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Abstract: In this article, we apply a new class of fuzzy control functions to approximate a Cauchy
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1. Introduction

The topic of stability first started with Ulam’s famous question about additive map-
pings in 1940. After that, Hyers and Rassias, by expanding this topic, presented new
definitions of stability for additive mappings and continuous maps, which were known
as Hyers–Ulam and Hyers–Ulam–Rasias stability, respectively [1–3]. Since then, many
researchers have conducted extensive research on the issue of stability for functional equa-
tions in different spaces. For example, in 1980, the stability of homomorphism equations
was studied.

Researchers in [4] considered the function ∆ : Q × Q → [0, ∞), which is defined
as follows

∆̃(ξ, $) =
∞

∑
`=0

2−`∆(2`ξ, 2`$) < ∞, for all ξ, $ ∈ Q,

and in [5], considered the function ∆ : M\ {0} ×M \ {0} → [0, ∞), which is defined
as follows

∆̃(ξ, $) =
∞

∑
`=0

1
3`

∆(3`x, 3`y) < ∞, for all ξ, $ ∈ M\ {0},

on the abelian group Q and the Banach space M. They investigated the stability of
two types of functions. In such a way that if for the function Ψ : Q → M, we have
‖Ψ(ξ + $) − Ψ(ξ) − Ψ($)‖ ≤ ∆(ξ, $), then there is a unique additive mapping such as
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Φ : Q →M such that ‖Ψ(ξ)−Φ(ξ)‖ ≤ 1
2 ∆̃(ξ, ξ), and if for the function Ψ :M→ N , we

have ‖2Ψ( ξ+$
2 )−Ψ(ξ)−Ψ($)‖ ≤ ∆(ξ, $), then there is a unique additive mapping such as

Φ : M→ N such that ‖Ψ(ξ)− Ψ(0)−Φ(ξ)‖ ≤ 1
3
(
∆̃(ξ,−ξ) + ∆̃(−ξ, 3ξ)

)
. Additionally,

in [6–12], authors have investigated different equations using fixed point theory in classical
and fuzzy spaces. In 1965, the theory of fuzzy sets was introduced in [13]. After that, this
new theory was applied to classical concepts. The concept of the fuzzy norm was introduced
by Katsaras in 1984 [14]. Moreover, Kramosil and Michalek (1975) introduced the new
concept of fuzzy metric space and provided many results. In 1994, George and Veeramani
introduced a stronger form of fuzzy metric space [15,16]. Afterward, many mathematicians
studied fixed-point theorems in related spaces. In [10], the authors considered a nonlinear
single fractional differential equation and applied an alternative fixed-point theorem to
prove the existence of a unique solution and the multiple stability for the NS–ABC–FDE in
the symmetric matrix-valued FBS in [17], considering fuzzy measure theory and matrix-
valued fuzzy norm spaces, they study a differential system of non-autonomous cellular
neural networks with mixed delays. Specific functions are among the most widely used
functions in mathematics and other sciences, which have attracted the attention of many
researchers today. These functions are used in various fields, such as physical sciences,
engineering, probability theory, decision theory, artificial intelligence, pattern recognition,
image processing, etc. The Mittag–Leffler function, Gauss hypergeometric function, Wright
function, H-Fox function, and aggregation functions are the most important types of these
functions. Since our effort in the stability issue is to achieve the best approximation, we
achieve this important goal by selecting the most optimal function among these specific
functions and using it as the control function [8–10]. In the following, we will explain the
different parts of this article:

In the first section, we state all the basic concepts, including definitions, lemmas, and
basic theorems needed for the main steps. In the second section, we do the main proofs. In
this way, considering the vector spacesM,N and defining the function Ψ :M→ N , we
consider the following equations

Ψ(
ξ + $

2
+ τ) + Ψ(

ξ − $

2
+ τ) = Ψ(ξ) + 2Ψ(τ), (1)

Ψ(
ξ + $

2
+ τ)−Ψ(

ξ − $

2
+ τ) = Ψ($), (2)

2Ψ(
ξ + $

2
+ τ) = Ψ(ξ) + Ψ($) + 2Ψ(τ), (3)

for all ξ, $, τ ∈ M and show that the function Ψ is an additive function. In the following,
we prove the stability of functional Equations (1)–(3) by considering FBS. Additionally, all
the proofs are done considering the UFBS for the isomorphisms defined in these spaces. In
the third section, by choosing the aggregation function as the optimal control function, we
investigate the O-stability of the functional equations. We end this article in the last section
entitled Conclusion.

2. Basic Concepts

We first introduce the required spaces. These spaces are used in all parts of the
article [6,8,10]. From here on, we consider S1 = [0, 1], S2 = (0, ∞), S3 = [0, a] and
S4 = [0, ∞).
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Definition 1. On the interval S1, we define GS1 as follows

GS1 = diag g(S1) =

diag[g1, · · · , g] =

g1
. . .

g

, g1, . . . , g∈S1

,

such that for any g, k ∈ GS1 , we have g = diag[g1, · · · , g], k = diag[k1, · · · , k], diag[1, . . . , 1] = 1
and diag[0, . . . , 0] = 0. Further, g � k means that gι ≤ kι for every ι = 1, . . . , .

Definition 2. We consider the mapping ~ from GS1 × GS1 to GS1 . If for each g, k, h, l ∈ GS1 we
have g~1 = g, g ~ k = k ~ g, g ~ (k ~ h) = (g ~ k)~ h, g � k and h � l implies that g ~
h � k ~ l, we say that ~ is a generalized t-norm or briefly GTN. Additionally, we consider
sequences {g} and {k} that converge to g and k. If we have limm(g ~ k) = g ~ k, then ~ is a
CGTN.

There are different types of CGTN—minimum CGTN, product CGTN, and Lukasiewicz
CGTN can be mentioned among the most important of them. In this work, we choose the
minimum CGTN ~M : GS1 × GS1 → GS1 , which is defined as follows:

g ~M k = diag[g1, · · · , g]~M diag[k1, · · · , k] = diag[min{g1, k1}, · · · , min{g, k}].

We also provide the definition of product CGTN and Lukasiewicz CGTN as follows:

g ~P k = diag[g1, · · · , g]~P diag[k1, · · · , k] = diag[g1.k1, · · · , g.k}],
g ~L k = diag[g1, · · · , g]~L diag[k1, · · · , k]

= diag[max{g1 + k1 − 1, 0}, · · · , max{g + k − 1, 0}].

In the following, we provide examples of these CGTNs.

Example 1. (~M) diag[0, 1
10 , 1

100 ]~M diag[ 1
5 , 1, 1

4 ] = diag[0, 1
10 , 1

100 ];
(~P) diag[0, 1

10 , 1
100 ]~P diag[ 1

5 , 1, 1
4 ] = diag[0, 1

10 , 1
400 ];

(~L) diag[0, 1
10 , 1

100 ]~L diag[ 1
5 , 1, 1

4 ] = diag[0, 1
10 , 0].

In the following, we will define the features of the matrix-type fuzzy functions and
the matrix-type fuzzy norms spaces.

Definition 3. The MVFF ∆ : S3×S2 → GS1 is increasing and continuous, limς→+∞ ∆(ξ, ς) = 1
for every ξ ∈ S3 and ς ∈ S2, X - ∆ if and only if X (ξ, ς) � ∆(ξ, ς), for all ς ∈ S2 and ξ∈S3
where X is the MVFF and � is the relation defined for this type of function.

Definition 4. Consider the linear space Y , CGTN ~ and the MVFF ΥY : S×S2 → GS1 , we
define (Y , ΥY ,~), which is called an MVFN-S and has the following properties,

• ΥY (ξ, ς) = 1 if and only if ξ = 0 for ς ∈ S2;
• ΥY (εξ, ς) = ΥY (ξ, ς

|ε| ) for all ξ ∈ Y and γ 6= 0 ∈ C;

• ΥY (ξ + $, ς + β) � ΥY (ξ, ς)~ ΥY (ξ, β) for all ξ ∈ Y and any ς, β ∈ S2;
• limς→+∞ ΥY (ξ, ς) = 1 for any ς ∈ S2.

When an MVFN-S is complete, we denote it by MVFB-S.

In the following, we investigate optimal stability by introducing a new optimal control
function. For this purpose, we go to the definition of the aggregation function. Next, we
provide a brief introduction of the special functions used in the optimal control function [6].

Definition 5. If for any (ξ1, · · · , ξm), ($1, · · · , $m) ∈ Rm and ι ∈ {1, · · · , m}, and an idem-
potent function z(m) : Rm −→ R, we have ξι ≤ $ι =⇒ z(m)(ξ1, · · · , ξm) ≤ z(m)($1, · · · , $m),
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then the m-ary z(m) is a generalized aggregation function where m ∈ N. For m = 1 and each
ξ ∈ R, we have z(1)(ξ) = ξ and for the convenience of writing we can remove m (m indicates the
number of function variables).

The famous functions, i.e., arithmetic mean function, projection function, order statis-
tic function, median function, and minimum and maximum functions, are among the
important functions of aggregation type. In [6], the authors showed a control function
made by minimum aggregation function is the optimal controller. The minimum (MIN) is
the smallest generalized aggregation function, and it is defined as follows

MIN(ξ) = OS1(ξ) = min{ξ1, · · · , ξ } =
m∧

ι=1

ξι. (4)

Therefore, by studying [6,10], we consider the following function as the optimal
controller:

MIN
(

Ω(ξ, ς)

)
= diag

[
MIN(Ω(ξ, ς)), · · · , MIN(Ω(ξ, ς))

]
. (5)

where
Ω(ξ, ς) =

(
WEλ,µ ,WWλ,µ ,W2F1 ,WH

σ3,σ1
σ2,σ4

,Wexp

)
. (6)

In the proofs, we use the symbol ΩOS1(ξ, ς) instead of the control function

MIN
(

Ω(ξ, ς)

)
. Additionally, all the variables in the above function are considered as

−‖ξ‖
ς . In the following, we introduce special functions used in ΩOS1(ξ, ς) function [6,10].

Definition 6. The real exponential function is defined by the following power series

Wexp(ξ)) =
∞

∑
=0

ξ 

!
, Wexp(1) =

∞

∑
=0

1
!

(7)

since the radius of convergence of this power series is infinite, this definition is, in fact, applicable to
all complex numbers z ∈ C.

Definition 7. For λ, µ ∈ C, Re(λ), Re(µ) > 0, the Mittag-Leffler functions are defined as follows

WEλ
(ξ) =

∞

∑
=0

ξ 

Γ(λ + 1)
, WEλ,µ(ξ) =

∞

∑
=0

ξ 

Γ(λ + µ)
,

where Γ(.) is the famous gamma function and WUλ
, WEλ,µ are the one- and two-parameter Mittag-

Leffler functions, respectively.

Definition 8. For λ > −1, µ > 0, ξ ∈ R, the Wright function is defined as follows

WWλ,µ(ξ) =
∞

∑
=0

ξ 

!Γ(λ + µ)
,

such that it is of the 1/(1 + σ) order.

Definition 9. H-Fox function for 0 ≤ σ1 ≤ σ2, 1 ≤ σ3 ≤ σ4, {bι, cι} ∈ C and {dι, eι} ∈ R+ is
defined as follows

WH
σ3,σ1
σ2,σ4

(ξ) = WH
σ3,σ1
σ2,σ4

[
ξ

∣∣∣∣∣(bι, dι)ι=1,··· ,σ2

(cι, eι)ι=1,··· ,σ2

]
=

1
2πi

∫
A

Hσ3,σ1
σ2,σ4 (ς)ξ

ςdt, (8)
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where A ∈ C is a path that is deleted andR1(ς) = ∏σ1
ι=1 Γ(cι − $ις),R2(ς) = ∏σ3

ι=1 Γ(1− bι +
ξις),R3(ς) = ∏σ3

ι=σ3+1 Γ(1− cι + $ις),R4(ς) = ∏σ2
ι=σ1+1 Γ(bι− ξις) and ξς = exp{ς(log |ξ|+

i arg ξ)}. For these functions, there is a condition that σ1 = 0 if and only ifR2(ς) = 1, σ3 = σ4 if
and only ifR3(ς) = 1 and σ1 = σ2 if and only if σ4(ς) = 1. Further, Hσ3,σ1

σ2,σ4 (ς) =
R1(ς)R2(ς)
R3(ς)R4(ς)

.

Definition 10. Considering p, q, r > 0, the Gauss hypergeometric function W2F1 : R3 × S3 −→
S2 is defined as follows

W2F1(p, q, r; ξ) =
∞

∑
=0

(p)(q)

(r)

ξ 

!
=

Γ(r)
Γ(p)Γ(q)

∞

∑
=0

Γ(p + )Γ(q + )

Γ(r + )

ξ 

!
.

These functions are used in all the theorems presented in Section 4.
Considering the two vector spacesM and N along with FNS, for all ξ, $, τ ∈ M, we

define the following equations by considering the mapping Ψ :M→ N :

L1Ψ(ξ, $, τ) = Ψ(
ξ + $

2
+ τ) + Ψ(

ξ − $

2
+ τ)−Ψ(ξ)− 2Ψ(τ), (9)

L2Ψ(ξ, $, τ) = Ψ(
ξ + $

2
+ τ)−Ψ(

ξ − $

2
+ τ)−Ψ($), (10)

L3Ψ(ξ, $, τ) = 2Ψ(
ξ + $

2
+ τ)−Ψ(ξ)−Ψ($)− 2Ψ(τ). (11)

For the field F(R or C), we consider two UFBSs, E1 and E2 along with the unique
terms E′, E, and FNSs. For each δ ∈ F and all ξ, $, τ ∈ E1 and for the mapping Ψ : E1 → E2,
we consider the following equation

UδΨ(ξ, $, τ) := Ψ(
δξ + δ$

2
+ δτ) + δΨ(

ξ − $

2
+ τ)− δΨ(ξ)− 2δΨ(τ). (12)

We assume that ∆OS1 :M3 × S2 → S4 is a function that for all ξ, $, τ ∈ M, we define
in the following 4 cases:

∆̃OS1

(
(ξ, $, τ), ς

)
= ∆OS1

(
(

ξ

2`
,

$

2`
,

τ

2`
),

ς

∑∞
`=1 2`

)
< ∞, (13)

∆̃OS1

(
(ξ, $, τ), ς

)
= ∆OS1

(
(2`ξ, 2`$, 2`τ),

ς

∑∞
`=0

1
2`

)
< ∞, (14)

∆̃OS1

(
(ξ, $, τ), ς

)
= ∆OS1

(
(

3`

2`
ξ,

3`

2`
$,

3`

2`
τ),

ς

∑∞
`=0

2`
3`

)
< ∞, (15)

∆̃OS1

(
(ξ, $, τ), ς

)
= ∆OS1

(
(

2`

3`
ξ,

2`

3`
$,

2`

3`
τ),

ς

∑∞
`=1

3`
2`

)
< ∞, (16)

and we consider these functions to prove our results.

3. C–O-Stability for CJAM and Isomorphisms in FBS and UFBS

Theorem 1 ([7]). LetM and N be vector spaces. If a mapping Ψ : M → N satisfies (1)–(3),
then the mapping Ψ is Cauchy additive (CA).
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Proof. If we put ξ = $ in (1), (2), and (3) respectively, we have

Ψ(ξ + τ) + Ψ(τ) = Ψ(ξ) + 2Ψ(τ), (17)

Ψ(ξ + τ)−Ψ(τ) = Ψ(ξ), (18)

2Ψ(ξ + τ) = 2Ψ(ξ) + 2Ψ(τ), (19)

for all ξ, τ ∈ M. Therefore, in all three cases above, we conclude that Ψ(ξ + τ) = Ψ(ξ) +
Ψ(τ) and this means that Ψ :M→ N is CA.

Proposition 1 ([7]). If Ψ :M→ N are the functions used in theorem 1, then these functions are
of Cauchy–Jensen additive mapping (CJAM) type. If we write ξ = $ and τ = 0 in (3), then we have
the following Cauchy–Jensen additive mapping (CJAM), respectively

Ψ(ξ + τ) = Ψ(ξ) + Ψ(τ),

2Ψ(
ξ + $

2
) = Ψ(ξ) + Ψ($).

Theorem 2. Considering the mapping Ψ : M → Y and function (13), for each ξ, $, τ ∈ M, if
we have

ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ∆OS1

(
(ξ, $, τ), ς

)
, (20)

then, there exists a unique AMH :M→ N such that for all ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ∆̃OS1

(
(ξ, ξ, ξ), 2ς

)
. (21)

Proof. In the assumption of (20), we put ξ = $ = τ. Therefore, for all ξ ∈ M, we have

ΥY

(
Ψ(2ξ)− 2Ψ(ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), ς

)
. (22)

Then, for each ξ ∈ M

ΥY

(
Ψ(ξ)− 2Ψ(

ξ

2
), ς

)
� ∆OS1

(
(

ξ

2
,

ξ

2
,

ξ

2
), ς

)
,

therefore, for all ξ ∈ M and for each κ ∈ Z+ and γ ∈ Z+ with κ > γ, we have

ΥY

(
2γΨ(

ξ

2γ
)− 2κΨ(

ξ

2κ
), ς

)
� ∆OS1

(
(

ξ

2`
,

ξ

2`
,

ξ

2`
)

ς

∑κ
`=γ+1 2`−1

)
. (23)

Therefore, according to (13) and (23), for all ξ ∈ M, the sequence {2αΨ( ξ
2α )} is

a Cauchy sequence, and since N is complete, the convergence of this sequence is the
result. Therefore, for each ξ ∈ M, we define the mapping H : M → N as H(ξ) =

limα→∞ 2αΨ( ξ
2α ). Due to equations (13) and (20), for each ξ, $, τ ∈ M, we get

ΥY

(
LH(ξ, $, τ), ς

)
= lim

α→∞
ΥY

(
L1Ψ(

ξ

2α
,

$

2α
,

τ

2α
),

ς

2α

)
� lim

α→∞
∆OS1

(
(

ξ

2α
,

$

2α
,

τ

2α
),

ς

2α

)
= 1,

and then, LH(ξ, $, τ) = 0. Now, using Theorem 1, we conclude that H : M → N is a
CAM. If we consider (23) and assume that γ = 0 and we get limit when m → ∞, we
reach (21). Next, we prove the uniqueness of H. For this purpose, we consider another
CJAM Φ : M→ N and assume that it applies to (21). Therefore, we have the following
inequality for every ξ ∈ M, which tends to zero when α→ ∞,
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ΥY

(
H(ξ)−Φ(ξ), 2ς

)
= ΥY

(
H(

ξ

2α
)−Φ(

ξ

2α
),

2ς

2α

)
(24)

� ΥY

(
H(

ξ

2α
)−Ψ(

ξ

2α
),

ς

2α

)
~ ΥY

(
Φ(

ξ

2α
)−Ψ(

ξ

2α
),

ς

2α

)
(25)

� ∆̃OS1

(
(

ξ

2α
,

ξ

2α
,

ξ

2α
),

ς

2α

)
~ ∆̃OS1

(
(

ξ

2n ,
ξ

2α
,

ξ

2α
),

ς

2α

)
(26)

� ∆̃OS1

(
(

ξ

2α
,

ξ

2α
,

ξ

2α
),

ς

2α

)
, (27)

and this meansH(ξ) = Φ(ξ).

Theorem 3. Considering the mapping Ψ : M → N and function (14), for each ξ, $, τ ∈ M,
if (20) is established, then, there exists a unique AMH :M→ N such that it applies to (21).

Proof. Using (22) and for each ξ ∈ M, we have

ΥY

(
Ψ(ξ)− 1

2
Ψ(2ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), 2ς

)
,

therefore, for all ξ ∈ M and for each κ, γ ∈ Z+ with κ > γ, we have

ΥY

(
1

2γ
Ψ(2γξ)− 1

2κ
Ψ(2κξ), ς

)
� ∆OS1

(
(2`ξ, 2`ξ, 2`ξ),

ς

∑κ−1
`=γ

1
2`+1

)
. (28)

Therefore, according to (14) and (28), for all ξ ∈ M, the sequence { 1
2α Ψ(2αξ)} is

a Cauchy sequence, and since N is complete, the convergence of this sequence is the
result. Therefore, for each ξ ∈ M, we define the mapping H : M → N as H(ξ) :=
limα→∞

1
2α Ψ(2αξ). Due to the (14) and (20), for each ξ, $, τ ∈ M, we get

ΥY

(
LH(ξ, $, τ), ς

)
= lim

α→∞
ΥY

(
L1Ψ(2αξ, 2α$, 2ατ), 2ας

)
� lim

α→∞
∆OS1

(
(2αξ, 2α$, 2ατ), 2ας

)
= 1,

and then, LH(ξ, $, τ) = 0. Now, using Theorem 1, we conclude that H : M → N is
a CAM. If we consider (28) and assume that γ = 0 and we get limit when κ → ∞, we
reach (21). To prove the uniqueness, we repeat all the steps taken in Theorem 2, and the
proof is finished.

Theorem 4. Considering the mapping Ψ : M → N and function (15), for each ξ, $, τ ∈ M,
if (20) is established, then, there exists a unique AMH :M→ N such that for all ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ∆̃OS1

(
(ξ, 0, ξ), 3ς

)
. (29)

Proof. In the assumption of (20), we put ξ = τ, $ = 0. Therefore, for all ξ ∈ M, we have

ΥY

(
2Ψ(

3
2

ξ)− 3Ψ(ξ), ς

)
� ∆OS1

(
(ξ, 0, ξ), ς

)
. (30)

Then, for each ξ ∈ M

ΥY

(
Ψ(ξ)− 2

3
Ψ(

3
2

ξ), ς

)
� ∆OS1

(
(ξ, 0, ξ), 3ς

)
,
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and therefore, for all ξ ∈ M and for each κ ∈ Z+ and γ ∈ Z+ with κ > γ, we have

ΥY

(
2γ

3γ
Ψ(

3γ

2γ
ξ)− 2κ

3κ
Ψ(

3κ

2κ
ξ), ς

)
� ∆OS1

(
(

3`

2`
ξ, 0,

3`

2`
ξ),

ς

∑κ−1
`=γ

2`
3`+1

)
. (31)

Therefore, according to (15) and (31), for all ξ ∈ M, the sequence { 2α

3α Ψ( 3α

2α ξ)} is
a Cauchy sequence, and since N is complete, the convergence of this sequence is the
result. Therefore, for each ξ ∈ M, we define the mapping H : M → N as H(ξ) :=
limα→∞

2α

3α Ψ( 3α

2α ξ). To continue the proof, we repeat all the steps taken in Theorem 2, and
the proof is finished.

Theorem 5. Considering the mapping Ψ : M → N and function (16), for each ξ, $, τ ∈ M,
if (20) is established, then, there exists a unique AMH :M→ N such that it applies to (29).

Proof. Using (30) and for each ξ ∈ M, we have

ΥY

(
Ψ(ξ)− 3

2
Ψ(

2
3

ξ), ς

)
� ∆OS1

(
(

2
3

ξ, 0,
2
3

ξ), 2ς

)
,

therefore, for all ξ ∈ M and for each κ, γ ∈ Z+ with κ > γ, we have

ΥY

(
3γ

2γ
Ψ(

2γ

3γ
ξ)− 3κ

2κ
Ψ(

2κ

3κ
ξ), ς

)
� ∆OS1

(
(

2`

3`
ξ, 0,

2`

3`
ξ),

ς

∑κ
`=γ+1

3`−1

2`

)
. (32)

Therefore, according to (16) and (32), for all ξ ∈ M, the sequence { 3α

2α Ψ( 2α

3α ξ)} is
a Cauchy sequence, and since N is complete, the convergence of this sequence is the
result. Therefore, for each ξ ∈ M, we define the mapping H : M → N as H(ξ) =
limα→∞

3α

2α Ψ( 2α

3α ξ). To continue the proof, we repeat all the steps taken in Theorem 2, and
the proof is finished.

Theorem 6. Considering the mapping Ψ :M→ N and function (13), for each ξ, $, τ ∈ M, if
for all ξ, $, τ ∈ M, we have

ΥY

(
L2Ψ(ξ, $, τ), ς

)
� ∆OS1

(
(ξ, $, τ), ς

)
, (33)

then, there exists a unique AMH :M→ Y such that it applies to (21).

Proof. In the (33), we put ξ = $ = τ. Therefore, for all ξ ∈ M, we have

ΥY

(
Ψ(2ξ)− 2Ψ(ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), ς

)
. (34)

To continue the proof, all the steps we have to go through are similar to the steps of
Theorem 2.

Theorem 7. Considering the mapping Ψ : M → N and function (14), for each ξ, $, τ ∈ M,
if (33) is established, then, there exists a unique AMH :M→ N such that it applies to (21).

Proof. Using (34) and for each ξ ∈ M, we have

ΥY

(
Ψ(ξ)− 1

2
Ψ(2ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), 2ς

)
,

the continuation of the proof process is similar to the proof process of Theorems 2 and 3.
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Theorem 8. Considering the mapping Ψ :M→ N and function (14), for each ξ, $, τ ∈ M, if
for all ξ, $, τ ∈ M, we have

ΥY

(
L3Ψ(ξ, $, τ), ς

)
� ∆OS1

(
(ξ, $, τ), ς

)
, (35)

then, there exists a unique AMH :M→ N such that for all ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ∆̃OS1

(
(ξ, ξ, ξ), 4ς

)
. (36)

Proof. In the (35), we put ξ = $ = τ. Therefore, for all ξ ∈ M, we have

ΥY

(
Ψ(2ξ)− 2Ψ(ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), 2ς

)
. (37)

The continuation of the proof process is similar to the proof process of Theorem 2.

Theorem 9. Considering the mapping Ψ : M → N and function (14), for each ξ, $, τ ∈ M,
if (35) is established, then, there exists a unique AMH :M→ N such that it applies to (36).

Proof. Using (37) and for each ξ ∈ M, we have

ΥY

(
Ψ(ξ)− 1

2
Ψ(2ξ), ς

)
� ∆OS1

(
(ξ, ξ, ξ), 4ς

)
,

the continuation of the proof process is similar to the proof process of Theorems 2 and 3.

Theorem 10. Considering the mapping Ψ : M → N and function (15), for each ξ, $, τ ∈ M,
if (35) is established, then, there exists a unique AMH :M→ N such that it applies to (29).

Proof. All the steps we have to go through to prove this theorem are similar to the steps of
Theorems 2 and 4.

Theorem 11. Considering the mapping Ψ : M → N and function (16), for each ξ, $, τ ∈ M,
if (35) is established, then, there exists a unique AMH :M→ N such that it applies to (29).

Proof. All the steps we have to go through to prove this theorem are similar to the steps of
Theorems 2, 4, and 5.

Theorem 12. Considering the bijective multiplicative mapping Ψ : E1 → E2 and the function
∆OS1 : E3

1 × S2 → S4 which satisfies (13), if for every δ ∈ F and for all ξ, $, τ ∈ M, we have

ΥY

(
UδΨ(ξ, $, τ), ς

)
� ∆OS1

(
(ξ, $, τ), ς

)
, (38)

and

lim
α→∞

2αΨ(
E
2α

) = E′, (39)

then, the BMM Ψ is an isomorphism.

Proof. To start the proof, we consider hypothesis (38) with δ = 1. According to Theorem 2,
for every ξ ∈ E1, there exists a unique AMH : E1 → E2 with the mapping

H(ξ) = lim
α→∞

2αΨ(
ξ

2α
), (40)
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such that it holds in (21). For all δ ∈ F and each ξ, $, τ ∈ E1, using (38) and (39), we get

ΥY

(
UδH(ξ, ξ, ξ), ς

)
= lim

n→∞

(
UδΨ(

ξ

2α
,

ξ

2α
,

ξ

2α
),

ς

2α

)
� lim

α→∞
∆OS1

(
(

ξ

2α
,

ξ

2α
,

ξ

2α
),

ς

2α

)
= 1.

Therefore, UδH(ξ, ξ, ξ) = 0 and for all δ ∈ F and all ξ ∈ E1, H(2δξ) = 2δH(ξ).
Considering that H is additive, for every δ ∈ F and all ξ ∈ E1, we have H(δξ) = δH(ξ)
and this means that H : E1 → E2 is an F-linear mapping. Now we use the multiplicative
property of Ψ. As a result, for each ξ, $ ∈ E1, we have

H(ξ$) = lim
α→∞

2αΨ(
ξ$

2α
) = lim

α→∞
2αΨ(

ξ

2α
)Ψ($) = H(ξ)Ψ($). (41)

In the following, according to (39), we have

H(E) = lim
α→∞

2αΨ(
E
2α

) = E′, (42)

and according to (41) and (42), for every ξ ∈ E1, we get H(ξ) = H(Eξ) = H(E)Ψ(ξ) =
E′Ψ(ξ) = Ψ(ξ). Therefore, the BMM Ψ is an isomorphism.

4. C–O–M-Stability for CJAM and Isomorphisms in FBS and UFBS

In this section, in Theorems 13–22, the function Ψ fromM to N , and also ξ, $, τ ∈ M.

Theorem 13. If we have the following condition for every η, ξ ∈ R+ and η > 1

ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ξ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
3ϕ

2η − 2
||ξ||η , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 2.

Theorem 14. If we have the following condition for every η1, η2, η3, ϕ ∈ R+ and η1 + η2 + η3 > 1

ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
ϕ

2η1+η2+η3 − 2
||ξ||η1+η2+η3 , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
and put it in Theorem 2.

Theorem 15. If we have the following condition for every η, ϕ ∈ R+ and η < 1
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ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
3ϕ

2− 2η ||ξ||
η , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 3.

Theorem 16. If we have the following condition for every η1, η2, η3, ϕ ∈ R+ and η1 + η2 + η3 < 1

ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
ϕ

2− 2η1+η2+η3
||ξ||η1+η2+η3 , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
and put it in Theorem 3.

Theorem 17. If we have the following condition for every η, ϕ ∈ R+ and η < 1

ΥY

(
L1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
2η+1 ϕ

3 · 2η − 2 · 3η ||ξ||
η , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 4.

Theorem 18. If we have the following condition for every η, ϕ ∈ R+ and η > 1

ΥY

(
H1Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
2η+1 ϕ

2 · 3η − 3 · 2η ||ξ||
η , ς

)
.
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Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 5.

Theorem 19. If we have the following condition for every η, ϕ ∈ R+ and η > 1

ΥY

(
L3Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
3ϕ

2η+1 − 4
||ξ||η , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 8.

Theorem 20. If we have the following condition for every η1, η2, η3, ϕ ∈ R+ and η1 + η2 + η3 > 1

ΥY

(
L3Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
ϕ

2η1+η2+η3+1 − 4
||ξ||η1+η2+η3 , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
and put it in Theorem 8.

Theorem 21. If we have the following condition for every η, ϕ ∈ R+ and η < 1

ΥY

(
L3Ψ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
,

then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
3ϕ

4− 2η+1 ||ξ||
η , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 9.

Theorem 22. If we have the following condition for every η1, η2, η3, ϕ ∈ R+ and η1 + η2 + η3 < 1

ΥY

(
L3Ψ(ξ, $, τ),

)
� ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
,
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then, we can say that there is a unique AMH :M→ N , such that for every ξ ∈ M

ΥY

(
Ψ(ξ)−H(ξ), ς

)
� ΩOS1

(
ϕ

4− 2η1+η2+η3+1 ||ξ||
η1+η2+η3 , ς

)
.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
and put it in Theorem 9.

Theorem 23. We consider the BMM function Ψ : E1 → E2 such that for every δ ∈ F and all
ξ, $, τ ∈ E1, it applies to the following inequalities

ΥY

(
UδΨ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
, (43)

lim
α→∞

2αΨ(
E
2α

) = E′, (44)

where η, ϕ ∈ R+ and η > 1. Then the BMM Ψ is an isomorphism.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ(||ξ||η + ||$||η + ||τ||η), ς

)
and put it in Theorem 12.

Theorem 24. We consider the BMM function Ψ : E1 → E2 such that for every δ ∈ F and all
ξ, $, τ ∈ E1, it applies to the following inequalities

ΥY

(
UδΨ(ξ, $, τ), ς

)
� ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
, (45)

lim
α→∞

2αΨ(
E
2α

) = E′, (46)

where η1, η2, η3, ϕ ∈ R+ and η1 + η2 + η3 > 1. Then the BMM Ψ is an isomorphism.

Proof. To prove it, it is enough to define the function ∆OS1

(
(ξ, $, τ), ς

)
as ∆OS1

(
(ξ, $, τ), ς

)
= ΩOS1

(
ϕ · ||ξ||η1 · ||$||η2 · ||τ||η3 , ς

)
and put it in Theorem 12.

5. Conclusions

The issue of the stability of equations has attracted the attention of many authors in
the last few decades. In this article, we have tried to present a generalization of previous
works in this field. For this purpose, we have first defined a new space called the matrix
value fuzzy Banach spaces. In the stability of equations, the goal is to obtain the best
approximation. Since the control function plays an important role in this field, we have
selected the best and most optimal controller from among the specific functions. Choosing
the aggregation control function brings us closer to the appropriate approximation. We have
done all these proofs for functional Equations (1)–(3) and isomorphisms in FBS and UFBS.
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