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Abstract: Network robustness is of paramount importance. Although great progress has been
achieved in robustness optimization using single measures, such networks may still be vulnerable to
many attack scenarios. Consequently, multi-objective network robustness optimization has recently
garnered greater attention. A complex network structure plays an important role in both node-based
and link-based attacks. In this paper, since multi-objective robustness optimization comes with a
high computational cost, a surrogate model is adopted instead of network controllability robustness
in the optimization process, and the Dempster–Shafer theory is used for selecting and mixing the
surrogate models. The method has been validated on four types of synthetic networks, and the results
show that the two selected surrogate models can effectively assist the multi-objective evolutionary
algorithm in finding network structures with improved controllability robustness. The adaptive
updating of surrogate models during the optimization process leads to better results than the selection
of two surrogate models, albeit at the cost of longer processing times. Furthermore, the method
demonstrated in this paper achieved better performance than existing methods, resulting in a marked
increase in computational efficiency.

Keywords: multi-objective optimization; controllability robustness; surrogate model; Dempster–Shafer
theory; complex network

1. Introduction

The Internet, transportation networks, and interpersonal connections [1] are all exam-
ples of networked systems, which are pervasive in both biological and societal contexts.
Due to their complex structures, it can be challenging to analyze their dynamics. To ad-
dress this issue, researchers have developed sophisticated network models to effectively
represent these systems. Common simulation network models are the Erdős–Rényi (ER)
network [2], small-word (SW) network [3], scale-free (SF) network [4], random triangle
(RT) network [5], random rectangular (RR) network [6] and q-snapback (QS) network [7].
Most networks are presently reconfigured by rewiring strategies to form a larger network
structure [8].

Recently, network controllability robustness has become a focal topic in complex
network studies. The concept of controllability refers to the capacity of a network to move
from any initial state to any target state with an admissible control input within a finite
duration of time, while network controllability robustness measures the ability of a network
to maintain its controllability under attack or failure [9].

The operating environment of such networks includes uncertainty and disturbances,
which adds to the complexity of network systems. Complex networks are expected to be
robust in the face of uncertainty, disruptions, and attacks, i.e., networks must be able to
properly function even in the presence of attacks and errors. Network robustness under
random or malicious attack serves as a benchmark for judging its normal operation under
interference. Random attacks aim to randomly target nodes or links, while malicious
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attacks seek to identify and compromise the most critical components of the network [10].
Single-objective optimization can be used to define complex network structures, and single-
objective evolutionary algorithms can be employed to enhance the network robustness
against node-based or link-based attacks. Previous studies utilized network robustness as
the optimization objective, and a surrogate model was adopted to assist single-objective
evolutionary algorithms in optimizing network robustness [11].

Currently, numerous approaches are being employed to create networks with en-
hanced robustness. For example, the SP_RV_MOEANet method was used to optimize
the complex network structure [12]. The simulated annealing approach is employed to
address the optimization problem of enhancing the network robustness [13]. A memetic
algorithm is employed to address the network structure seeking problem, incorporating
evolutionary operators such as selection, crossover, and mutation, along with a local search
process based on structural information, to obtain better optimization results [14,15]. In the
study [10], network robustness is enhanced by rewiring the topology.

Multi-objective evolutionary algorithms have been used to solve a variety of en-
gineering and material science problems. In multi-objective controllability robustness
optimization, robustness under node attack is negatively correlated with the robustness
under link attack [16]. In practical applications, computing the network robustness can be
a time-consuming process. According to the literature [17], it takes a long time to search for
network architectures with better robustness when using multi-objective evolutionary algo-
rithms to solve network robustness optimization problems. Surrogate models have been
used by some researchers in recent years to replace the evaluation of network robustness in
the optimization process.

Surrogate models can be either non-interpolating or interpolating. Non-interpolating
models include, for example, polynomial regression [18] models and support vector ma-
chines [19]. Radial basis function (RBF) networks, least squares (LS) method, the inverse
distance weighting (IDW) interpolation method [11], and Kriging interpolation method
(Kriging) [20] are interpolating surrogate models. There is no clear criterion for determin-
ing how to select a good surrogate model for a complex network in order to evaluate its
controllability robustness.

The Dempster–Shafer theory (D-S theory) [21] is used to combine surrogate models.
This theory was first introduced by Arthur P. Dempster [22] in the context of statistical
inference, and it has the ability to handle uncertain information. Subsequently, Glenn
Shafer [23] further quantitatively extended the theory to Bayesian inference methods, utiliz-
ing Bayesian conditional probabilities derived from probability theory and experimentally
a priori known probabilities. The theory is a mathematical theory of evidence that allows
for the mixture of information from various sources in order to construct a degree of belief.
The theory permits the mixture of imprecise and uncertain information, which may even
be contradictory. So-called basic probability assignments (BPAs) contain information about
specific hypotheses (focal elements) and are combined to calculate the credibility of a given
hypothesis. Three functions are usually associated with BPAs, namely the belief (Bel),
plausibility (Pl) and pignistic probability (BetP) function.

In terms of surrogate model, the BPAs can be, for example, model characteristics such
as correlation coefficients (CCs), root mean squared errors (RMSEs), and maximal absolute
errors (MAEs). It is possible that one surrogate model has conflicting characteristics,
i.e., good (e.g., high correlation coefficients), bad (e.g., high RMSE) characteristics, and
bad (e.g., high MAE) characteristics. This conflict must be considered when calculating
the belief that one has in the given model. Several conflict redistribution rules have been
developed in the literature. Dempster’s combination rule redistributes the conflict among
all focal elements, regardless of which elements cause the conflict.

The remainder of this paper is structured as follows: Section 2 introduces the work
relevant to this article. Section 3 introduces the algorithm framework in detail. Section 4
discusses the surrogate model selection and evaluation method. Experimental results are
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reported in Section 5. Section 6 discusses the advantages and limitations of this method.
Section 7 provides the conclusion and outlines future work.

2. Related Work
2.1. Network Controllability Robustness

For a network topology graph, N nodes and M links are recorded, and the adjacency
matrix between networks is saved (with the link recorded as 1 and nodes as 0). When
considering a network of many LTI systems, the node system with control input is called
a driver node. The network controllability is quantitatively expressed by the density of
driver nodes [24] (cnD) in the network, which is calculated as follows:

cnD =
ND
N

, (1)

where ND is the number of driver nodes required in the network and N is the total number
of nodes in the network, cnD ∈ [ 1

N , 1], when cnD = 1
N means that the current network

of N nodes requires only one driver node, and the network has the best controllability;
cnD = 1 means that all nodes in the current network are isolated, so each node requires a
controller, and the network has the worst controllability.

The most common methods for calculating controllability are structural controllabil-
ity [25] and exact controllability [26], where the network structure targeted by structural
controllability is a directed graph, which is time-consuming and even impossible for large
networks. The exact controllability adopted in this paper is applicable to all sparse net-
works, undirected graphs, and directed graphs. The required drive nodes are calculated
as follows:

ND = max{1, N − rank(A)}, (2)

where A is the network adjacency matrix, rank is used to calculate the rank of the matrix.
If matrix A is in full rank, then the cnD = 1 driver node is required; otherwise, the
N − rank(A) driver nodes are required. Network controllability under node-based attack
is defined as follows:

cnN
D(i) =

ND(i)
N − i

, i = 0, 1, . . . , N − 1, (3)

where ND(i) is the number of driver nodes required when i nodes are attacked; and N− i is
the number of remaining nodes in the network after i nodes are attacked, which decreases
one by one with each attack. Similarly, network controllability under link-based attack is
defined as follows:

cnE
D(j) =

ND(j)
N

, j = 0, 1, . . . , M, (4)

where ND(j) the number of driver nodes required when the link of j is attacked; N and M
denote the number of network nodes and links, respectively. Under link attack, the number
of nodes remains constant while the number of links decreases one by one in a continuous
link-based attack. Equations (3) and (4) define the dynamic process of controllability
change under attack. The overall controllability robustness can be obtained by averaging
controllability, and the equation is as follows:

R =
1
N

N−1

∑
i=0

cnN
D(i), (5)

RL =
1

M + 1

M

∑
j=0

cnE
D(j), (6)

a lower R or RL indicates better network controllability robustness [27–29] under node-based
or link-based attack. A similar approach used the connectivity robustness [30,31] metric.
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2.2. Surrogate Models

If no previous experiment was conducted, determining the optimal surrogate model
for various complex networks may require a large number of experiments. To simplify
the process, multiple surrogate models can be used to optimize the selection. Different
surrogate models can be selected to suit different complex networks, and it must be
ensured that the results obtained using these models are close to the true values. With the
development of surrogate modeling techniques, they have been widely applied to optimize
single-objective and multi-objective problems.

When analyzing graphs, computation resources must be consumed. Methods that
can efficiently parse the network have been emphasized, and a successful one is the use of
representation learning, i.e., the structural deep network embedding (SDNE) [32,33]. SDNE
focuses on obtaining the system’s latent representation while preserving its structural
information. In general, the graph with the N ∗ N connection matrix is transformed into
N ∗ d vectors (d tends to be smaller than N here); By reducing the dimensionality while
still retaining sufficient structural information, these vectors can accelerate the resolution
of tasks involving networks.

In addition, heterogeneous input can foster diversity in integration, leading to the
extraction of various features from the original data. The extracted features and the original
data can be combined to form the training data of the surrogate model. To achieve this,
principal component analysis (PCA) can be employed as it can effectively extract the
major components with minimal computational cost. The second step is to cluster the
embedded information using K-means clustering with the number of clusters set to twenty
percent of N. As demonstrated in [34], the clustered embedded data, which contains
essential connectivity information, is essential for interpreting information from networks.
The original data obtained after applying SDNE for dimensionality reduction, as well as
those obtained through PCA dimensionality reduction and those obtained after clustering
are all used to train the surrogate model.

Given the network data, the robustness measures (R and RL) of the networks are
evaluated first, and networks are recoded by SDNE to obtain their 2D representations.
Subsequently, two feature extraction techniques, along with the original embedded graph,
are used as the input for the surrogate. The surrogate is able to estimate the robustness
values and the uncertainty of the estimates, as shown in Figure 1. The surrogate can later
be used to facilitate network robustness optimization.

Figure 1. The structure of the surrogate ensemble for estimating network robustness.

The network robustness measure (R, RL) is first calculated from the given network
structure, and then the network is dimensionally reduced using SDNE to obtain the two-
dimensional data (ai, bi) of the network, where i is the i-th network nodes. Following that,
the original data as well as two feature extraction techniques are used as heterogeneous
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inputs for training the surrogate models. The following section outlines the surrogate
models employed in this article.

2.2.1. Radial Basis Function (RBF) Networks

The use of radial basis functions (RBFs) is critical for this network, as it enables the
creation of a symmetric radial basis function for every interpolation point in the function.
These basis functions can then be combined linearly, providing an accurate approximation
of the true objective value. The surrogate model can be represented as follows:

ŷ(x) =
n

∑
i=1

λiφ(‖xi − c‖2), (7)

where ‖.‖ denotes the Euclidean norm, λ1, λ2, . . . . . . , λn is the weight coefficient,
φ(‖xi − c‖2) = exp

(
−‖xi − c‖/σ2) is the radial basis function, the distance from the pre-

diction point xi to the training point c is the key in the basis function, and a coefficient will
be trained before making predictions. The RBF can be taken as a global polynomial to fit
the general trends in training data.

2.2.2. Least Square (LS) Method

Linear approximation can also be used to evaluate function values, We consider a
linear model as follows:

ŷ = Ax + υ, (8)

where x ∈ Rn is the vector of unknowns, y ∈ Rm is the vector of observations, υ ∈ Rm is
the noise, and A ∈ Rm∗n is the data matrix.

When m ≥ n and the columns of A are linearly independent, ‖Ax− ŷ‖2
2 is the

minimum multiplier loss function.

2.2.3. Inverse Distance Weighting (IDW) Interpolation Method

The inverse distance weighting interpolation method judges the similarity between
each other by Euclidean distance, and the similarity is higher if the distance is closer.
Therefore, the weight is judged according to the distance prediction value, and a small
prediction value is instead heavily weighted, and vice versa. A surrogate model can be
represented as follows:

ŷ =
n

∑
i=1

λiZ(xi, yi), (9)

where xi, yi are the values of the i-th known point, n is the number of known data points,
λi =

1/di
∑n

i=1 1/di
is the weight corresponding to the known point, di is the Euclidean distance

between known and predicted points, and the weight is a function of the inverse of the
distance. Z(xi, yi) is the attribute value corresponding to the i-th known point.

2.2.4. Kriging Interpolation Method

Kriging is a method of spatially interpolating stochastic processes using a covariance
function. It uses variables to create a function that provides an accurate, optimal estimate of
unknown data. Kriging models consist of two components. The first part is a basic model
that describes the data’s trend, while the second is stochastic and measures the discrepancy
between the simple model and the actual function. This difference is modeled using the
covariance function. A model ŷ is built as a realization of a regression model and a random
function z in order to express the deterministic response y for the input, and Kriging model
can be represented as follows:

ŷ =
n

∑
i=1

λi f (xi, yi) + z(x), (10)
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where ŷ is the approximation function, f (xi, yi) denotes the regression function, which
is a polynomial in the independent variable (xi, yi), λi is the weight coefficient, and n is
the number of known points. The random process z is assumed to have zero mean and a
covariance that depends on an underlying correlation model, including parameters that
must be optimized. Commonly used correlation functions are exponential, generalized
exponential, Gaussian, spherical, or spline, and regression models can be selected as
constant, linear, or quadratic.

2.3. New Contributions of the Proposed Algorithm

Focusing on the multi-objective network robustness optimization problem, this work
addresses the issue of the high cost of evaluating controllability robustness, thereby im-
proving the overall efficiency of the optimization process. Simulations on four types of
synthetic networks, namely SF, ER, SW, and RR, were used to validate the effectiveness of
the approach used in this paper. Specifically, the work and contributions of this paper are
summarized as follows:

1. The D-S theory was used to calculate the weights of the four surrogate models,
and then two or three of them with their corresponding weights were chosen for the opti-
mization process. Compared to selecting three surrogate models, selecting two surrogate
models resulted in improved controllability robustness in a shorter amount of time.

2. As the number of iterations increased, an adaptive updating surrogate model
selection approach is necessary to attain an optimal solution. This approach offers superior
results compared to previous methods, however, it necessitates enhanced optimization
time. To achieve the best outcome without compromising on optimization time, an adaptive
updating surrogate model selection approach is recommended.

3. Algorithm Framework

This paper focuses on the two-objective problem, and therefore the function of the
two-objective problem is shown here. A multi-objective optimization problem (MOP) can
be stated as follows: the formula of multi-objective optimization is shown in Equation (11).{

min F(r) = (R(r), RL(r))T ,
subject to : r ∈ Ω,

(11)

where Ω is the network space and r is a network structure. F(r) : Ω → R2 is a two-
dimensional objective vector. R(r) and RL(r) are the network controllability robustness
under node attacks and link attacks.

Very often, since the objectives in (11) contradict each other, no point in Ω maximizes
all the objectives simultaneously. One has simply to balance them. The best trade-offs
among the objectives can be defined in terms of Pareto optimality.

Let µ, υ ∈ R2, and µ is said to dominate υ if and only if µi ≥ υi for every i ∈ {1, 2}
and µj > υj for at least one index j ∈ {1, 2}. A point r∗ ∈ Ω is Pareto optimal to (11)
if there is no point r ∈ Ω such that F(r) dominates F(r∗). F(r∗) is then called a Pareto
optimal (objective) vector. In other words, any improvement in a Pareto optimal point in
one objective must lead to deterioration in at least one other objective. The set of all Pareto
optimal points is called the Pareto set (PS) and the set of all the Pareto optimal objective
vectors is the Pareto front (PF) [35].

The optimization steps of the algorithm are as follows: (1) Initialize the network
structure; (2) Individuals’ controllability robustness is computed in terms of the popula-
tion; (3) The network in the population and the associated robustness value is used as
training data to build the surrogate model; (4) During the subsequent crossover, mutation,
and selection evolution, the trained surrogate model is used to estimate the robustness
measure; (5) Update the surrogate model; and (6) Update the non-dominate solutions.
The pseudocode of the multi-objective optimization Algorithm 1:
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Algorithm 1: Multi-objective evolutionary algorithm optimization.

Input:
Initialize network population P;
Iterations t = 0;
Max iterations MaxGen;

output:
The non-dominated solution set and network structure;

Calculate the network controllability robustness and initialize the surrogate model;
While t < MaxGen:

Conduct the crossover operator on Pt to generate Qt;
Conduct the mutation operator on Qt;
Select better individuals from Pt and Qt to Pt+1;

Conduct the local search operator on Pt+1;
Update the surrogate model;
Update EP with Pt+1;
t = t + 1;

end while

The crossover operator selects two networks from the population, and then randomly
selects an edge from each network structure, and exchanges them with each other.

In the mutation operation, the topological rewiring operator seeks to modify the
network’s connections without changing its degree of distribution. That is, two edges are
randomly selected, namely eij and ekl in the network, and eil and ekj are added first, then
eij and ekl are deleted (i, j, k, and l represent four nodes, and e represents the connection
between nodes).

At the end of a generation, the selection operator is used to select the best candidates
from the population of parent candidates and update them into the child population with
the initial population of candidates. The best candidate is then saved as the first one in the
child population.

The local search operator seeks to improve the quality of the obtained solutions
without relying on surrogates, a time-consuming but essential process for enhancing the R
or RL of the individuals.

4. Selection and Mixture of Surrogate Models
4.1. Dempster–Shafer Theory Weighting Method

Rather than calculating the real controllability robustness, this paper focuses on selecting
appropriate surrogate models for a specific complex network to assist the evolutionary
algorithm in optimizing the structure of the complex network. As shown in Figure 2, the steps
of the weight evaluation of surrogate models under the D-S theory are illustrated.

In Figure 2, the input data are the data of the network structure after SDNE dimen-
sionality reduction. The middle part is used to calculate the correlation coefficient (CC),
root mean square error (RMSE), and maximal absolute error (MAE) between the predicted
value obtained from the surrogate model and the true values; then the weights of the four
surrogate models are calculated using the D-S theory. Next, the weights are brought into the
surrogate model evaluation process (select one, two, or three surrogate models according
to the weights). As the input data are in various forms, as shown in Figure 1, the weighted
average value obtained is taken as the prediction value. In the later experiments, two or
three surrogate models with the highest weights are selected. The goal of this paper is
to apply the D-S theory to select the most suitable surrogate model for a given complex
network among different surrogate models according to the weight, so that the predicted
value of the selected surrogate model is close to the true value.
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Kriging

CC
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selection

and mixture           

Figure 2. D-S theory weighted evaluation of surrogate model steps.

4.2. Single Selection of Surrogate Models

Surrogate models can replace expensive evaluation functions. If it is unknown which
surrogate model is best suited to the problem at hand, different models must be tried to find
the most effective one. Next, the challenge becomes determining the best surrogate model.

In this section, we identify appropriate surrogate models for various complex net-
works, then integrate them into a multi-objective evolutionary algorithm to investigate a
network structure that can withstand both node-based and link-based attacks. This paper
employs the Dempster–Shafer (D-S) theory to select the best surrogate model based on
the weights of these four surrogate models. Algorithm 2 provides the pseudocode for
calculating weights using the D-S theory.

Algorithm 2: The process of calculating the weights of D-S theory.

Input:
The number of surrogate: N;
The number of complex networks: G;

output:
Weights of different surrogate models in complex networks;

Randomly initialize the complex network and set iterator t = 0;
Calculate the true network controllability robustness;
While t < N:

Training surrogate models with controllability robustness at population;
The trained surrogate model is used to evaluate the controllability robustness of
the network;
Calculate the correlation coefficient between the true value and the predicted

value mCC
t ;

Root mean square error mRMSE
t and maximal absolute errors mMAE

t ;
Several feature attribute values have been calculated in the previous step, and

D-S theory
is used to calculate the weights under these feature attribute values;
t = t + 1;

end while
Output the weight of each surrogate model;

The weight of each surrogate model is calculated using the predicted values obtained
from the surrogate models and the corresponding true values based on the D-S theory
weights calculated in Table 1. In this paper, D-S theory is utilized to select the optimal
single surrogate model for this complex network, and the surrogate model is utilized to
guide the multi-objective evolutionary algorithm to the best solution.
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Table 1. Model characteristics of the four types of networks.

Surrogates SF ER

CC RMSE MAE CC RMSE MAE
RBF 0.25 0.252 0.252 0.25 0.279 0.285
LS 0.25 0.245 0.241 0.25 0.212 0.202

IDW 0.25 0.252 0.253 0.25 0.267 0.265
Kriging 0.25 0.251 0.253 0.25 0.242 0.248

Surrogates SW RR

CC RMSE MAE CC RMSE MAE
RBF 0.25 0.250 0.248 0.25 0.251 0.247
LS 0.25 0.250 0.247 0.25 0.249 0.250

IDW 0.25 0.251 0.255 0.25 0.250 0.252
Kriging 0.25 0.249 0.246 0.25 0.250 0.251

After the model characteristics have been calculated, BPAs are computed for every
model. For this purpose, the model characteristics are scaled so that the sum over all
models for each BPA equals one and the non-negativity conditions of BPAs are fulfilled.
The Dempster–Shafer theory is applied in order to find the pignistic probabilities for each
model. Based on these values, it can be decided which of all considered models is the
best, or in case mixture models are considered, which weight should be assigned to each
contributing model.

When considering mixture models CC, RMSE and MAE must also be calculated for
each mixture in order to find the best one. The goodness values are normalized to obtain
the BPAs for each mixture as follows

mCC
i = CCi

∑jεΩ CCj
,

mRMSE
i =

1
RMSEi

∑jεΩ
1

RMSEj

,

mMAE
i =

1
MAEi

∑jεΩ
1

MAEj

,

(12)

where i is the current surrogate model, Ω is the set of models contributing to the combina-
tion, and CC, RMSE and MAE, respectively, correspond to three performance indicators:
namely the correlation coefficient, root mean square error, and maximal absolute errors.

These three performance measures—the correlation coefficient between evaluated
and true values, the root mean square error, and the maximal absolute errors—were used.
Table 2 displays the weights.

Table 2. Weights of each single surrogate model.

Surrogates SF ER SW RR

RBF 0.26 0.31 0.26 0.14
LS 0.23 0.19 0.24 0.13

IDW 0.27 0.27 0.27 0.37
Kriging 0.24 0.23 0.23 0.36

The uncertainty of the above networks with different weights is evaluated using
D-S theory. For each network, the surrogate model with the highest ranking weight is
chosen(Select the surrogate model according to the bold data in the table.) by referring to
the weight data in Table 2.

4.3. Mixture of Weighted Surrogate Models

As shown, for example, by [36], one surrogate model does not fit all types of problems.
For instance, one surrogate model may perform very well on one type of problem but
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poorly on another. When evaluating a set of surrogate models, the weight rankings of each
model can be used to make a decision. After applying D-S theory, the top few surrogate
models are chosen based on the ranking of the four weights needed, and the weights are
recalculated in accordance with Equation (13).

In the selection of two surrogate models, the weight is calculated as follows: wK = BetP(K)
BetP(K)+BetP(R) ,

wR = BetP(R)
BetP(K)+BetP(R) ,

(13)

where K and R are the two surrogate models chosen based on their ranking. BetP(K) and
BetP(R) are calculated under D-S theory. The wK and wR are recalculated by Equation (14).
The final evaluation value is defined as follows:

ŷ(x) = wK ŷK(x) + wRŷR(x), (14)

where ŷK(x), ŷR(x) are the evaluated values of the two models at point x, respectively.
The choice of surrogate models is shown in Table 3.

Table 3. Two mixture surrogate models.

Surrogates SF ER SW RR

RBF 0.51 0.47 0.51 0.59
LS 0.49 0.53 0.49 -

IDW - - - -
Kriging - - - 0.41

For the selection of the three surrogate models, the same method is used as for the
selection of the two surrogate models, as follows:

wK = BetP(K)
BetP(K)+BetP(R)+BetP(Q)

,

wR = BetP(R)
BetP(K)+BetP(R)+BetP(Q)

,

wQ = BetP(Q)
BetP(K)+BetP(R)+BetP(Q)

,

(15)

where BetP(K), BetP(R), and BetP(Q) are the weights of the single surrogate model. wK,
wR, and wQ are recalculated from the top three surrogate models selected according to
Equation (16). The recalculated weights are shown in Table 4, and the evaluation value of
the network is as follows:

ŷ(x) = wk ŷk(x) + wRŷR(x) + wQŷQ(x), (16)

Table 4. The weights assignment of the surrogate model for the three mixtures.

Surrogates SF ER SW RR

RBF 0.35 0.33 0.35 0.43
LS 0.34 0.38 0.24 0.16

IDW - - 0.31 -
Kriging 0.31 0.31 - 0.41

4.4. Adaptively Updating Surrogate Models

The D-S-theory-based surrogate model in the preceding section does not change the
type of the model during the search process, but only updates the parameter values. When
IDW and RBF models are chosen in the SF network, they are always used with an update
operation to modify the model training, but no newly appropriate surrogate model is
selected for the updated complex network. Therefore, this section employs D-S theory
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after each iteration to re-select the most suitable surrogate models for the complex network.
The weights of the four surrogate models used in this paper are recalculated through
D-S theory, and the number of adaptive surrogate models is determined according to
the optimal solution obtained under the single surrogate model or the mixture model.
The pseudocode is shown in Algorithm 3.

Algorithm 3: Updated pseudo-code for the surrogate model.

Input:
The number of surrogates: N;
Maximum number of iterations: MaxGen;
Surrogate model update probability: update_rate;

output:
Output the two surrogate models with the largest weights;

Randomly initialize the complex network and set iterator t = 0;
Using the obtained controllability robustness at the population to train the surrogate model;
Evaluate the network controllability robustness on a trained surrogate model
using the evaluated complex network structure;
Calculate CC, RMSE, and MAE between the true value and the evaluated value;
The D-S theory is used to calculate the weights under three feature attribute values;
While t < MaxGen:

if random.random() < update_rate:
D-S theory computational process is used to assign weights to the

surrogate model;
Select the top N surrogate models based on weights;
Retrain the surrogate model using the obtained non-dominated solution;

t = t + 1;
Output the surrogate model with the highest weights and save the weights;

end while

5. Experimental Results

In this paper, the network structure is constructed through a multi-objective evolution-
ary algorithm under node attack and link attack. Selecting appropriate surrogate models
under D-S theory to replace the calculation of network controllability robustness in the
optimization process can not only reduce the optimization cost, but also obtain a network
structure with better controllability robustness. In the experiments, the nodes of SF, ER, SW,
and RR are all 200, whilst the average degree is 4; the population size is 20, the number of
iterations is 100, the crossover rate is 0.6, the mutation rate is 0.5, the number of topological
rewiring is 50, the update rate of the surrogate model is 0.4, local_search rate is 0.7, and the
output dimension of SDNE as two. It is important to note that, if the update_rate is too
large, it will be time-consuming to update the surrogate model; however, if the update_rate
is too small, it will not achieve the update effect [12].

5.1. Experimental Results of Single Selection and Mixture Weighted Surrogate Models

In this paper, we choose the same multi-objective evolutionary algorithm framework
and compare different surrogate model mixtures. One surrogate model (MOEA_One), two
surrogate models (MOEA_Two), and three surrogate models (MOEA_Three) are compared
with two existing algorithms SP_RV_MOEANet and MOEA0 in [12] on four synthetic
networks. For the different methods, the non-dominated solutions obtained by multi-
objective optimization are shown in Figure 3, and the running time is shown in Table 5.
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Table 5. Running time (hours) and HV values of the four types of network with different methods.

Networks Method HV Run_Time

SF

MOEA0 0.1430 209.34
SP_RV_MOEANet 0.1690 95.62

MOEA_One 0.1660 57.26
MOEA_Two 0.1929 58.65

MOEA_Three 0.1672 107.09

ER

MOEA0 0.1404 257.95
SP_RV_MOEANet 0.1698 104.21

MOEA_One 0.1559 70.85
MOEA_Two 0.1721 72.34

MOEA_Three 0.1646 124.36

SW

MOEA0 0.2149 198.63
SP_RV_MOEANet 0.2345 101.36

MOEA_One 0.2362 30.10
MOEA_Two 0.1721 36.54

MOEA_Three 0.2342 102.32

RR

MOEA0 0.1030 234.36
SP_RV_MOEANet 0.1149 126.31

MOEA_One 0.1390 42.13
MOEA_Two 0.1671 45.57

MOEA_Three 0.1200 102.46

Figure 3 shows that the results obtained by MOEA0 are less satisfactory on four types
of networks. The performance of the existing algorithm SP_RV_MOEANet is clearly much
better than MOEA0. Under the methods designed in this paper, MOEA_One, MOEA_Two,
and MOEA_Three also have a better performance than MOEA0. Preliminarily, this shows
that the non-dominated solutions obtained after adding the surrogate model in the opti-
mization process under the same algorithmic framework are better than those of MOEA0.
The performance of SP_RV_MOEANet is second only to MOEA_Two in SF, ER, and SW
networks, but in RR, the performance of SP_RV_MOEANet is only better than MOEA0.
However, in terms of computational cost, MOEA0 is too time-consuming, and several
other methods consume much less computational time than MOEA0, as shown in Table 5.
The MOEA_Two method under D-S theory outperforms several other tested methods and
achieves a good balance between search and diversity. It can be seen from Table 5 that the
more surrogate models there are, the more time-consuming the method is.

Among the five methods used in this paper, the MOEA_Two method is better than
the other four methods. On the one hand, the surrogate model can be used as a low-
cost fitness function evaluator to guide the optimization process, and more candidate
solutions can be generated. On the other hand, the uncertainty information obtained by
the surrogate model provides additional criteria for selecting individuals. The results in
both Figure 3 and Table 5 validate the significant performance of MOEA_Two in designing
robustness networks against multiple attacks, and the method can handle different types
of synthetic networks. The bold data in Table 5 are the optimal values obtained under
the method.
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MOEA0 SP_RV_ MOEANet MOEA_One       MOEA_Two      MOEA_Three      

(a)  SF (b)  ER

(c)  SW (d)  RR

M

Figure 3. Non-dominated solutions of different methods for four types of complex networks.

The non-dominated solutions obtained by several methods in Figure 3 are better when
evaluating the controllability robustness, which means that the smaller the non-dominated
solutions, the better it is.

Hypervolume (HV) values are used to evaluate the performances of various ap-
proaches [12,37]. This estimates the volume of the region in the target space contained by
the set of produced non-dominated solutions and the reference points. The higher the HV
values are, the better the comprehensive performance of the algorithm is. The HV values
are calculated as shown in Equation (17) as follows:

HV = δ

(
S⋃

i=1

Vi

)
, (17)

among δ, it is a Lebesgue measure that is used to calculate the volume. Vi represents the
hypervolume formed by the reference point and the ith non-dominated solution in the
solution set, and S represents the number of non-dominated solutions.

The variation in HV values with the number of iterations for the five compared
methods is given in Figure 4. For MOEA0, the HV values of the obtained results are
significantly smaller than those of the other methods. The HV values curve of MOEA_Two
is above the other curves, and its result is the best. Table 6 depicts the average HV values
for different methods for each complex network.

According to the experimental results, with the increase in surrogate models, the train-
ing time of surrogate models also increases. The shortest running time and highest average
HV values were observed when IDW and RBF were used as a mixture of surrogate models
for three complex networks. This is likely due to the different network architectures and
the different weights allocated to each network.

In summary, for SF, ER, SW, and RR networks with an average degree of four at
200 nodes, IDW and RBF are selected as mixture surrogate models to obtain the best
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optimization results. For the RR network specifically, IDW and Kriging are selected as the
mixture surrogate models, yielding better optimization results than the other networks.

MOEA0 SP_RV_MOEANet MOEA_One       MOEA_Two       MOEA_Three

(a)  SF (b)  ER

(c)  SW (d)  RR

M

Figure 4. HV values of different methods under four types of complex networks.

The HV values is used to determine the performance of multi-objective optimization,
and the larger the HV values, the better the performance of the method. From Figure 4, it
can be seen that the performance of MOEA_Two is better, as the HV curve of MOEA_Two
ultimately remains above other methods.

5.2. Experimental Results of Adaptively Updating Surrogate Models

The experimental results in the preceding section show that the network controllability
robustness obtained by MOEA_Two assisted by the multi-objective evolutionary algorithm
on SF, SW, ER, and RR are relatively better. Therefore, during the adaptive updating process,
the number of surrogate models is set to two. The experiments in this section compare the
controllability robustness of MOEA_Two with that of MOEA_Two_Adapt. Figure 5 depicts
the non-dominated solutions obtained on four types of complex networks, and Table 4
shows the time consumption and average HV values of the two methods.

MOEA_Two in Figure 5 represents the network controllability robustness sought by
two surrogate models assisted by the multi-objective evolutionary algorithm, whereas
MOEA_Two_Adapt represents the network controllability robustness sought by the adap-
tively updating surrogate model assisted by the multi-objective evolutionary algorithm.
As shown in Figure 5, the MOEA_Two_Adapt can assist the evolutionary algorithm in
finding the network structure with the best controllability robustness.

The minimum time consumption and maximum HV values in Table 6 are shown
in bolded to compare the time under the two approaches in the four types of networks,
and reveals that the MOEA_Two_Adapt takes three times longer than the MOEA_Two,
whilst the former has a better average HV values. If time-consuming situation is ig-
nored, the MOEA_Two_Adapt can help the evolutionary algorithm find a network struc-
ture with improved controllability robustness. HV values curves for MOEA_Two and
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MOEA_Two_Adapt are shown in Figure 6. HV values curves are better at the top of the
curve, and Figure 6 clearly shows that the MOEA_Two_Adapt assists the evolutionary
algorithm in its drive to achieve greater network controllability robustness.

(a)  SF (b)  ER

(c)  SW (d)  RR

Figure 5. MOEA_Two and MOEA_Two_Adapt under four types of complex network.

Here, the optimal non-dominated solutions obtained from the previous MOEA_Two
is compared with adaptively updating. Similarly, when evaluating the controllability
robustness, the smaller the non-dominated solutions, the better it is.

Table 6. Running time (hours) and HV values for MOEA_Two_Adapt and MOEA_Two for four types
of complex network.

Networks Method HV Run_time

SF MOEA_Two 0.1929 58.65
MOEA_Two_Adapt 0.1939 178.59

ER MOEA_Two 0.1721 72.34
MOEA_Two_Adapt 0.1766 180.77

SW MOEA_Two 0.2362 36.54
MOEA_Two_Adapt 0.2439 176.78

RR MOEA_Two 0.1671 45.57
MOEA_Two_Adapt 0.1765 137.52

In comparison with the two surrogate models, the adaptive update surrogate model
can achieve superior non-dominated solutions while consuming only about three times the
computing power.
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(a)  SF (b)  ER

(c)  SW (d)  RR

Figure 6. HV values of MOEA_Two and MOEA_Two_Adapt in four types of network.

Here, we compare the previously obtained MOEA_Two method’s HV curve with the
adaptively updating method. Similarly, when evaluating the performance of the method,
the higher the HV value, the better it is. From the Figure 6, it can be seen that the adaptively
updating method ultimately remains above the other HV curve.

6. Discussions

The method used in this paper is verified on SF, ER, SW, and RR networks. The re-
sults of the MOEA_Two under D-S theory, such as non-dominated solutions, HV val-
ues, and optimization time, are better than those obtained by the existing method [12].
The MOEA_Two_Adapt is better than the MOEA_Two, but the optimization time is three-
fold better. Under degree-based node and betweenness-based link attacks, the method in
this paper can optimize the network structure with stronger controllability robustness.

In order to further reduce the computational cost and enable the application of multi-
objective controllability robustness to large-scale networks, this paper introduces a surro-
gate model to approximate the controllability robustness in complex networks. Through
extensive experiments on large-scale networks with up to 200 nodes and an average degree
of four, the accuracy and efficiency of the proposed surrogate model were demonstrated.
Next, the MOEA_Two can expand to optimize the network structure of the controllability
robustness of large-scale complex networks.

The obtained network structure can be applied to the producer community. At present,
blockchain technology is widely utilized to manage the energy exchange between con-
sumers. The continuous practices of blockchain and distributed ledger technology (DLT)
are studied in order to optimize a blockchain network for the purpose of system and con-
struction design in the field of continuous energy delivery. By doing so, it can improve the
efficiency of energy transaction and reduce the cost of energy delivery [38]. A framework
was developed to facilitate both practitioners and researchers creating blockchain networks
that are efficiently designed, reproducible, and dependable [39]. If the multi-objective
optimization method used in this paper is applied to the design of the blockchain net-
work, this network can enhance the controllability robustness of the network and normally
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complete its own work when externally damaged. In addition to the above environment,
the method of network structure constructed in this paper can also be applied to the avi-
ation network. When a base station is damaged in the aviation network [12], the whole
line will stop. If a network structure that can simultaneously resist multiple attacks is
designed, the probability of the network structure being damaged causing paralysis is
small. In addition, an important evolution was discovered in the article, as, besides the
human network, the network of things is becoming increasingly common. Therefore, there
is increasing research on the Internet of Things and various IoT scenarios. This article is
the first attempt to investigate abnormal situations in multiple Internet of Things (MIoT)
scenarios. In the IoT context, especially in areas such as anomaly detection and attack
recognition, network robustness is also taken into account [40].

Convolutional neural network (CNN), a powerful deep learning model for tasks
such as image and speech processing, has also been applied to complex network analysis
in recent years, particularly for predicting the robustness of complex networks [30,31].
In general, predicting the robustness of complex networks requires the consideration of
the following factors: (1) the network topology structure is an important factor that affects
the robustness of complex networks. CNNs can predict the robustness of networks by
learning the topological structure characteristics of the network. (2) Another important
factor that affects the robustness of complex networks is node attributes. CNN can predict
the robustness of networks by learning the node attribute characteristics.

7. Conclusions and Future Work

This paper proposes a network design approach focusing on better robustness, allow-
ing the network to remain operational even after nodes and links are attacked simultane-
ously. As the computational cost of multi-objective robustness optimization is excessively
high, surrogate models are used to replace the robustness calculation in the optimization
process. This paper further explores the selection of surrogate models, including the mix-
ture between a surrogate model based on the D-S theory and adaptive surrogate models.

In the experiment, five methods were compared in the network. From the MOEA_Two
experimental results, on the one hand, the HV value of SF was 0.1929, taking 58.65 h;
the HV value of ER was 0.1721, taking 72.34 h; the HV value of SW was 0.1721, taking
36.54 h; and the HV value of RR was 0.1671, taking 45.57 h. MOEA_Two methods from HV
value, non-dominated solutions, and time consuming situation can help the evolutionary
algorithm obtain a network structure with better controllability robustness. In SF, ER, and
SW networks, the selected surrogate models are RBF and IDW. In RR networks, the selected
surrogate models are IDW and Kriging.

On the other hand, the non-dominated solutions obtained under the MOEA_Two
are compared with the solution set obtained under the MOEA_Two_Adapt during the
optimization process. Under the MOEA_Two_Adapt, the HV value of SF was 0.1939,
the HV value of ER was 0.1766, the HV value of SW was 0.2439, and the HV value of
RR was 0.1765. These HV values and non-dominated solutions are better than those of
MOEA_Two. As such, a network structure with better controllability robustness can be
obtained under MOEA_Two_Adapt. However, from the perspective of time consumption,
the MOEA_Two_Adapt optimization time is approximately three-fold that of MOEA_Two.

This paper optimizes the network structure under the multi-objective controllability
robustness of small-scale complex networks. In future work, this method can be used to
optimize large-scale networks and connectivity robustness. This paper used different
methods under the same algorithm framework for comparison. Next, we will study the
comparison between different metaheuristics algorithm frameworks.
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