname{Re} \gamma+1)\left[\lambda^{2}\left|1-a_{2}(z)\right|^{2}\left(1-\left|a_{1}(z)\right|^{2}\right)\right. \\
& +2 \lambda(1-\lambda) \operatorname{Re}\left[\left(1-a_{2}(z)\right)\left(1-\overline{a_{1}(z)}\right)\left(1-a_{1}(z) \overline{a_{2}(z)}\right)\right] \\
& \left.+(1-\lambda)^{2}\left|1-a_{1}(z)\right|^{2}\left(1-\left|a_{2}(z)\right|^{2}\right)\right]>0 .
\end{aligned}
$$

However, by taking the derivative of $\psi(\lambda)$, we have

$$
\begin{aligned}
& \psi^{\prime}(\lambda)=2(2 \operatorname{Re} \gamma+1) \\
& \quad\left[\operatorname{Re}\left[\left(1-a_{2}(z)\right)\left(1-\overline{a_{1}(z)}\right)\left(1-a_{1}(z) \overline{a_{2}(z)}\right)\right]-\left|1-a_{1}(z)\right|^{2}\left(1-\left|a_{2}(z)\right|^{2}\right)\right],
\end{aligned}
$$

which shows that ψ is a continuous monotonic function of λ in the interval $[0,1]$. Since

$$
\psi(0)=(2 \operatorname{Re} \gamma+1)\left|1-a_{2}(z)\right|^{2}\left(1-\left|a_{1}(z)\right|^{2}\right)>0
$$

and

$$
\psi(1)=(2 \operatorname{Re} \gamma+1)\left|1-a_{1}(z)\right|^{2}\left(1-\left|a_{2}(z)\right|^{2}\right)>0
$$

we deduce that $\psi(\lambda)>0$ for all $\lambda \in[0,1]$, which implies that F is a locally univalent mapping. Now, to prove

$$
\begin{equation*}
F=F_{1}^{\lambda} F_{2}^{1-\lambda} \in S_{L H}^{\alpha} \tag{11}
\end{equation*}
$$

we have to show that $\psi(z)=\frac{z H(z)}{G(z)^{e^{2 i \alpha}}} \in S^{\alpha}(1)$, where $H(z)$ and $G(z)$ are defined by Equations (8) and (9). A direct computation such as that in Theorem 3 shows that

$$
\frac{(1+\gamma) e^{-i \alpha}-\bar{\gamma} e^{i \alpha}}{\cos \alpha}=\frac{(1+\bar{\gamma}) e^{i \alpha}-\gamma e^{-i \alpha}}{\cos \alpha}=1
$$

Additionally, we note that

$$
1+\frac{z h_{1}^{\prime}}{h_{1}}-\frac{z g_{1}^{\prime}}{g_{1}}=1+\frac{z h_{2}^{\prime}}{h_{2}}-\frac{z g_{2}^{\prime}}{g_{2}}=1
$$

Using these relation and the same argument as that made in Theorem 3, we obtain $\psi(z)=\frac{z H(z)}{G(z)^{2 i \alpha}} \in S^{\alpha}(1)$, and the proof is complete.

Theorem 6. Let $f_{k}(z)=z h_{k}(z) \bar{g}_{k}(z)(k=1,2)$ be log-harmonic functions with respect to $a_{k} \in B_{0}$. Moreover, suppose that $z h_{k} g_{k}=z$ and

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \quad \text { and } \quad F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma}
$$

Then,

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(1)
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{2 \operatorname{Im} \gamma}{(1+2 \operatorname{Re} \gamma)}\right)$.

Proof. Since $z h_{k} g_{k}=z$, by definition of $a_{k}(z)$, we obtain

$$
1+\frac{z h_{k}^{\prime}(z)}{h_{k}(z)}=\frac{1}{1+a_{k}(z)} \quad(k=1,2) .
$$

Using the same argument as that in Theorem 5, we obtain our result, but we omit the details.

3. Examples

We provide several examples in this section.
Example 1. Let $\operatorname{Re} \gamma>-\frac{1}{2}$ and

$$
f(z)=z \frac{(1+z)^{\left[\cos \beta(1-\rho) e^{i \beta}-1\right]}}{(1-z)^{(1-\rho) \cos \beta e^{i \beta}}}(1+\bar{z})^{\left[(1-\rho) \cos \beta e^{i \beta}-e^{2 i \beta]}\right.}(1-\bar{z})^{(1-\rho) \cos \beta e^{i \beta}} .
$$

Then, it is easy to see that f is a β-spirallike log-harmonic mapping of order ρ with respect to $a(z)=-z e^{-2 i \beta}$. Now, Theorem 2 implies that the function $F(z)=f(z)|f(z)|^{2 \gamma}$ is a α-spirallike \log-harmonic mapping of order ρ with respect to

$$
\hat{a}(z)=\frac{-(1+\bar{\gamma}) z e^{-2 i \beta}+\bar{\gamma}}{(1+\gamma)-\gamma e^{-2 i \beta} z}
$$

where

$$
\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right) .
$$

The image in Example 1 is shown in Figure 1.

Figure 1. Image of $F(z)$ for $\beta=0.5, \rho=1$, and $\gamma=0.25$ in Example 1.
Example 2. Let $\operatorname{Re} \gamma>-\frac{1}{2}, 0<a<1, f_{1}$ be the function defined in Example 1 and

$$
f_{2}(z)=z \frac{(1+z)^{\left[\cos \beta \frac{(1+a-2 \rho)}{1+a} e^{i \beta}-1\right]}}{(1-a z)^{\frac{(1+a-2 \rho)}{1+a}} \cos \beta e^{i \beta}}(1+\bar{z})^{\left[\frac{(1+a-2 \rho)}{1+a} \cos \beta e^{i \beta}-e^{2 i \beta}\right]}(1-a \bar{z})^{\frac{(1+a-2 \rho)}{a(1+a)} \cos \beta e^{i \beta}}
$$

Then, it is easy to see that f_{1} and f_{2} are β-spirallike log-harmonic mappings of order ρ with respect to $a_{2}(z)=a_{1}(z)=-z e^{-2 i \beta}$. Additionally, suppose that

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \text { and } F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma} .
$$

Then, Theorem 3 shows that

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(\rho),
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{\tan \beta+2 \operatorname{Im} \gamma}{(1+2 \operatorname{Re} \gamma)}\right)$.

Example 3. Let $\operatorname{Re} \gamma>-\frac{1}{2}$,

$$
f_{1}(z)=\frac{z}{|1+z|} \sqrt{\frac{1-\bar{z}}{1-z}}
$$

and

$$
f_{2}(z)=\frac{z}{1-z} e^{\operatorname{Re} \frac{1}{1-z}} .
$$

Firstly, we show that f_{1} and f_{2} are log-harmonic starlike functions of order $1 / 2$ with respect to $a_{1}(z)=-z$ and $a_{2}(z)=\frac{z}{2-z}$, respectively. A direct computation shows that

$$
\begin{array}{cc}
\frac{z\left(f_{1}\right)_{z}}{f_{1}}=\frac{1}{1-z^{2}}, & \overline{\left(\frac{\bar{z}\left(f_{1}\right)_{\bar{z}}}{f_{1}}\right)}=\frac{-z}{1-z^{2}} \\
\frac{z\left(f_{2}\right)_{z}}{f_{2}}=\frac{2-z}{2\left(1-z^{2}\right)}, & \overline{\left(\frac{\bar{z}\left(f_{2}\right)_{\bar{z}}}{f_{2}}\right)}=\frac{z}{2\left(1-z^{2}\right)} .
\end{array}
$$

Therefore, we obtain

$$
\overline{\left(\frac{\bar{z}\left(f_{1}\right)_{\bar{z}}}{f_{1}}\right)}=a_{1}(z) \frac{z\left(f_{1}\right)_{z}}{f_{1}} \quad \text { and } \quad \overline{\left(\frac{\bar{z}\left(f_{2}\right)_{\bar{z}}}{f_{2}}\right)}=a_{2}(z) \frac{z\left(f_{2}\right)_{z}}{f_{2}} \text {, }
$$

and this means that f_{1} and f_{2} are locally univalent log-harmonic functions. Additionally,

$$
\operatorname{Re} \frac{z\left(f_{1}\right)_{z}-\bar{z}\left(f_{1}\right)_{\bar{z}}}{f_{1}}=\operatorname{Re}\left(\frac{1}{1-z^{2}}+\frac{z}{1-z^{2}}\right)=\operatorname{Re} \frac{1}{1-z}>\frac{1}{2}
$$

and

$$
\operatorname{Re} \frac{z\left(f_{2}\right)_{z}-\bar{z}\left(f_{2}\right)_{\bar{z}}}{f_{2}}=\operatorname{Re}\left(\frac{2-z}{2\left(1-z^{2}\right)}-\frac{z}{2\left(1-z^{2}\right)}\right)=\operatorname{Re} \frac{1}{1+z}>\frac{1}{2} .
$$

Hence, f_{1} and f_{2} are starlike log-harmonic functions of order 1/2. Additionally, let

$$
F_{1}(z)=f_{1}(z)\left|f_{1}(z)\right|^{2 \gamma} \text { and } F_{2}(z)=f_{2}(z)\left|f_{2}(z)\right|^{2 \gamma}
$$

Since for $z=r e^{i \theta}$,

$$
\begin{aligned}
& \operatorname{Re}\left(1-a_{1} \bar{a}_{2}\right)\left(1+\frac{z h_{1}^{\prime}}{h_{1}}\right) \overline{\left(1+\frac{z h_{2}^{\prime}}{h_{2}}\right)} \\
& =\left(1-|z|^{2}\right) \operatorname{Re} \frac{1}{(1-\bar{z})^{2}} \frac{1}{1-z^{2}}=\frac{1-|z|^{2}}{|1-z|^{2}} \operatorname{Re} \frac{1}{(1-\bar{z})(1+z)} \\
& =\frac{1-r^{2}}{\left|1-r e^{i} \theta\right|^{2}}\left(1-r^{2}\right)>0 .
\end{aligned}
$$

Theorem 4 implies that

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}\left(\frac{1}{2}\right)
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{2 \operatorname{Im} \gamma}{1+2 \operatorname{Re} \gamma}\right)$.
The images in Example 2-4 are shown in Figures 2-4.
Example 4. Let $\operatorname{Re} \gamma>\frac{1}{2}, a_{1}(z)=z$, and $h_{1}(z)=g_{1}(z)=\frac{1}{1-z}$. Moreover, let $a_{2}(z)=-z$ and $h_{2}(z)=g_{2}(z)=\frac{1}{1+z}$. Then, it is easy to verify that all conditions of Theorem 5 are satisfied. Hence, according to Theorem 5, by taking

$$
F_{1}(z)=\frac{z|z|^{2 \gamma}}{(1-z)^{1+2 \gamma}(1-\bar{z})^{1+2 \gamma}}
$$

and

$$
F_{2}(z)=\frac{z|z|^{2 \gamma}}{(1+z)^{1+2 \gamma}(1+\bar{z})^{1+2 \gamma}},
$$

we have

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(1),
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{2 \operatorname{Im} \gamma}{1-\rho+2 \operatorname{Re} \gamma}\right)$.
Example 5. Let $\operatorname{Re} \gamma>-\frac{1}{2}, a_{1}(z)=-z$ and $h_{1}(z)=\frac{1}{1-z}, g(z)=1-z$. Moreover, let $a_{2}(z)=z$ and $h_{2}(z)=\frac{1}{1+z}, g_{2}(z)=1+z$. Then, it is easy to verify that all conditions of Theorem 6 are satisfied. Hence, according to Theorem 6, by taking

$$
F_{1}(z)=\frac{z|z|^{2 \gamma}(1-\bar{z})}{(1-z)} \quad \text { and } \quad F_{2}(z)=\frac{z|z|^{2 \gamma}(1+\bar{z})}{(1+z)}
$$

we have

$$
F(z)=F_{1}^{\lambda}(z) F_{2}^{1-\lambda}(z) \in S_{L H}^{\alpha}(1)
$$

where $0 \leq \lambda \leq 1$ and $\alpha=\tan ^{-1}\left(\frac{2 \operatorname{Im} \gamma}{1-\rho+2 \operatorname{Re} \gamma}\right)$.

Figure 2. Images of $f_{1}(z)$ and $f_{2}(z)$ in Example 3.

Figure 3. Images of $F_{1}(z)$ and $F_{2}(z)$ for $\gamma=1+i$ in Example 3.

Figure 4. Image of $F(z)$ for $\gamma=1+i$ and $\lambda=0.5$ in Example 3.

4. Conclusions

In this paper, we have shown that, if $f(z)=z h(z) \bar{g}(z)$ is spirallike log-harmonic of order ρ, then by choosing suitable parameters of α and γ, the function $F(z)=f(z) \mid f\left(\left.z\right|^{2 \gamma}\right.$ is log-harmonic spirallike of order α. Moreover, we provide some examples for the obtained results.

Author Contributions: Conceptualization: R.A. and A.E.; original draft preparation: R.A.; writing-review and editing: A.E. and N.E.C.; investigation: M.A. All authors read and approved the final manuscript.

Funding: The third author was supported by the Basic Science Research Program through the National Research Foundation of the Republic of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2019R1I1A3A01050861).

Data Availability Statement: Not applicable.
Acknowledgments: The authors thank the anonymous referees for their invaluable comments in improving the first draft of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdulhadi, Z.; Bshouty, D. Univalent functions in $H \cdot \overline{H(D)}$. Trans. Am. Math. Soc. 1988, 305, 841-849.
2. Abdulhadi, Z.; Hengartner, W. Spirallike log-harmonic mappings. Complex Var. Theory Appl. 1987, 9, 121-130.
3. Abdulhadi, Z. Close-to-starlike logharmonic mappings. Internat. J. Math. Math. Sci. 1996, 19, 563-574. [CrossRef]
4. Aydogan, M.; Polatŏlu, Y. A certain class of starlike log-harmonic mappings. J. Comput. Appl. Math. 2014, 270, 506-509. [CrossRef]
5. Aydogan, M. Some results on a starlike log-harmonic mapping of order alpha. J. Comput. Appl. Math. 2014, 256, 77-82. [CrossRef]
6. Abdulhadi, Z.; Ali, R.M. Univalent log-harmonic mapping in the plane. J. Abstr. Appl. 2012, 2012, 721943.
7. Abdulhadi, Z.; Alareefi, N.M.; Ali, R.M. On the convex-exponent product of log-harmonic mappings. J. Inequal. Appl. 2014, 2014, 485. [CrossRef]
8. Li, P.; Ponnusamy, S; Wang, X. Some properties of planar p-harmonic and log-p-harmonic mappings. Bull. Malays. Math. Sci. Soc. 2013, 36, 595-609.
9. Liu, Z.; Ponnusamy, S. Some properties of univalent log-harmonic mappings. Filomat 2018, 32, 5275-5288. [CrossRef]
10. Seoudy, T.; Aouf, M.K. Fekete-Szeg problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator. Constr. Math. Anal. 2020, 3, 36-44.
11. Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I Math. 1984, 9, 3-25. [CrossRef]
12. Sun, Y.; Jiang, Y.; Wang, Z. On the convex combinations of slanted half-plane harmonic mappings. Houst. J. Math. Anal. Appl. 2015, 6, 46-50.
13. Sun, Y.; Rasila, A.; Jiang, Y. Linear combinations of harmonic quasiconformal mappings convex in one direction. J. Kodai Math. Appl. 2016, 39, 1323-1334. [CrossRef]
14. Wang, Z.G.; Liu, Z.H.; Li, Y.C. On the linear combinations of harmonic univalent mappings. J. Math. Anal. Appl. 2013, 400, 452-459. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

