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Abstract: Two main topics are addressed in the present paper, first, a rigorous qualitative study
of a second-order reaction–diffusion problem with non-linear diffusion and cubic-type reactions,
as well as inhomogeneous dynamic boundary conditions. Under certain assumptions about the
input data: gd (t, x), g f r (t, x), U0(x) and ζ0(x), we prove the well-posedness (the existence, a priori

estimates, regularity and uniqueness) of a solution in the space W1,2
p (Q)×W1,2

p (Σ). Here, we extend
previous results, enabling new mathematical models to be more suitable to describe the complexity
of a wide class of different physical phenomena of life sciences, including moving interface problems,
material sciences, digital image processing, automatic vehicle detection and tracking, the spread
of an epidemic infection, semantic image segmentation including U-Net neural networks, etc. The
second goal is to develop an iterative splitting scheme, corresponding to the non-linear second-order
reaction–diffusion problem. Results relating to the convergence of the approximation scheme and
error estimation are also established. On the basis of the proposed numerical scheme, we formulate
the algorithm alg-frac_sec-ord_dbc, which represents a delicate challenge for our future works. The
benefit of such a method could simplify the process of numerical computation.

Keywords: boundary value problems for non-linear parabolic PDE; fractional step method; convergence
of numerical methods; numerical algorithm; error analysis; dynamic boundary conditions
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1. Introduction

Considering the following non-linear second-order reaction–diffusion problem:

p1

∂

∂t
U(t, x)− p2div

(
K
(
t, x, U(t, x)

)
∇U(t, x)

)
= pr

[
U(t, x)−U3(t, x)

]
+ ps gd(t, x) in Q

p2

∂

∂n
U+p1

∂

∂t
U−∆Γ U+pt U= g f r (t, x) on Σ

U(0, x) = U0(x) on Ω,

(1)

where Ω ⊂ IRn, n ≤ 3 is a compact domain with a C2 boundary ∂Ω = Γ, [0, T] a generic
time interval, Q = (0, T]×Ω, Σ = (0, T]× ∂Ω and:

• t ∈ (0, T], x = (x1, . . . , xn) ∈ Ω;
• p1 , p2 , pr , ps and pt are positive parameters;
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•
∂

∂s
U(s, ·) (Us in short) is the partial derivative of U(s, ·) (U in short) relative to s ∈

(0, T];
• U(s, y), (s, y) ∈ Q, is the unknown function (the order parameter in Q, for example).

∇U(s, y) = Uy(s, y) (∇U = Uy) denotes the gradient of U(s, y) in y, y ∈ Ω (see [1–3]
for more details);

• K
(
s, y, U(s, y)

)
is the mobility (attached to the solution U(s, y), (s, y) ∈ Q, to Equation

(1)) (see [2–4] for more details);
• gd(s, y) ∈ Lp(Q) is the distributed control (see Remark 1 below), where

p ≥ 2; (2)

• g f r (s, y) ∈W
1− 1

2p ,2− 1
p

p (Σ) is the boundary control (see Remark 1 below);

• U0 ∈W
2− 2

p
∞ (Ω) verifying

p2

∂

∂n
U0 − ∆Γ U0 + pt U0 = g f r (0, x);

• n = n(x) has the same meaning as in [5];
• ∆Γ has the same meaning as in [6];

Remark 1. The given functions gd and g f r in (1), can be interpreted as distributed and boundary
control, respectively, opening a large field of applications for the non-linear second-order problem
(1), such as optimal control.

For convenience, let us write (1) in the following form

p1

∂

∂t
U(t, x)− p2

∂

∂Uxj

[
K(t, x, U(t, x))Uxi

]
Uxjxi

= A
(

t, x, U(t, x), Uxi (t, x)
)
+ pr

[
U(t, x)−U3(t, x)

]
+ ps gd(t, x) in Q

p2

∂

∂n
U + p1

∂

∂t
U − ∆Γ U + pt U = g f r (t, x) on Σ

U(0, x) = U0(x) on Ω,

(3)

where Uxjxi =
∂2

∂xj∂xi
U(t, x), i, j = 1, . . . , n, and

A
(
t, x, U(t, x), Uxi (t, x)

)
=

∂

∂U
(K(t, x, U)Uxi )Uxi+

∂

∂xi
(K(t, x, U)Uxi ), i=1, . . . , n. (4)

As in [1–3,5–9], we recall that Equation (1)1 is a quasi-linear one, i.e.,

ai(t, x, U(t, x), Ux(t, x)) = K(t, x, U(t, x))Uxi (t, x), i = 1, . . . , n

and
a(t, x, U(t, x), Ux(t, x)) = −pr

[
U(t, x)−U3(t, x)

]
− ps gd(t, x).

On the other hand, the problem in (3)1 is similar to in [10] (p. 3, relation (2.4)), where,
for i = 1, . . . , n,

aij
(
t, x, U(t, x), Ux(t, x)

)
=

∂

∂Uxj

ai(t, x, U(t, x), Ux(t, x))=
∂

∂Uxj

[
K
(
t, x, U(t, x)

)
Uxi (t, x)

]
,
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and

a(t, x, U(t, x), Ux(t, x)) = −A
(
t, x, U(t, x), Ux(t, x)

)
− pr

[
U(t, x)−U3(t, x)

]
− ps gd(t, x),

while (3)2 are of the second type, namely

∂

∂n
U(t, x) = aij(t, x, U(t, x), Ux(t, x))Uxj(t, x) cos αi,

and
ψ(t, x, U)|Σ = p1

∂

∂t
U − ∆Γ U + pt U − g f r (t, x) (5)

(see [10] (p. 475, relation (7.2))).

Moreover, we consider that Equations (1)1 and (3)1 are uniformly parabolic, i.e.,

ν1(|U|)ζ
2 ≤ ∂

∂zj
ai(s, y, U(s, y), z(s, y))ζiζ j ≤ ν2(|U|)ζ2 (6)

for arbitrary U(s, y) and z(s, y), (s, y) ∈ Q, and ζ = (ζ1, . . ., ζn) for an arbitrary real vector
(see [5] for more details).

Equation (1)1 was initially introduced by Allen and Cahn (see [5,11] and references
therein) to describe the motion of anti-phase boundaries in crystalline solids. In fact, the
Allen–Cahn model is widely applied to moving interface problems, such as the mixture of
two incompressible fluids, the nucleation of solids, vesicle membranes, etc. Furthermore,
the non-linear parabolic Equation (1)1 appears in the Caginalp’s phase-field transition sys-
tem (see [2–9,11–22]), describing the transition between phases (solid and liquid) (see [17],
for example).

In the present paper we investigate the solvability of boundary value problems of
the form (1) or (3) in the class W1,2

p (Q). The new model expressed in (1) stands out by
the presence of parameters p1 , p2 , pr , ps , pt , K

(
s, y, U(s, y)

)
, and (s, y) ∈ Q, the principal

part being in the divergence form and by considering a non-linear reaction term (see [5,11]
and references therein). The most important aspect in our paper concerns inhomogeneous
dynamic boundary conditions. Thus, we more precisely define the significant aspects of
the physical features. In this regard, we advise applying (1) or (3), to the moving interface
problems (see [5,7,8,11–15]), anisotropy effects (see [3–6,9,11,16–22]), image de-noising and
segmentation (see [2,4] and references therein), etc. Let us point out that the following
assumption is satisfied (see [20]):

H0 : (U −U3)|U|3p−4U ≤ 1 + |U|3p−1 − |U|3p.

2. Results—Theorem 1

In order to approach the problem in (3) (or (1)), we use the same ideas as in [1,6,7,9].
In this respect we introduce a new variable ζ(t, x) = U(t, x), ζ(0, x) = U0(x) on Γ (see [10]
(6.2)). Correspondingly, (3)2 is approached in the following

U(t, x) = ζ(t, x) on Σ

p2

∂

∂n
U + p1

∂

∂t
ζ(t, x)− ∆Γ ζ(t, x) + pt ζ(t, x) = g f r (t, x) on Σ

ζ(0, x) = ζ0(x) x ∈ Γ.

(7)
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Accordingly, the non-linear second-order boundary value problem (3) can be written
suitably as follows

p1

∂

∂t
U(t, x)− p2

∂

∂Uxj

[
K(t, x, U(t, x))Uxi (t, x)

]
Uxjxi

= A
(

t, x, U(t, x), Uxi (t, x)
)
+ pr

[
U(t, x)−U3(t, x)

]
+ ps gd(t, x) in Q

U(t, x) = ζ(t, x) on Σ

p2

∂

∂n
U + p1

∂

∂t
ζ − ∆Γ ζ + pt ζ = g f r (t, x) on Σ

U(0, x) = U0(x) on Ω

ζ(0, x) = ζ0(x) x ∈ Γ,

(8)

where A
(
t, x, U(t, x), Uxi (t, x)

)
is defined by (4), U0(x) = ζ0(x) on Γ and ζ0(x) ∈W

2− 2
p

∞ (Γ).

Definition 1. Any solution
(
U(t, x), ζ(t, x)

)
to problem (8) is called the classical solution

if it is continuous in Q̄, with continuous derivatives Ut, Ux and Uxx in Q and ζt, ζx, and ζxx in Σ,
satisfying Equation (8)1 at all points (t, x) ∈ Q and satisfying conditions (8)2−3 and (8)4−5 on the
lateral surface Σ of the cylinder Q for t = 0, respectively.

Our main results regarding the existence, uniqueness and regularity of solutions to
problem (8) (the well-posedness of the solutions to the non-linear second-order boundary
value problems (1) or (3)) are presented below.

Theorem 1. Suppose
(
U(t, x), ζ(t, x)

)
∈ C1,2(Q)×C1,2(Σ) is a classical solution to problem (8),

and for positive numbers M, M0, m1, M1, M2, M3, M4 and M5 one has

I1. |U(t, x)| < M for any (t, x) ∈ Q and for any z(t, x), the map K(t, x, z) is continuous,
differentiable in x, where its x-derivatives are bounded, satisfy (6), and

0 < Kmin ≤ K
(
t, x, U(t, x)

)
< Kmax, f or (t, x) ∈ Q, (9)

n

∑
i=1

[
|ai(t, x, U(t, x), z(t, x))|+

∣∣∣∣ ∂

∂U
ai(t, x, U(t, x), z(t, x))

∣∣∣∣](1+|z|)
+

n

∑
i,j=1

∣∣∣∣∣ ∂

∂xj
ai(t, x, U(t, x), z(t, x))

∣∣∣∣∣+|U(t, x)|≤M0(1+|z|)2.

(10)

I2. For any sufficiently small ε > 0, the functions U(t, x) and K(t, x, U(t, x)) satisfy the relations

‖U‖Ls(Q)
≤ M2 , ‖K(t, x, U(t, x))Uxi‖Lr(Q)

< M3 , i = 1, . . ., n,

where

r =
{

max{p, 4} p 6= 4
4 + ε p = 4,

s =
{

max{p, 2} p 6= 2
2 + ε p = 2.

Then, when ∀gd ∈ Lp(Q), U0 ∈ W
2− 2

p
∞ (Ω), ζ0(x) ∈ W

2− 2
p

∞ (Γ), g f r ∈ W
1− 1

2p ,2− 1
p

p (Σ),

with p 6= 3
2 , there exists a unique solution (U, ζ) ∈W1,2

p (Q)×W1,2
p (Σ) to (8) which satisfies
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‖U‖W1,2
p (Q)

+ ‖ζ‖W1,2
p (Σ)

≤ C
{

1 + ‖U0‖
W

2− 2
p

∞ (Ω)
+ ‖ζ0‖

W
2− 2

p
∞ (Γ)

+ ‖U0‖
3p−2

p

L3p−2(Ω)
+ ‖ζ0‖

3p−2
p

L3p−2(Γ)

+‖gd‖
3p−2

p

L3p−2(Q)
+ ‖g

f r‖
3p−2

p

L3p−2(Σ)
+ ‖g f r‖

W
1− 1

2p ,2− 1
p

p (Σ)

}
,

(11)

where C > 0 does not depend on U, ζ, gd , or g f r .
If (U1, ζ1) and (U2, ζ2) are solutions to (8) which correspond to (U1

0 , ζ1
0), (U2

0 , ζ2
0) ∈

W
2− 2

p
∞ (Ω)×W

2− 2
p

∞ (Γ), g1
d
, g2

d
, g1

f r
and g2

f r
, respectively, then

‖U1‖W1,2
p (Q)

, ‖U2‖W1,2
p (Q)

≤ M4, (12)

‖ζ1‖W1,2
p (Σ), ‖ζ2‖W1,2

p (Σ) ≤ M5, (13)

and the following holds

max
(t,x)∈Q

|U1 −U2| + max
(t,x)∈Σ

|ζ1 − ζ2|

≤ C1eCTmax
{

max
(t,x)∈Ω

|U1
0 −U2

0 |, max
(t,x)∈Γ

|ζ1
0 − ζ2

0|,

max
(t,x)∈Q

|g1
d
− g2

d
|, max
(t,x)∈Σ

|g1
f r
− g2

f r
|
}

,

(14)

where C1 > 0 and C > 0, do not depend on
{

U1, ζ1, g1
d
, g1

f r
, U1

0 , ζ1
0

}
and

{
U2, ζ2, g2

d
, g2

f r
, U2

0 , ζ2
0

}
.

In particular, the uniqueness of the solution to (8) holds.

As far as the techniques used in this paper are concerned, it should be noted that we
derive the a priori estimates for Lp(Q) and Lp(Σ). Moreover, basic tools in our approach
are:

• the Leray–Schauder degree theory (see [15] (p. 221) and reference therein);
• the Lp theory of linear and quasi-linear parabolic equations [10];
• Green’s first identity

−
∫
Ω

y divz dx =
∫
Ω

∇y · z dx−
∫

∂Ω

y
∂

∂n
z dγ,

−
∫
Ω

y∆z dx =
∫
Ω

∇y · ∇z dx−
∫

∂Ω

y
∂

∂n
z dγ,

(15)

for any scalar-valued function y and z in a continuously differentiable vector field in n
dimensional space;

• the Lions and Peetre embedding theorem [1] (p. 100) to ensure the existence of a
continuous embedding W1,2

p (Q) ⊂ Lµ(Q), where the number µ is defined as follows
(see (2))

µ =


any positive number ≥ 3p if

1
p
− 2

n + 2
≤ 0,

p (n + 2)
n + 2− 2p

if
1
p
− 2

n + 2
> 0.

(16)
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For a given positive integer k and 1 ≤ p ≤ ∞, we denote by Wk,2k
p (Q) the Sobolev

space on Q:

Wk,2k
p (Q) =

{
y ∈ Lp(Q) :

∂i

∂ti
∂j

∂xj y ∈ Lp(Q), for 2i + j ≤ 2k
}

,

i.e., the spaces of functions whose t- and x-derivatives up to the order k and 2k, respectively,

belong to Lp(Q). Furthermore, we use the Sobolev spaces Wi
p(Ω) and W

i
2 ,i
p (Σ) with the

non-integral i for the initial and boundary conditions, respectively, (see [10] (p. 70 and 81)).
Furthermore, we use the set C1,2(D̄) (C1,2(D)) of all continuous functions in D̄ (in

D) with continuous derivatives ut, ux, and uxx in D̄ (in D) (D = Q or D = Σ), as well as
the Sobolev spaces W`

p(Ω), and W`,`/2
p (Σ) with non-integral ` for the initial and boundary

conditions, respectively (see [10] (p. 8, p. 70 and p. 81)).
In the following we will denote by C some positive constants.

3. Proof of the Main Result — Theorem 1

We consider B = W0,1
p (Q)∩ L3p(Q)× Lp(Σ) as a suitable Banach space, with the norm

‖ · ‖B expressed by

‖(ϕ, ϕ̄)‖B = ‖ϕ‖Lp(Q) + ‖ϕx‖Lp(Q) + ‖ϕ̄‖Lp(Σ),

and a non-linear operator H : B× [0, 1]→ B defined by

(U, ζ)=H(ϕ, ϕ̄, λ)=
(
U(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ)

)
∀(ϕ, ϕ̄) ∈ B, ∀λ ∈ [0, 1], (17)

where (U(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ) is a unique solution to the following linear second-order
boundary value problem

p1

∂

∂t
U−p2

[
λ

∂

∂ϕxj

(K(t, x, ϕ)ϕxi )−(1−λ)δ
j
i

]
Uxixj

=λ
{

A
(
t, x, ϕ, ϕxi

)
+ pr

[
ϕ(t, x)− ϕ3(t, x)

]
+ ps gd(t, x)

}
in Q

U(t, x) = ζ(t, x) on Σ

U(0, x) = λU0(x) on Ω

p2

∂

∂n
U + p1

∂

∂t
ζ − ∆Γ ζ + pt ζ = λg f r (t, x) on Σ

ζ(0, x) = λζ0(x) x ∈ Γ.

(18)

Remark 2. The non-linear operator H in (17) depends on λ ∈ [0, 1] and its fixed point for λ = 1
is a solution to problem (18).

Proof. We now prove that the non-linear operator H, defined in (17), is well-defined,
continuous and compact.

From the right-hand side of (17)1, it follows that, ∀(ϕ, ϕ̄) ∈ B, then ϕ3 ∈ Lp(Q) and
thus A

(
t, x, ϕ, ϕxi

)
+ pr

[
ϕ(t, x)− ϕ3(t, x)

]
+ ps gd(t, x) ∈ Lp(Q). Using the Lp theory of

linear parabolic equations (see [10]), the solution (U, ζ) to problem (18) exists and it is
unique with

(U, ζ) =
(
U(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ)

)
∈ B, ∀ (ϕ, ϕ̄) ∈ B, ∀ λ ∈ [0, 1]. (19)
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Using the continuous inclusions (see [6])
W1,2

p (Q) ⊂ B ⊂ Lp(Q)

W1,2
p (Σ) ⊂ Lp(Σ),

(20)

we obtain H(ϕ, ϕ̄, λ) = (U, ζ) ∈ B for all (ϕ, ϕ̄) ∈ B and ∀ λ ∈ [0, 1], meaning the
non-linear operator H is well defined.

Now, using the ideas from [1–7,9,16,20], let ϕn → ϕ in W0,1
p (Q) ∩ L3p(Q), ϕ̄n → ϕ̄ in

Lp(Σ) and λn → λ in [0, 1]. Using the notations

(Un,λn , ζn,λn) = H(ϕn, ϕ̄n, λn),
(Un,λ, ζn,λ) = H(ϕn, ϕ̄n, λ),
(Uλ, ζλ) = H(ϕ, ϕ̄, λ),

we obtain

‖un,λn − un,λ‖W1,2
p (Q)

+ ‖ζn,λn − ζn,λ‖W1,2
p (Σ) → 0 for n→ ∞ (21)

and
‖un,λ − uλ‖W1,2

p (Q)
+ ‖ζn,λ − ζλ‖W1,2

p (Σ) → 0 for n→ ∞. (22)

The continuous embedding of (20), (21), and (22) allows us to derive the continuity of
the non-linear operator H, introduced in (17). Furthermore, H is compact, easily written as

B× [0, 1]→W1,2
p (Q)×W1,2

p (Σ) ↪→ B = W0,1
p (Q) ∩ L3p(Q)× Lp(Σ),

where the second map is a compact inclusion (see [1] (p. 100)).

Next, we look at a positive number R, such that (see (17))

(U, ζ, λ) ∈ B× [0, 1] with (U, ζ) = H(U, ζ, λ) =⇒ ‖(U, ζ)‖B < R. (23)

The above expression (U, ζ) = H(U, ζ, λ) can be written as (see (1), (8) and (18))

p1

∂

∂t
U−λp2div

(
K(t, x, U)∇U

)
− (1− λ)p2 ∆U

=λ
[

pr

[
U(t, x)−U3(t, x)

]
+ ps gd(t, x)

]
in Q

U(t, x) = ζ(t, x) on Σ

U(0, x) = λU0(x) on Ω

p2

∂

∂n
U+p1

∂

∂t
ζ−∆Γ ζ+pt ζ=λg f r (t, x)] on Σ

ζ(0, x) = λζ0(x) x ∈ Γ.

(24)
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Multiplying (24)1 by |U|3p−4U and integrating over Qs := (0, s) × Ω, s ∈ (0, T],
we obtain

p1

3p− 2

∫
Ω

|U(s, x)|3p−2 dx

−λp2

∫
Qs

div
(

K(τ, x, U)∇U
)
|U|3p−4U dτdx

−(1− λ)p2

∫
Qs

∆U |U|3p−4U dτdx

= λpr

∫
Qs

[
U(τ, x)−U3(τ, x)

]
|U|3p−4U dτdx + λps

∫
Qs

gd(τ, x)|U|3p−4U dτdx.

(25)

To process the terms ∫
Qs

div
(

K(τ, x, U)∇U
)
|U|3p−4Udτdx

and ∫
Qs

∆U |U|3p−4Udτdx, in (25)

we use Green’s first identity (15)1 and (15)2, respectively, to obtain

−λp2

∫
Qs

div
(

K(τ, x, U)∇U
)
|U|3p−4U dτdx

= λp2

∫
Qs

K(τ, x, U)∇U · ∇
(
|U|3p−4U

)
dτdx + λ

∫
Σs

|U|3p−4U
(
−p2

∂

∂n
U
)

dτdγ,
(26)

−(1− λ)p2

∫
Qs

∆U |U|3p−4U dτdx

= (1−λ)3(p−1)p2

∫
Qs

|∇U|2|U|3p−4dτdx+(1−λ)
∫
Σs

|U|3p−4U
(
−p2

∂

∂n
U
)

dτdγ,
(27)

where Σs = (0, s)× ∂Ω, s ∈ (0, T] and

−p2

∂

∂n
U = p1

∂

∂t
ζ − ∆Γ ζ + pt ζ − λg f r

(see (24)4).

Combining the above equality with the boundary condition in (24)2, the left inequality
in (9), and the relations (26), (27), and (25) leads us to the following inequality
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p1

3p−2

∫
Ω

|U(s, x)|3p−2dx+λ
p1

3p−2

∫
Γ

|ζ(s, x)|3p−2dγ+(1−λ)
p1

3p− 2

∫
Γ

|ζ(s, x)|3p−2dγ

+λp2

∫
Qs

K(τ, x, U)∇U · ∇
(
|U|3p−4U

)
dτdx+(1−λ)3(p−1)p2

∫
Qs

|∇U|2|U|3p−4dτdx

+λpt

∫
Σs

|ζ(τ, x)|3p−2 dτdγ + (1− λ)pt

∫
Σs

|ζ(τ, x)|3p−2 dτdγ

+λ
∫
Σs

∇Γ

(
|ζ|3p−3

)
· ∇Γ ζ dτdγ + (1− λ)

∫
Σs

∇Γ

(
|ζ|3p−3

)
· ∇Γ ζ dτdγ

≤ λ
p1

3p−2

∫
Ω

|U0(x)|3p−2 dx +
p1

3p− 2

∫
Γ

|ζ0(x)|3p−2dγ

+λpr

∫
Qs

[
U(τ, x)−U3(τ, x)

]
|U|3p−4U dτdx

+λps

∫
Qs

gd(τ, x)|U|3p−4U dτdx + λ
∫
Σt

g
f r (τ, x)|U|3p−4U dτdγ

(28)

for all s ∈ (0, T]. The last two terms in the above inequalities can be manipulated via
Hölder and Cauchy’s inequality giving us the following estimates

a. λps

∫
Qs

gd(τ, x)|U|3p−4Udτdx

≤ (3p− 2)−1
3p− 2

ε
3p−2
3p−3

∫
Qs

|U|3p−2dτdx + λps

1
3p− 2

ε−(3p−2)
∫

Qs

|gd |
3p−2dτdx,

b. λ
∫
Σs

g
f r (τ, x)|U|3p−4Udτdγ

≤ (3p− 2)−1
3p− 2

ε
3p−2
3p−3

∫
Σs

|U|3p−2dτdγ + λ
1

3p− 2
ε−(3p−2)

∫
Σt

|g
f r |3p−2dτdγ.



Axioms 2023, 12, 406 10 of 23

Due to the inequalities a. and b., from (28) we obtain

p1

3p− 2

∫
Ω

|U(s, x)|3p−2dx +
∫
Γ

|ζ(s, x)|3p−2dγ


+λp2

∫
Qs

K(τ, x, U)∇U · ∇
(
|U|3p−4U

)
dτdx+(1−λ)3(p−1)p2

∫
Qs

|∇U|2|U|3p−4dτdx

+λpr

∫
Qs

|U(τ, x)|3p dτdx

+pt

∫
Σs

|ζ(τ, x)|3p−2 dτdγ +
∫
Σs

∇Γ

(
|ζ|3p−3

)
· ∇Γ ζ dτdγ

≤ p1

3p− 2

∫
Ω

|U0(x)|3p−2 dx +
∫
Γ

|ζ0(x)|3p−2dγ


+

[
λpr +

(3p− 2)−1
3p− 2

ε
3p−2
3p−3

] ∫
Qs

|U(τ, x)|3p−2dτdx

+
(3p− 2)−1

3p− 2
ε

3p−2
3p−3

∫
Σs

|U(τ, x)|3p−2 dτdx

+ps

1
3p− 2

ε−(3p−2)‖gd‖
3p−2
L3p−2(Qs)

+
1

3p− 2
ε−(3p−2)‖g

f r‖
3p−2
L3p−2(Σs)

(29)

for all s ∈ (0, T].
In particular, it follows that from (29) we obtain∫

Ω

|U(s, x)|3p−2dx +
∫
Γ

|ζ(s, x)|3p−2dγ

≤ C0

[
‖U0(x)‖3p−2

L3p−2(Ω)
+ ‖ζ0(x)‖3p−2

L3p−2(Γ)
+ ‖gd‖

3p−2
L3p−2(Qs)

+ ‖g
f r‖

3p−2
L3p−2(Σs)

]

+C0

t∫
0

∫
Ω

|U(τ, x)|3p−2dτdx +
∫
Γ

|ζ(τ, x)|3p−2dγ

 dτ

(30)

where C0 = C(|Ω|, |Γ|, p, p1 , p2 , pr , pt , ps), in conjuction with (24)2.
By Gronwall’s lemma and owing to L3p−2(Q) ⊂ Lp(Q), from (30) we obtain

‖U‖p
Lp(Q)

+ ‖ζ‖p
Lp(Σ)

≤ C(T, C0)
[
‖U‖3p−2

L3p−2(Q)
+ ‖ζ‖3p−2

L3p−2(Σ)

]
≤ C(T, C0)

[
‖U0(x)‖3p−2

L3p−2(Ω)
+‖ζ0(x)‖3p−2

L3p−2(Γ)
+‖gd‖

3p−2
L3p−2(Q)

+‖g
f r‖

3p−2
L3p−2(Σ)

]
.

(31)
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Having established an estimate for ‖U‖3p−2
L3p−2(Q)

+ ‖ζ‖3p−2
L3p−2(Σ)

(see (31)), we now return
to the relation in (29) to derive the following estimate:

λpr‖|U|3‖
p
Lp(Q)

≤ C(T, C0)
[
‖U0(x)‖3p−2

L3p−2(Ω)
+‖ζ0(x)‖3p−2

L3p−2(Γ)
+‖gd‖

3p−2
L3p−2(Q)

+‖g
f r‖

3p−2
L3p−2(Σ)

]
,

(32)

where the boundary condition in (24)2 is also used.
Applying Lemma 7.4 in Choban and Moroşanu [1] (p. 114) to the linear inhomoge-

neous problem (24) with

f3 = λ
{

pr

[
U(t, x)−U3(t, x)

]
+ ps gd(t, x)

}
∈ Lp(Q) and

g3 = λg f r (t, x) ∈ Lp(Σ),

we obtain

‖U‖W1,2
p (Q)

+ ‖ζ‖W1,2
p (Σ)

≤ C1

{
‖U0‖

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
W

2− 2
p

∞ (Γ)
+ ‖gd‖Lp(Q) + ‖g f r‖Lp(Σ)

+λpr

[
‖U‖Lp(Ω) + ‖|U|3‖Lp(Ω)

]}
,

(33)

for a constant C1 = C(n, C(T, C0)) > 0.
Now using (31) and (32), (33) then becomes

‖U‖W1,2
p (Q)

+ ‖ζ‖W1,2
p (Σ)

≤ C1

{
1 + ‖U0‖

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
W

2− 2
p

∞ (Γ)
+ ‖U0‖

3p−2
p

L3p−2(Ω)
+ ‖ζ0‖

3p−2
p

L3p−2(Γ)

+‖gd‖
3p−2

p

L3p−2(Q)
+‖g

f r‖
3p−2

p

L3p−2(Σ)
+ ‖gd‖Lp(Q) + ‖g f r‖Lp(Σ)

}
,

(34)

The inclusions in (20) guarantee that

‖U‖Lp(Q) + ‖ζ‖Lp(Σ) ≤ C
(
‖U‖W1,2

p (Q)
+ ‖ζ‖W1,2

p (Σ)

)
where, thanks to (34), we may conclude that a constant R > 0 exists such that the property
in (23) is true.

Denoting BH
R :=

{
(U, ζ) ∈ B : ‖(U, ζ)‖B < R

}
, relation (23) implies that

(U, ζ, λ) 6= (U, ζ) ∀(U, ζ) ∈ ∂BH
R , ∀λ ∈ [0, 1],

provided that R > 0 is sufficiently large. Furthermore, following the same ideas
in [1,3–7,16,20], we can conclude that problem (8) has the solution (U, ζ) ∈ W1,2

p (Q) ×
W1,2

p (Σ).
Making use of the embedded L3p−2(Q) ⊂ Lp(Q) and the estimate (34), it follows that

(11) and this completes the proof of the first part in Theorem 1.
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Proof of Theorem 1 Continued

In this subsection we demonstrate the second part of Theorem 1 which entails checking
(14) and thus the uniqueness of the solution to (1) (or (3)). We consider (U1, ζ1) and (U2, ζ2)
as in the statement of Theorem 1. From the first part we know that U1, U2 ∈W1,2

p (Q) and
ζ1, ζ2 ∈W1,2

p (Σ). Therefore, U = U1 −U2 ∈W1,2
p (Q) and Z = ζ1 − ζ2 ∈W1,2

p (Σ).
Following [1–3,5–7,16,20], the increments of aij and A (see (4)) can be written in the

following form

aij(s, x, U1, U1
x)− aij(s, x, U2, U2

x) =

1∫
0

d
dλ

ai,j

(
s, x, Uλ, Uλ

x

)
dλ,

A(s, x, U1, U1
x)− A(s, x, U2, U2

x) =

1∫
0

d
dλ

A
(

s, x, Uλ, Uλ
x

)
dλ

and so

aij(s, x, U1, U1
x)U1

xi xj
− aij(s, x, U2, U2

x)U2
xi xj

= aij(s, x, U1, U1
x)Uxi xj

+

U2
xi xj

1∫
0

∂

∂Uλ
xj

ai,j

(
s, x, Uλ, Uλ

x

)
dλ

Uxi ,
(35)

A(s, x, U1, U1
x)− A(s, x, U2, U2

x) =


1∫

0

∂

∂Uλ
xj

A
(

s, x, Uλ, Uλ
x

)
dλ

Uxi , (36)

where

ai,j
(
s, x, Uλ

x , Uλ
x
)
=

∂

∂Uλ
xj

[
K(s, x, Uλ)Uλ

xi

]
,

A
(
s, x, Uλ, Uλ

x
)
= ai

(
s, x, Uλ, Uλ

x
)
, ai

(
s, x, Uλ, Uλ

x

)
=

∂

∂xi

[
K(s, x, Uλ)Uλ

xi

]
,

Uλ(s, x) = λU1(s, x) + (1− λ)U2(s, x) and

Uλ
x (s, x) = λU1

x(s, x) + (1− λ)U2
x(s, x).

Subtracting (3) for U2(s, x) from (3) for U1(s, x) and using (35) and (36), we obtain the
following linear parabolic problem with inhomogeneous dynamic boundary conditions,
i.e., 

p1

∂

∂t
U − âij(s, x)∆U = −âi(s, x)∇U − p2U + ps(g1

d
− g2

d
) in Q

U(s, x) = Z(s, x) on Σ

U(0, x) = (U1
0 −U2

0)(x) in Ω

p1

∂

∂n
U + p2

∂

∂t
Z− ∆ΓZ + pt Z = g1

f r − g2
f r on Σ

Z(0, x) = (ζ1
0 − ζ2

0)(x) on Γ,

(37)
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where

âij(s, x) = aij(s, x, U1, U1
x),

âi(s, x) = −U2
xi xj

1∫
0

∂

∂Uλ
xj

ai,j

(
s, x, Uλ, Uλ

x

)
dλ +

1∫
0

∂

∂Uλ
xj

∂

∂xi

[
K(s, x, Uλ)Uλ

xi

]
dλ.

Next, following the work of A. Miranville and C. Moroşanu [3], we easily deduce the
validity of the estimate in (14); thus, the uniqueness of the solution to (1) or (3) is true.

Corollary 1. Corresponding to U1
0 = U2

0 and ζ1
0 = ζ2

0, the problem (1) possesses a unique classical
solution.

4. Approximating Scheme—Convergence and Error Estimate

Here we use the fractional steps method in order to approximate the unique solution to
problem (8) with inhomogeneous dynamic boundary conditions (see Corollary 1). Precisely,
∀ ε > 0, let Mε =

[
T
ε

]
and

Qε
i = [iε, (i + 1)ε]×Ω, Σε

i = [iε, (i + 1)ε]× ∂Ω i = 0, 1, · · · , Mε − 1,

with Qε
Mε−1 = [(Mε − 1)ε, T]×Ω, Σε

Mε−1 = [(Mε − 1)ε, T]× ∂Ω. Correspondingly, we link
the following numerical scheme with problem (8)

p1

∂

∂t
Uε − p2div

(
K
(
t, x, Uε

)
∇Uε

)
=pr U

ε + ps gd(t, x) in Qε
i

p2

∂

∂n
Uε + p1

∂

∂t
ζε − ∆Γ ζε + pt ζ

ε = g f r (t, x) on Σε
i

Uε(iε, x) = z(ε, Uε
−(iε, x)) on Ω

ζε(iε, x) = Uε(iε, x) on ∂Ω,

(38)

with z(ε, Uε
−(iε, x)) being the solution of Cauchy problem:

z′(s) + pr z3(s) = 0 s ∈ [0, ε]

z(0) = Uε
−(iε, x) on Ω

Uε
−(0, x) = U0(x) on Ω

Uε
−(0, x) = ζ0(x) on ∂Ω,

(39)

where Uε
− stands for the left-hand limit of Uε.

For a detailed discussion regarding the importance of the above numerical scheme we
direct the reader to the works [5,9,11–14,17–19,22,23].

The main question of this work concerns the convergence as ε → 0 of the sequence
(Uε, ζε) of the solutions to problems (38) and (39), and to the solution (U, ζ) of problem (8)
(see [11] for more details).

For simplicity, we note:

WQ = L2([0, T]; H1(Ω)) ∩ L∞(Q) and WΣ = L2([0, T]; H1(∂Ω)) ∩ L∞(Σ).
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Definition 2. By a weak solution to problem (8) we refer to a pair of functions (U, ζ) ∈WQ ×WΣ

and U = ζ on Σ, which satisfy (8) in the following sense:

p1

∫
Q

(
∂

∂t
U, φ1

)
dt dx + p2

∫
Q

K
(
t, x, U

)
∇U · ∇φ1 dt dx

+p2

∫
Σ

(
∂

∂t
ζ, φ2

)
dt dγ +

∫
Σ

∇ζ∇φ2 dt dγ + pt

∫
Σ

ζφ2 dtdγ

= pr

∫
Q

(U −U3)φ1 dt dx + ps

∫
Q

gd φ1 dt dx +
∫
Σ

g f r φ2 dtdγ

∀(φ1, φ2) ∈ L2([0, T]; H1(Ω))× L2([0, T]; H1(Γ)),

(40)

where φ1 = φ2 on Σ, and U(0, x) = U0(x) on Ω.

Definition 3. By a weak solution to problems (38) and (39) we refer to a pair of functions
(Uε, ζε) ∈ WQε

i
×WΣε

i
, and Uε

i = ζε
i on Σε

i , i ∈ {0, 1, . . ., Mε − 1}, which satisfy (38) and
(39) in the following sense:

p1

∫
Q

(
∂

∂t
Uε, ξ1

)
dt dx + p2

∫
Q

K
(
t, x, Uε

)
∇Uε · ∇ξ1 dt dx

+p2

∫
Σ

(
∂

∂t
ζε, ξ2

)
dt dγ +

∫
Σ

∇ζε∇ξ2 dt dγ + pt

∫
Σ

ζεξ2 dtdγ

= pr

∫
Q

Uεξ1 dt dx + ps

∫
Q

gd ξ1 dt dx +
∫
Σ

g f r ξ2 dtdγ

∀(ξ1, ξ2) ∈ L2([0, T]; H1(Ω))× L2([0, T]; H1(∂Ω)),

(41)

where Uε
−(0, x) = U0(x) on Ω, and Uε

−(0, x) = ζ0(x) on ∂Ω.

In (40) and (41) the symbols
∫
Q

and
∫
Σ

denote the duality between L2([0, T]; H1(Ω))

and L2([0, T]; H1(Ω)′) as well as L2([0, T]; H1(∂Ω)) and L2([0, T]; H1(∂Ω)′), respectively.

Convergence of the Numerical Schemes (38) and (39)

The purpose of this subsection is to prove the convergence of the solution to the
numerical scheme associated with the non-linear problem (8). Therefore,

Theorem 2. Assume that U0(x) ∈W2− 2
2

∞ (Ω), satisfying p2
∂

∂ν U0−∆Γ U0 + pt U0 = g f r (0, x) on

∂Ω and g f r (s, x) ∈W
1− 1

2p ,2− 1
p

p (Σ). Let (Uε, ζε) be the solution to the numerical schemes (38) and (39).
As ε→ 0, one has

(Uε, ζε)→ (U?, ζ?) strongly in L2(Ω)× L2(∂Ω) for any s ∈ (0, T], (42)

where (U?, ζ?) ∈ L2([0, T]; H1(Ω))× L2([0, T]; H1(∂Ω)) is a weak solution to problem (8).

The following lemmas, which involve the Cauchy problem (39), are very useful in the
proof of Theorem 2. These were proven for the first time in [11]. Here, we reproduce them
as well as sketch out the proof when pertinent.
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Lemma 1. Assume Uε
−(iε, x) ∈ L∞(Ω), i = 0, 1, . . ., Mε − 1. Then, Uε(iε, x) ∈ L∞(Ω) and

‖Uε(iε, x)‖2
L2(Ω) ≤ ‖U

ε
−(iε, x)‖2

L2(Ω). (43)

Proof. We write (39)1 in the form
(

1
z2

)′
= pr , and following the same reasoning as in [11]

we obtain
z2(ε, Uε

−(iε, x)) ≤ Uε
−(iε, x)2, a.e x ∈ Ω. (44)

Owing to (38)3 and (44), we can easily conclude the inequality complete in (43).

Lemma 2. For i = 0, 1, . . ., Mε − 1, the estimate below holds

‖∇Uε(iε, x)‖L2(Ω) ≤ ‖∇Uε
−(iε, x)‖L2(Ω). (45)

Lemma 3. The following estimate holds

‖z(ε, x)−Uε
−(iε, x)‖L2(Ω) ≤ εL (46)

where L > 0 depends on |Ω|, ‖Uε
−‖L∞(Ω) and p2 .

Now, we are in a position to give the proof of Theorem 2. Following the same steps
as in [11], we obtain the solution to problem (38) as (Uε, ζε) ∈ W1,2

p (Qε
i ) ∩ L∞(Qε

i ) ×
W1,2

p (Σε
i ) ∩ L∞(Σε

i ), ∀i ∈ {0, 1, . . ., Mε − 1}.
Next, we give a priori estimates to Qε

i , ∀i ∈ {0, 1, . . ., Mε− 1}. Firstly, we multiply (38)1
by Uε

t and obtain

p1

∫
Ω

|Uε
t |2dx + p1

∫
Γ

|ζε
t |2dγ

+
p2

2

∫
Ω

K(t, x, Uε)
d
dt
|∇Uε|2dx +

1
2

d
dt

∫
Γ

|∇Γζε|2dγ +
pt

2
d
dt

∫
Γ

|ζε|2dγ

=
p2

2
d
dt

∫
Ω

|Uε|2dx +
∫
Γ

g f r ζε
t dγ + ps

∫
Ω

gd Uε
t dx.

(47)

Using Hölder’s inequality for the right-hand terms
∫
Γ

g f r ζε
t dγ and

∫
Ω

gd Uε
t dx, we have

∫
Γ

g f r ζε
t dγ ≤ p1

2

∫
Γ

|ζε
t |2 dγ +

1
2p1

∫
Γ

|g f r |
2 dγ,

ps

∫
Ω

gd Uε
t dx ≤ p1

2

∫
Ω

|Uε
t |2 dx +

ps

2p1

∫
Ω

|gd |
2 dx,
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and substituting them in (47), we derive

p1

2

∫
Ω

|Uε
t |2dx +

p1

2

∫
Γ

|ζε
t |2dγ

+
p2

2
Kmin

d
dt

∫
Ω

|∇Uε|2dx +
1
2

d
dt

∫
Γ

|∇Γζε|2dγ +
pt

2
d
dt

∫
Γ

|ζε|2dγ

≤ p2

2
d
dt

∫
Ω

|Uε|2dx +
1

2p1

∫
Γ

|g f r |
2 dγ +

ps

2p1

∫
Ω

|gd |
2 dx,

(48)

where the inequality (9) is also used.
Multiplying (38)1 by 1

p1 p2
Uε as shown above, we obtain

1
2p2

d
dt

∫
Ω

|Uε|2dx +
1

2p2

d
dt

∫
Γ

|ζε|2dγ

+
1
p1

∫
Ω

K(t, x, Uε)|∇Uε|2dx +
1
p1

∫
Γ

|∇Γζε|2dγ +
pt

p1 p2

∫
Γ

|ζε|2dγ

=
1

p1 p2 pr

∫
Ω

|Uε|2dx +
1

p1 p2

∫
Γ

g f r ζε dγ +
ps

p1 p2

∫
Ω

gd Uε dx.

(49)

In addition, using Hölder’s inequality for the right-hand terms
∫
Γ

g f r ζε dγ and
∫
Ω

gd Uε dx,

we have
1

p1 p2

∫
Γ

g f r ζε dγ ≤ 2pt

p1 p2

∫
Γ

|ζε|2 dγ +
1

2pt p1 p2

∫
Γ

|g f r |
2 dγ,

ps

p1 p2

∫
Ω

gd Uε dx ≤ 1
p1 p2

∫
Ω

|Uε|2 dx +
ps

p1 p2

∫
Ω

|gd |
2 dx,

and then from (49) we obtain

1
2p2

d
dt

∫
Ω

|Uε|2dx +
1

2p2

d
dt

∫
Γ

|ζε|2dγ

+
1
p1

Kmin

∫
Ω

|∇Uε|2dx +
1
p1

∫
Γ

|∇Γζε|2dγ

≤ C(ps , pt , p1 , p2)

∫
Ω

|Uε|2dx +
∫
Γ

|ζε|2 dγ +
∫
Γ

|g f r |
2 dγ +

∫
Ω

|gd |
2 dx

,

(50)

where the inequality (9) is also used.
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Adding (48) and (50), we obtain

∂

∂t

[
1

2p2

∫
Ω

|Uε|2dx+
(

pt

2
+

1
2p2

)∫
Γ

|ζε|2dγ+
p2

2
Kmin

∫
Ω

|∇Uε|2dx+
1
2

∫
Γ

|∇Γζε|2dx
]

+
p1

2

∫
Ω

|Uε
t |2dx +

p1

2

∫
Γ

|ζε
t |2dγ +

Kmin
p1

∫
Ω

|∇Uε|2dx +
1
p1

∫
Γ

|∇Γζε|2dγ

≤ C(ps , pt , p1 , p2)

[ ∫
Ω

|Uε|2dx +
∫
Γ

|ζε|2 dγ +
∫
Γ

|g f r |
2 dγ +

∫
Ω

|gd |
2 dx

]
.

Integrating the preceding on Qε
0, we derive

1
2p2

‖Uε
−(ε, x)‖2

L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε
−(ε, x)‖2

L2(Γ)

+
p2

2
Kmin‖∇Uε

−(ε, x)‖2
L2(Ω) +

1
2
‖∇Γζε

−(ε, x)‖2
L2(Γ)

+

ε∫
0

[
p1

2

∫
Ω

|Uε
t |2dx +

p1

2

∫
Γ

|ζε
t |2dγ +

Kmin
p1

∫
Ω

|∇Uε|2dx +
1
p1

∫
Γ

|∇Γζε|2dγ

]
ds

≤ 1
2p2

‖U0‖2
L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζ0‖2

L2(Γ) +
p2

2
Kmin‖∇U0‖2

L2(Ω) +
1
2
‖∇Γζ0‖2

L2(Γ)

+C(ps , pt , p1 , p2)

{ ε∫
0

[
‖Uε‖2

L2(Ω) + ‖ζ
ε‖2

L2(Γ)

]
ds + ‖g f r‖

2
L2(Σε

0)
+ ‖gd‖

2
L2(Qε

0)

}
.

(51)

It is relatively easy to observe that the estimate above refers to Qε
0 and Σε

0 (i = 0).
Proceeding in a similar way for i = 1, 2, . . . , Mε − 2, we obtain

1
2p2

‖Uε
−((i + 1)ε, x)‖2

L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε
−((i + 1)ε, x)‖2

L2(Γ)

+
p2

2
Kmin‖∇Uε

−((i + 1)ε, x)‖2
L2(Ω) +

1
2
‖∇Γζε

−((i + 1)ε, x)‖2
L2(Γ)

+

(i+1)ε∫
iε

[
p1

2
‖Uε

t ‖2
L2(Ω)+

p1

2
‖ζε

t‖2
L2(Γ)+

Kmin
p1

‖∇Uε‖2
L2(Ω)+

1
p1

‖∇Γζε‖2
L2(Γ)

]
ds

≤ 1
2p2

‖Uε(iε, x)‖2
L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε(iε, x)‖2

L2(Γ)

+
p2

2
‖∇Uε(iε, x)‖2

L2(Ω) +
1
2
‖∇Γζε(iε, x)‖2

L2(Γ)

+C(ps , pt , p1 , p2)

{(i+1)ε∫
iε

[
‖Uε‖2

L2(Ω) + ‖ζ
ε‖2

L2(Γ)

]
ds + ‖g f r‖

2
L2(Σε

i )
+ ‖gd‖

2
L2(Qε

i )

}
,

(52)
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while for i = Mε − 1 we have

1
2p2

‖Uε
−(T, x)‖2

L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε
−(T, x)‖2

L2(Γ)

+
p2

2
Kmin‖∇Uε

−(T, x)‖2
L2(Ω) +

1
2
‖∇Γζε

−(T, x)‖2
L2(Γ)

+

T∫
Mε−1

[
p1

2
‖Uε

t ‖2
L2(Ω) +

p1

2
‖ζε

t‖2
L2(Γ) +

1
p1

‖∇Uε‖2
L2(Ω) +

1
p1

‖∇Γζε‖2
L2(Γ)

]
ds

≤ 1
2p2

‖Uε(T, x)‖2
L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε(T, x)‖2

L2(Γ)

+
p2

2
‖∇Uε(T, x)‖2

L2(Ω) +
1
2
‖∇Γζε(T, x)‖2

L2(Γ)

+C(ps , pt , p1 , p2)

{ T∫
Mε−1

[
‖Uε‖2

L2(Ω)+‖ζ
ε‖2

L2(Γ)

]
ds+‖g f r‖

2
L2(Σε

Mε−1)
+‖gd‖

2
L2(Qε

Mε−1)

}
.

(53)

Adding (51)–(53) and owing to the inequalities (43) and (45), we obtain

1
2p2

‖Uε
−(T, x)‖2

L2(Ω) +

(
pt

2
+

1
2p2

)
‖ζε
−(T, x)‖2

L2(Γ)

+
p2

2
‖∇Uε

−(T, x)‖2
L2(Ω) +

1
2
‖∇Γζε

−(T, x)‖2
L2(Γ)

+

T∫
0

[
p1

2
‖Uε

t ‖2
L2(Ω) +

p1

2
‖ζε

t‖2
L2(Γ) +

1
p1

‖∇Uε‖2
L2(Ω) +

1
p1

‖∇Γζε‖2
L2(Γ)

]
dt

≤ 1
2p2

‖U0‖2
L2(Ω) +

(
pt

2
+

1
2p2

)
‖ψ0‖2

L2(Γ) +
p2

2
‖∇U0‖2

L2(Ω) +
1
2
‖∇Γζ0‖2

L2(Γ)

+ C(ps , pt , p1 , p2)

{ T∫
0

[
‖Uε‖2

L2(Ω) + ‖ζ
ε‖2

L2(Γ)

]
dt + ‖g f r‖

2
L2(Σ) + ‖gd‖

2
L2(Q)

}
.

Applying the Gronwall inequality to the above inequalities, we finally deduce

T∫
0

{
‖Uε

t ‖2
L2(Ω) + ‖ζ

ε
t‖2

L2(Γ) + ‖∇Uε‖2
L2(Ω) + ‖∇Γζε‖2

L2(Γ)

}
dt ≤ C, (54)

where C > 0 is independent of ε and Mε.
Owing to (38)3, (38)4 and (46), we obtain

Mε−1

∑
i=0
‖Uε(iε, x)−Uε

−(iε, x)‖L2(Ω) ≤ TL = C1, (55)
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Mε−1

∑
i=0
‖ζε(iε, x)− ζε

−(iε, x)‖L2(Γ) ≤ C2, (56)

where C1 > 0 and C2 > 0 are independent of Mε and ε. Summing (54)–(56), we derive

T
V1
0

Uε+
T

V2
0

ζε+

T∫
0

[
‖Uε

t ‖2
L2(Ω)+‖ζ

ε
t‖2

L2(Γ)+‖∇Uε‖2
L2(Ω)+‖∇Γ ζε‖2

L2(Γ)

]
ds ≤ C, (57)

where the positive constant C is independent of Mε and ε, while
T

V1
0

Uε and
T

V2
0

ζε stand for

the variation of Uε : [0, T]→ L2(Ω) and ζε : [0, T]→ L2(Γ), respectively.
Since the introduction of L2(Ω) into H−1(Ω) is compact and {Uε

s(s)} is bounded in
L2(Ω) ∀s ∈ [0, T], we conclude that there exists a bounded variation function U∗(s) ∈
BV([0, T]; H−1(Ω)) and subsequent Uε(s) (see [11]), such that

Uε(s)→ U∗(s) strongly in H−1(Ω) ∀s ∈ [0, T], (58)

ζε(s)→ ζ∗(s) strongly in H−1(Γ) ∀s ∈ [0, T]. (59)

Further, from (57) we deduce that{
Uε → U∗ weakly in L2(0, T; H1(Ω))

ζε → ζ∗ weakly in L2(0, T; H1(Γ)).
(60)

By the well-known embeddings H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω), and H1(∂Ω) ⊂ L2(∂Ω) ⊂
H−1(∂Ω), standard interpolation inequalities (see [11] p. 17) yield that ∀` > 0, ∃C(`) > 0
such that{
‖Uε(s)−U∗(s)‖L2(Ω) ≤ `‖Uε(s)−U∗(s)‖H1(Ω) + C(`)‖Uε(s)−U∗(s)‖H−1(Ω),

‖ζε(s)− ζ∗(s)‖L2(∂Ω) ≤ `‖ζε(s)− ζ∗(s)‖H1(∂Ω) + C(`)‖ζε(s)− ζ∗(s)‖H−1(∂Ω),
(61)

∀ε > 0 and ∀s ∈ [0, T], where C(`)→ 0 as `→ 0.
Finally, relations (58)–(61) permit us to conclude that the assertion conducted in (42)

holds true, ending the proof of Theorem 2.

Corollary 2. Assume U0 ∈ W
2− 2

p
∞ (Ω), p2

∂
∂ν U0(x)− ∆ΓU0 + pt U0(x) = g f r (0, x) on ∂Ω and

g f r ∈W
1− 1

2p ,2− 1
p

p (Σ). Then U? ∈WQ is a weak solution to the non-linear problem in (1).

Now we search the error of the numerical schemes (38) and (39) relative to gd and g f r .

From Theorem 1 we know that ∀gd ∈ Lp(Q) and g f r ∈W
1− 1

2p ,2− 1
p

p (Σ), the problem (8) has

a unique solution (U, ζ) ∈W1,2
p (Q)×W1,2

p (Σ). Moreover, (see (11))

‖U‖W1,2
p (Q)

+ ‖ζ‖W1,2
p (Σ)

≤ C
[
1 + ‖U0‖

3− 2
p

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
3− 2

p

W
2− 2

p
∞ (Γ)

+ ‖gd‖
3p−2

p

L3p−2(Q)
+ ‖g f r‖

W
1− 1

2p ,2− 1
p

p (Σ)

]
,

(62)

with a fixed ζ0 ∈ W
2− 2

p
∞ (Γ) and U0 ∈ W

2− 2
p

∞ (Ω) verifying p2
∂

∂ν U0 − ∆ΓU0 + pt U0 =
g f r (0, x). Thus, we have
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Theorem 3. Let gd ∈ Lp(Q) and g f r ∈W
1− 1

2p ,2− 1
p

p (Σ). Let gk
d
⊂ Lp(Q) and gk

f r
⊂W

1− 1
2p ,2− 1

p
p (Σ)

be two sequences such that gk
d
−→ gd in Lp(Q) and gk

f r
−→ g f r in W

1− 1
2p ,2− 1

p
p (Σ) as k −→ ∞.

Denoted by (Um, ζm) ⊂ W1,2
p (Q)×W1,2

p (Σ) and (Um,k, ζm,k) ⊂ W1,2
p (Q)×W1,2

p (Σ), the ap-
proximating sequences are given in (38) and ((39), for (gd , g f r ) and (gk

d
, gk

f r
), respectively, with

U0 ∈W
2− 2

p
∞ (Ω) fixed. Then,

lim sup
m−→∞

[
‖Um,k −U‖L2(Q) + ‖ζm,k − ζ‖L2(Σ)

]

≤ CeCTmax
{

max
(t,x)∈Q

|gk
d
− gd |, max

(t,x)∈Σ
|gk

f r
− g f r |

} (63)

∀k ≥ 1, where C > 0 depends on |Ω|, T, n, p, p1 , p2 , pt , pr , ps , ‖U0‖
W

2− 2
p

∞ (Ω)
, ‖gd‖Lp(Q) and

‖g f r‖
W

1− 1
2p ,2− 1

p
p (Σ)

.

In particular, ∃ (Um,k, ζm,k), denoted by (Umk , ζmk ), such that (Umk , ζmk ) −→ (U, ζ) in
Lp(Q)× Lp(Σ) and in Q× Σ as k −→ ∞.

Proof. Owing to (62) we assume that

‖Uk‖W1,2
p (Q)

+ ‖ζk‖W1,2
p (Σ)

≤ C

{
1 + ‖U0‖

3− 2
p

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
3− 2

p

W
2− 2

p
∞ (Γ)

+ ‖gk
d
‖

3p−2
p

L3p−2(Q)
+ ‖gk

f r
‖

W
1− 1

2p ,2− 1
p

p (Σ)

}

≤ C

{
1 + ‖U0‖

3− 2
p

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
3− 2

p

W
2− 2

p
∞ (Γ)

+ ‖gd‖
3p−2

p

L3p−2(Q)
+ ‖g f r‖

W
1− 1

2p ,2− 1
p

p (Σ)

}
,

where C > 0 is interpreted as M4 in (12). This ensures the applicability of (14) in Theorem
1 with U1

0 = U2
0 and ζ1

0 = ζ2
0 obtains

‖Uk −U‖W1,2
p (Q)

+ ‖ζk − ζ‖W1,2
p (Σ)

≤ C1eCTmax

{
max

(t,x)∈Q
|gk

d
− gd |, max

(t,x)∈Σ
|gk

f r
− g f r |

}
, ∀k ≥ 1,

(64)

where C1 > 0. For k ≥ 1, Theorem 2 gives

(Um,k(s, ·), ζm,k(s, ·) −→ (Uk(s, ·), ζk(s, ·)) in L2(Ω)× L2(∂Ω),

uniformly for s ∈ [0, T], as m −→ ∞. In particular, ∀k ≥ 1 we have

(Um,k, ζm,k) −→ (Uk, ζk), in L2(Q)× L2(Σ), as m −→ ∞. (65)
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On the base of the relation in (64) and owing to (20), we obtain

‖Um,k −U‖L2(Q) + ‖ζm,k − ζ‖L2(Σ)

≤ ‖Um,k −Uk‖L2(Q) + ‖ζm,k − ζk‖L2(Σ) + ‖Uk −U‖L2(Q) + ‖ζk − ζ‖L2(Σ)

≤ ‖Um,k −Uk‖L2(Q) + ‖ζm,k − ζk‖L2(Σ)

+ C1eCTmax
{

max
(t,x)∈Q

|gk
d
− gd |, max

(t,x)∈Σ
|gk

f r
− g f r |

}
, ∀m, k ≥ 1.

Using (65) we can substitute the above inequality into the superior limit as m −→ ∞ to
prove that (63) is correct.

The last statement in Theorem 3 follows directly on from (63).

The general frameworl of the numerical algorithm to compute the approximate solu-
tion to problem (1) via the fractional steps scheme may be demonstrated as follows:

Begin alg-frac_sec-ord_dbc

i = 0 → U0 from (39)3;

For i = 0 perform Mε − 1

Compute z(ε, ·) from (39);

Uε(iε, ·) = z(ε, ·);
ζε(iε, ·) = Uε(iε, ·);
Compute (Uε((i + 1)ε, ·), ζε((i + 1)ε, ·)) solving the linear system (38);

End-for;

End.

5. Conclusions

The main problem addressed in this work concerns the non-linear second-order
reaction–diffusion equation with its principal part in divergence form with inhomogeneous
dynamic boundary conditions. Provided that the initial and boundary data meet the appro-
priate regularity and compatibility conditions, the well-posedness of a classical solution to
the non-linear problem is proven in this new formulation (Theorem 1). Precisely, the Leray–
Schauder principle and Lp theory of linear and quasi-linear parabolic equations, via Lemma
7.4 (see [1]), were applied to prove the qualitative properties of solution (U(t, x), ζ(t, x)).
More precisely, we cannot directly apply the Lp theory to problem (1) (or (3)). Thus, this
makes the result of Lemma 7.4 in Choban and Moroşanu [1] (p. 114) very important. More-
over, the a priori estimates were made in Lp(Q) and Lp(Σ) which permit the derivation

of higher-order regularity properties, that is,
(

U(t, x), ζ(t, x)
)
∈W1,2

p (Q)×W1,2
p (Σ). Thus,

the classical method of bootstrapping (see Moroşanu and Motreanu [20]) can be avoided.
Let us note that, due to the presence of the terms K(t, x, U(t, x)), the non-linear opera-

tor H (see (17)) does not represent the gradient of the energy functional. Therefore, the new
proposed second-order non-linear problem cannot be obtained from the minimisation of
any energy cost functional, i.e., (1) is not a variational PDE model.

Furthermore, an iterative fractional step-type scheme was introduced to approximate
problem (8). The convergence and error estimates were established for the proposed
numerical scheme and a conceptual numerical algorithm was formulated. In this regards,
we want to underline the solutions dependence in Theorem 2 on the physical parameters,
which could be useful in future investigations regarding error analysis and numerical
simulations.
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The qualitative results obtained here could be later used in quantitative approaches to
the mathematical model (1) (or (3)) as well as in the study of distributed and/or non-linear
optimal boundary control problems governed by such a non-linear problem.

Numerical implementation of the conceptual algorithm, alg-frac_sec-ord_dbc, as well
as various simulations regarding the physical phenomena described by the non-linear
parabolic problem (1) represent a matter for further investigation.
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