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Abstract: This paper studies the aperiodic sampled-data (SD) control anti-synchronization issue of
chaotic nonlinear systems under the effects of input saturation. At first, to describe the simultaneous
existence of the aperiodic SD pattern and the input saturation, a nonlinear closed-loop system model is
established. Then, to make the anti-synchronization analysis, a relaxed sampling-interval-dependent
Lyapunov functional (RSIDLF) is constructed for the resulting closed-loop system. Thereinto, the
positive definiteness requirement of the RSIDLF is abandoned. Due to the indefiniteness of RSIDLF,
the discrete-time Lyapunov method (DTLM) then is used to guarantee the local stability of the trivial
solutions of the modeled nonlinear system. Furthermore, two convex optimization schemes are
proposed to expand the allowable initial area (AIA) and maximize the upper bound of the sampling
period (UBSP). Finally, two examples of nonlinear systems are provided to illustrate the superiority
of the RSIDLF method over the previous methods in expanding the AIA and enlarging the UBSP.

Keywords: chaotic nonlinear systems; local anti-synchronization; aperiodic sampled-data (SD)
control; input saturation; relaxed sampling-interval-dependent Lyapunov functional (RSIDLF)
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1. Introduction

The concept of chaotic synchronization of master–slave systems was proposed in the
last century. Up to now, the chaotic synchronization issue has been extensively studied and
has been widely used in many fields [1,2], such as secure communication and biochemistry.
There are a variety of types chaotic synchronization, including but not limited to complete
synchronization [3–7], anti-synchronization [8–12], projective synchronization [13–15], and
generalized synchronization [16–18]. As an interesting chaotic synchronization behavior,
anti-synchronization refers to the state vectors of the master–slave systems having the
same absolute value but with opposite sign. Recently, anti-synchronization has been widely
studied. For example, Ref. [8] has investigated the anti-synchronization problem of hy-
perchaotic Chua systems, Ref. [9] has discussed the finite-time anti-synchronization issue
for a class of coupled neural networks, Ref. [10] has addressed the anti-synchronization
of switched inertial neural networks, etc. Moreover, nonlinear systems have been gaining
more and more attention in recent decades [19–21]. To the best of our knowledge, the
theory and applications of linear systems are far more mature and complete than those of
nonlinear systems. However, linear systems absolutely do not exist in practical applications
because all components of the practical system have nonlinear properties to varying de-
grees. Indeed, the research of nonlinear systems will be more complicated compared with
simple linear systems. What is more, many practical examples, such as neural networks
and Chua systems, can be classified as nonlinear systems. It is, therefore, necessary and
challenging to study the anti-synchronization of nonlinear systems.
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Looking through the excellent works in the control field, e.g., adaptive control and
state feedback control, there are many classical and effective synchronization control meth-
ods. However, the common characteristic of these control methods is that they are all
point-to-point control, which will inevitably give rise to the excessive occupation of com-
munication channels. Followed by the booming of network technology, networked control
methods have emerged due to their advantages in energy saving; these methods include
SD control [22–26], intermittent control [27,28], quantized control [29,30], even-triggered
control [31–33], and so on. Thereinto, the SD controllers deliver control signals at a range
of discrete instants tv. As such, SD control has become an economic and welcome approach
given the booming of networks and multimedia digital technologies. Note that under
periodic SD control, signals are usually sampled in a fixed period. However, considering
some adverse factors, that is, the unstable voltage source from the physical environment,
the sampler used may vibrate slightly, and the actual sampling period will undulate within
a limited period. Therefore, it is very necessary to study the stability analysis of closed-loop
systems under aperiodic SD control. As an example, the exponential synchronization
issue of neural networks has been discussed by using the aperiodic SD control in [22], and
aperiodic SD synchronization has been discussed for delayed Lur’e systems in [24]. In
addition, aperiodic SD synchronization has been studied for delayed stochastic Markovian
jump neural networks in [25] and the quasi-synchronization of heterogeneous harmonic
oscillators has been investigated under an aperiodic SD scheme in [26]. Nevertheless, the
above works are obtained without considering the input saturation. In fact, actuators often
experience a saturation phenomenon due to the physical constraints of the components [34].
This nonlinear characteristic might give rise to oscillation or even instabilities of the satura-
tion control systems. Therefore, it is of great importance to analyze the design of saturated
aperiodic SD controllers. Although it has an engineering background, so far, there is little
research on the local anti-synchronization of nonlinear systems with input saturation by
utilizing aperiodic SD control.

On the other hand, in the SD control closed-loop systems, the continuous and discrete
signals exist simultaneously. From the viewpoint of control theory, it will bring substantial
challenges in the analysis and synthesis of SD control systems. In recent years, a breed
of sampling-interval-dependent Lyapunov functionals (SIDLFs) has been constructed for
discussing the local stability of various systems under SD. In comparison with the tradi-
tional quadratic Lyapunov–Krasovskii functional, the SIDLF makes full use of the state’s
information within the sampling intervals. Obviously, this will help to improve the stability
results. For example, an SIDLF is constructed and the input delay approach has been
utilized to investigate the SD control linear systems in [35]. In addition, a novel SIDLF has
been constructed for the delayed neural networks to study the exponential synchronization
problems in [22]. To further improve the results, an RSIDLF, where the positive definiteness
is not required within the sampling intervals, has been established for linear SD control
systems [36]. After that, an RSIDLF has been established to carry out the stability analysis
of linear systems under aperiodic SD control [37]. Furthermore, the RSIDLF has been
employed to deal with the aperiodic SD control exponential stabilization of delayed neural
networks in [38]. Nonetheless, these works do not take the input saturation into account.
Namely, the proposed analysis approaches cannot be applied in saturated control systems.
Inspired by these existing works, two interesting problems naturally arise: whether can we
construct a joint strategy where not only a novel RSIDLF for local stability of closed-loop
nonlinear systems is designed but also the satisfactory anti-synchronization performance to
satisfy the demand caused by the saturated aperiodic SD control can be guaranteed. How
can we quantitatively analyze the superiority of the RSIDLF over the traditional SIDLF?
Thus, how can we handle these problems well enough to motivate the present discussion
of this paper.

According to the discussion above, this paper addresses the anti-synchronization issue
of chaotic nonlinear systems via aperiodic SD control considering input saturation. The
research works and contributions are mainly concluded as follows.
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(1) Taking the characteristics of the aperiodic SD scheme into consideration, a novel
SIDLF is newly designed to carry out some less conservative results for the local stability
of nonlinear systems. It should be mentioned that the positive definite restrictions of the
RSIDLF are discarded. As an alternative, the RSIDLF is only required to be positive definite
at the discrete sampling instants.

(2) Under the RSIDLF, in combination with the DTLM, the squeeze theory, and some in-
equality estimation techniques, two improved criteria are derived for closed-loop nonlinear
systems under saturated aperiodic SD control.

(3) Aiming at enlarging the AIA and maximizing the UBSP, two optimization algo-
rithms are designed. With the help of the devised optimization algorithms, two comparative
analyses between the RSIDLF and the existing results are provided.

The outline of this paper is as follows. Section 2 gives some preliminaries and presents
an aperiodic SD scheme and system model. Section 3 presents the main results on stability
and stabilization of nonlinear systems by using the SD strategy. Section 4 designs two opti-
mization algorithms to expand the AIA and maximize the UBSP. Two numerical examples
are presented to verify the obtained results. Finally, Section 6 concludes this paper.

Notations. Sn×n stands for the set of n× n symmetric matrices. Sn×n
+ represents the

set of n× n positive definite and symmetric matrices. W(i) denotes the ith row of matrix W.
diag(· · · ) and col{· · · } stand for a block diagonal matrix and a column vector. W−1 (WT)
stands for inverse (transpose) of matrix W. λmax(W) denotes the maximal eigenvalue of
matrix W. || · ||p, p = 1, 2, ∞ is the p-norm of a vector or a matrix.

2. Preliminaries and Problem Formulation

Consider chaotic nonlinear systems as follows:

α̇(t) = −Dα(t) + A f(α(t))), (1)

where α(t) ∈ Rn denotes the state vector, matrices D = diag{d1, d2, · · · , dn} > 0, and
A ∈ Rn×n, the activation function f (α(t)) ∈ Rn.

Take the system (1) as the master system; the corresponding slave system is repre-
sented as

β̇(t) = −Dβ(t) + A f(β(t))) + sat(u(t)), (2)

where β(t) ∈ Rn denotes the state vector of the slave system, and the other items and
matrices are the same as those in the master system; sat(u(t)) ∈ Rn is the saturated
control input.

Following the definition of the anti-synchronization, let γ(t) = β(t) + α(t). Then, the
error system can be described as

γ̇(t) = −Dγ(t) + Ag(γ(t))) + sat(u(t)), (3)

where g(γ(t)) = f (β(t)) + f (α(t)), and

u(t) = Cγ(tv) = C(β(tv) + α(tv))

with the control gain matrix C ∈ Rn×n and the sequence of sampling instants {tv} (v ∈ N)
satisfying limv→∞ tv = +∞, 0 = t0 < t1 < · · · < tv < · · · , hv = tv+1 − tv satisfying
hv ∈ [h, h]. sat(·) ∈ Rn is the saturated nonlinear function, which is defined as

sat(C(i)γ(tv)) = sgn(C(i)γ(tv))min{u0(i), |C(i)γ(tv)|},

where u0(i) > 0 denotes the saturation degree. C(i) denotes the ith row of the control gain
matrix C.
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Define a dead-zone nonlinear function ψ(Cγ(tv)) [39] as

ψ(Cγ(tv)) = Cγ(tv)− sat(Cγ(tv)).

Then, rewrite system (3) as follows:

γ̇(t) = −Dγ(t) + Ag(γ(t)) + Cγ(tv)− ψ(Cγ(tv)), t ∈ [tv, tv+1). (4)

Next, define a polyhedral set

Ω , {γ ∈ Rn; |(C(i) − G(i))γ(tv)| ≤ u0(i), i = 1, 2, · · · , n}. (5)

Next, an assumption and a lemma are presented as follows:

Assumption 1. The nonlinear function f (x(t)) ∈ Rn is assumed to be odd, monotonically
nondecreasing, and satisfies

0 ≤ fσ(m1)− fσ(m2)

m1 −m2
≤ Lσ, m1 6= m2, σ = 1, 2, · · · , n, m1, m2, Lσ ∈ R.

Lemma 1 ([39]). Provided that γ(tv) ∈ Ω, the following holds:

ψT(Cγ(tv))Λ(ψ(Cγ(tv))− Gγ(tv)) ≤ 0. (6)

where the diagonal matrix Λ > 0.

3. Main Results

In this section, several anti-synchronization criteria are derived by using an RSIDLF,
some inequality techniques, and discrete-time Lyapunov method.

Theorem 1. For given scalars h ≥ h > 0 and C, G ∈ Rn×n, if there exist matrices Q0, Q1 ∈ Sn×n
+ ,

diagonal matrices Λ, Λ1 ∈ Sn×n
+ , and matrices Q21, Q22, Q23, Q31, Q32, Q33, Q34, Q35, T1,

T2, T3, W1, W2 ∈ Rn×n, enabling LMIs (7)–(9) to be satisfied for hv ∈ {h, h},[
Q0 (C(i) − G(i))

T

∗ u2
0(i)

]
≥ 0, i = 1, 2, · · · , n, (7)

Υ(hv) < 0, (8)

Π(hv) =

[
Γ ξ1
∗ −hvQ1

]
< 0, (9)

where Γ = [Γij]6n×6n, and Υ(hv) = [Υij]6n×6n, Γ11 = −WT
1 D − DW1 − T1 − TT

1 − Q21 −
Q31+QT

31
2 , Γ12 = Q0−WT

1 −DW2−T2, Γ13 = WT
1 C+TT

1 −T3 +Q21 +Q31−Q32, Γ14 = −WT
1 ,

Γ15 = −Q22 − Q33, Γ16 = WT
1 A + LΛ1, Γ22 = −WT

2 −W2, Γ23 = WT
2 C + TT

2 , Γ24 = −WT
2 ,

Γ26 = WT
2 A, Γ33 = T3 + TT

3 − Q21 + Q32 + QT
32 −

Q31+QT
31

2 , Γ34 = GTΛ, Γ35 = Q22 − Q34,

Γ44 = −2Λ, Γ55 = −Q23 −
Q35+QT

35
2 , Γ66 = −2Λ1, Υ11 = Γ11 + hv(Q22 + QT

22 + Q33 + QT
33),

Υ12 = Γ12 + hv(QT
21 +

Q31+QT
31

2 ), Υ13 = Γ13 + hv(QT
34−QT

22), Υ15 = Γ14 + hv(Q23 +
Q35+QT

35
2 ),

Υ16 = Γ15, Υ22 = Γ22 + hvQ1, Υ23 = Γ23 + hv(−Q21 − Q31 + Q32), Υ25 = hv(Q22 +
Q33), Υ26 = Γ26, Υ33 = Γ33, Υ34 = Γ34, Υ36 = Γ36, Υ44 = Γ44, Υ55 = Γ55, Υ66 =
Γ66; other matrix blocks not mentioned are zero matrices with suitable dimensions, and ξ1 =
col
{

hvTT
1 , hvTT

2 , hvTT
3 , 03n×n

}
. Then, for any initial values γ(t0) ∈ v(Q0) = {γ ∈ Rn :
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γTQ0γ ≤ 1}, the trajectories of nonlinear systems (4) under aperiodic SD control can converge to
zero. That is, the anti-synchronization of master system α(t) and slave system can be achieved.

Proof. For the error system (4), we establish an RSIDLF as

V(t) = V0(t) + V1(t) + V2(t) + V3(t), t ∈ [tv, tv+1),

where

V0(t) = γT(t)Q0γ(t),

V1(t) = (tv+1 − t)
∫ t

tv

γ̇T(s)Q1γ̇(s)ds,

V2(t) = (tv+1 − t)

[
γ(t)− γ(tv)∫ t

tv
γ(s)ds

]T[
Q21 Q22

∗ Q23

][
γ(t)− γ(tv)∫ t

tv
γ(s)ds

]
,

V3(t) = (tv+1 − t)

 γ(t)
γ(tv)∫ t

tv
γ(s)ds


T


Q31+QT
31

2 −Q31 + Q32 Q33

∗ −Q32 −QT
32 +

1
2
(
Q31 + QT

31
)

Q31

∗ ∗ Q35+QT
35

2


 γ(t)

γ(tv)∫ t
tv

γ(s)ds

,

Differentiate V(t) for t ∈ [tv, tv+1); it holds that

V̇0(t) =2γ̇T(t)Q0γ(t),

V̇1(t) =−
∫ t

tv

γ̇T(s)Q1γ̇(s)ds + (tv+1 − t)γ̇T(t)Q1γ̇(t),

V̇2(t) =−
[

γ(t)− γ(tv)∫ t
tv

γ(s)ds

]T[
Q21 Q22

∗ Q23

][
γ(t)− γ(tv)∫ t

tv
γ(s)ds

]

+ 2(tv+1 − t)

[
γ̇(t)
γ(t)

]T[
Q21 Q22

∗ Q23

][
γ(t)− γ(tv)∫ t

tv
γ(s)ds

]
,

V̇3(t) =−

 γ(t)
γ(tv)∫ t

tv
γ(s)ds


T


Q31+QT
31

2 −Q31 + Q32 Q33

∗ −Q32 −QT
32 +

1
2
(
Q31 + QT

31
)

Q34

∗ ∗ Q35+QT
35

2


 γ(t)

γ(tv)∫ t
tv

γ(s)ds



+ 2(tv+1 − t)

γ̇(t)
0

γ(t)


T


Q31+QT
31

2 −Q31 + Q32 Q33

∗ −Q32 −QT
32 +

1
2
(
Q31 + QT

31
)

Q34

∗ ∗ Q35+QT
35

2


 γ(t)

γ(tv)∫ t
tv

γ(s)ds

.

Based on the Jensen’s inequality and Lemma 1, we can obtain

−
∫ t

tv
γ̇T(s)Q1γ̇(s)ds ≤ −(t− tv)pT(t)Q1 p(t). (10)

where p(t) = 1
t−tv

∫ t
tv

γ̇(s)ds.

In view of the Newton–Leibniz formulae, for matrices T1, T2, and T3 ∈ Rn×n, we obtain

2[γT(t)TT
1 + γ̇T(t)TT

2 + γT(tv)TT
3 ]× [−γ(t) + γ(tv) + (t− tv)p(t)] = 0. (11)

Furthermore, for any matrices W1, W2 ∈ Rn×n, we can derive

2[γT(t)WT
1 + γ̇T(t)WT

2 ]× [−γ̇(t)− Dγ(t) + Ag(γ(t)) + Cγ(tv)− ψ(Cγ(tv))] = 0. (12)
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In addition, there is a diagonal matrix Λ1 ∈ Sn×n
+ , such that

2gT(γ(t))Λ1Lγ(t)− 2gT(γ(t))Λ1g(γ(t)) ≥ 0. (13)

In view of (6), one has

−2ψT(Cγ(tv))Λ(ψ(Cγ(tv))− Gγ(tv)) ≥ 0.

In combination with the above inequalities and (10)–(13), we have

V̇(t) ≤ tv+1 − t
tv+1 − tv

χT
1 (t)Υ(hv)χ1(t) +

t− tv

tv+1 − tv
χT

2 (t)Π(hv)χ2(t),

where χ1(t) = col
{

γ(t), γ̇(t), γ(tr), ψ(Cγ(tv)),
∫ t

tv
γ(s)ds, g(γ(t))

}
,

χ2(t) = col
{

γ(t), γ̇(t), γ(tv), ψ(Cγ(tv)),
∫ t

tv
γ(s)ds, g(γ(t)), p(t)

}
.

Combining with (8) and (9) and the convex combination technique [35], it can be
inferred that if Υ1(h) < 0, Υ1(h) < 0, Υ2(h) < 0 , Υ2(h) < 0 hold, Υ1(hv) < 0, Υ2(hv) < 0
can be obtained. Thus, we can derive

V̇(t) < 0, t ∈ [tv, tv+1). (14)

Due to the indefiniteness of V(t), we cannot directly draw the stability conclusion
of the system (4). From (14), we have V(tv+1) < V(tv); thus, V(tv+1) − V(tv) < 0. It
should be noted that at instants tv, V(tv) degenerates into V1(tv) and therefore satisfies the
requirement of positive definiteness and strict decreasing. Thus, from the DTLM, it yields

lim
tv→+∞

V(tv) = 0,

which means

lim
tv→+∞

||γ(tv)||p = 0. (15)

Next, the result that the trivial solution of system (4) is locally stable, i.e., small
perturbations around an equilibrium point do not cause the system to move away from
that point in the long term, for t ∈ (tv, tv+1), will be proved. From the p-norm estimation
method and (4), it follows that

||γ(t)||p ≤ ||γ(tv)||p + ||
∫ t

tv
Dγ(s)ds||p + ||

∫ t

tv
Ag(γ(s))ds||p + ||

∫ t

tv
sat(Cγ(tv))ds||p.

In addition, according to the Cauchy–Schwarz inequality [40], it holds that

||γ(t)||2p ≤ 4||γ(tv)||2p + 4||
∫ t

tv
Dγ(s)ds||2p + 4||

∫ t

tv
Ag(γ(s))ds||2p + 4||

∫ t

tv
sat(Cγ(tv))ds||2p

≤ 4||γ(tv)||2p + 4
(∫ t

tv
||D||p||γ(s)||pds

)2
+ 4
(∫ t

tv
||A||p||g(γ(s))||pds

)2

+ 4
(∫ t

tv
||C||p||γ(tv)||pds

)2

≤ 4||γ(tv)||2p + 4
∫ t

tv
||D||2pds ·

∫ t

tv
||γ(s)||2pds + 4

∫ t

tv
||A||2pds ·

∫ t

tv
||g(γ(s))||2pds

+ 4
∫ t

tv
||C||2pds ·

∫ t

tv
||γ(tv)||2pds

≤ 4(1 + h
2||C||2p)||γ(tv)||2p + 4h(||D||2p + ||A||2p||L||2p)

∫ t

tv
||γ(s)||2pds.
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On the basis of the Gronwall inequality [40], we can obtain

||γ(t)||p ≤ 4(1 + h
2||C||2p)||γ(tv)||2p · e

∫ t
tv 4h(||D||2p+||A||2p ||L||2p)ds

≤ 4(1 + h
2||C||2p)||γ(tv)||2p · e4h

2
(||D||2p+||A||2p ||L||2p)

= κ||γ(tv)||2p, t ∈ (tv, tv+1)

where κ = 4(1 + h
2||C||2p)e4h

2
(||D||2p+||A||2p ||L||2p) > 0 is a constant. Thus, according to (15)

and the squeeze theory [41], one has

lim
t→+∞

||γ(t)||p = 0.

As a result, we can conclude that the trajectories of (4) can converge to zero for
any initial values γ(t0) within the set v(Q0). Namely, the locally asymptotical anti-
synchronization of systems (1) and (2) with input saturation can be realized under an
aperiodic SD scheme. The proof is completed.

Remark 1. It should be mentioned that the feature of the constructed functionals in Theorem 1 is
that the states of information from γ(tv) to γ(t) and from γ(t) to γ(tv+1) are fully utilized. As a
result, it has the ability to relax the conservatism of the stability conditions. On the other hand, the
main difference between the constructed functionals in Theorem 1 and the previous functionals used
in SIDLF [22,35,42] is that the positive definiteness constraints of Lyapunov matrices in functionals
V2(t) and V3(t) are dropped. The previous functionals [22,35,42] will undoubtedly increase the
conservatism of the results. That is, it can be believed that the results obtained based on the RSIDLF
in Theorem 1 are superior to the results in [22,35,42].

Notice that if we set

 Q0 +hv
Q31+QT

31
2 hv(−Q31 +Q32) hvQ33

∗ −hv(Q32 +QT
32)+

hv
2 (Q31 +QT

31) hvQ34

∗ ∗ hv
Q35+QT

35
2

 ∈ S3n×3n
+

and
[

Q21 Q22
∗ Q23

]
∈ S2n×2n

+ , the designed relaxed functional will become positive, which is

used in [22,35,42]. Then, aiming at displaying the advantage of the obtained results in
Theorem 1, the following Corollary 1 is presented.

Corollary 1. For given scalars h ≥ h > 0 and matrices C, G ∈ Rn×n, if there exist matrices

Q0, Q1 ∈ Sn×n
+ , Q2 =

[
Q21 Q22
∗ Q23

]
∈ S2n×2n

+ , diagonal matrices Λ, Λ1 ∈ Sn×n
+ , and matrices

Q31, Q32, Q33, Q34, Q35, T1, T2, T3, W1, W2 ∈ Rn×n, the LMIs (7)–(9) and (16) are satisfied for
hv ∈ {h, h}.

Ω(hv) =


Q0 + hv

Q31+QT
31

2 hv(−Q31 + Q32) hvQ33

∗ −hv(Q32 + QT
32) +

hv
2 (Q31 + QT

31) hvQ34

∗ ∗ hv
Q35+QT

35
2

 > 0, (16)

Then, for any initial values γ(t0) ∈ v(Q0) = {γ ∈ Rn : γTQ0γ ≤ 1}, the trajectories of
nonlinear systems (4) under aperiodic SD control can converge to zero.

Proof. With the conditions Q0, Q1 ∈ Sn×n
+ , Q2 =

[
Q21 Q22
∗ Q23

]
∈ S2n×2n

+ , and (16), it holds

that V(t) > 0. Correspondingly, combined with the condition (14) and according to the
CTLM, we can directly obtain that the trajectories of (4) can converge to zero for any initial
values γ(t0) belonging to the v(Q0). Namely, the locally asymptotical anti-synchronization
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of systems (1) and (2) with input saturation can be realized under the aperiodic SD scheme.
The proof is completed.

Remark 2. It is worth noting that the main challenge in this paper is how to analyze the local
stability of the trivial solutions of the error system (4) in Theorem 1. It is worth noting that
the positive definiteness of the constructed RSIDLF between two adjacent sampling instants, i.e.,
(tv, tv+1), is no longer necessary. In this situation, the traditional Lyapunov–Krasovskii stability
analysis method [22,35], i.e., V(t) is greater than 0, V̇(t) is less than 0, utilized in [22,35], can no
longer be used to deal with the stability problem in Theorem 1. On the other hand, under the RSIDLF,
the existing direct integration method [37] for linear SD control systems is also not applicable to the
nonlinear systems. To overcome these challenges, the proof of Theorem 1 is divided into two steps.

Step 1: Guaranteeing the stability of discrete instants tv with the help of the DTLM;
Step 2: Estimating the trivial solutions inside the sampling interval (tv, tv+1) by using the squeeze

theory.

On this basis, combining the generalized sector condition with a series of inequality estimation
approaches, a new local asymptotical anti-synchronization criterion is derived for closed-loop
nonlinear system (4) under saturated aperiodic SD control.

In the following, in order to solve the control gain, the following criteria can be obtained.

Theorem 2. For given scalars h ≥ h > 0, if there exist C̃, G̃ ∈ Rn×n, Q̃0, Q̃1 ∈ Sn×n
+ , diag-

onal matrices Λ̃, Λ̃1 ∈ Sn×n
+ , and matrices Q̃21, Q̃22, Q̃23, Q̃31, Q̃32, Q̃33, Q̃34, Q̃35, T̃1, T̃2, T̃3,

W̃1 ∈ Rn×n, LMIs (17)–(19) are satisfied for hv ∈ {h, h},

[
Q̃0 (C̃(i) − G̃(i))

T

∗ u2
0(i)

]
≥ 0, i = 1, 2, · · · , n, (17)

Υ̃(hv) < 0, (18)

Π̃(hv) =

[
Γ̃ ξ̃1
∗ −hvQ̃1

]
< 0, (19)

where Γ̃ = [Γ̃ij]6n×6n, and Υ̃(hv) = [Υ̃ij]6n×6n, Γ̃11 = −DW̃1 − W̃T
1 D − T̃1 − T̃T

1 − Q̃21 −
Q̃31+Q̃T

31
2 , Γ̃12 = Q̃0 − W̃1 − aW̃T

1 D− T̃2, Γ̃13 = C̃ + T̃T
1 − T̃3 + Q̃21 + Q̃31 − Q̃32, Γ̃14 = −Λ̃,

Γ̃15 = −Q̃22 − Q̃33, Γ̃16 = AΛ̃1 + W̃T
1 L, Γ̃22 = −aW̃T

1 − aW̃1, Γ̃23 = aC̃ + T̃T
2 , Γ̃24 =

−aW̃1, Γ26 = aAΛ̃1, Γ̃33 = T̃3 + T̃T
3 − Q̃21 + Q̃32 + Q̃T

32 −
Q̃31+Q̃T

31
2 , Γ̃34 = W̃T

1 GT , Γ35 =

Q̃22 − Q̃34, Γ̃44 = −2Λ̃, Γ̃55 = −Q̃23 −
Q̃35+Q̃T

35
2 , Γ̃66 = −2Λ̃1, Υ̃11 = Γ̃11 + hv(Q̃22 + Q̃T

22 +

Q̃33 + Q̃T
33), Υ̃12 = Γ̃12 + hv(Q̃T

21 +
Q̃31+Q̃T

31
2 ), Υ̃13 = Γ̃13 + hv(Q̃T

34 − Q̃T
22), Υ̃15 = Γ̃15 +

hv(Q̃23 +
Q̃35+Q̃T

35
2 ), Υ̃16 = Γ̃16, Υ̃22 = Γ̃22 + hvQ̃1, Υ23 = Γ23 + hv(−Q̃21 − Q̃31 + Q̃32),

Υ̃25 = hv(Q̃22 + Q̃33), Υ̃26 = Γ̃26, Υ̃33 = Γ̃33, Υ̃34 = Γ̃34, Υ̃36 = Γ̃36, Υ̃44 = Γ̃44, Υ̃55 = Γ̃55,
Υ̃66 = Γ̃66; other matrix blocks not mentioned are zero matrices with suitable dimensions and
ξ1 = col

{
hvT̃T

1 , hvT̃T
2 , hvT̃T

3 , 03n×n

}
. Then, for any initial values γ(t0) ∈ v(Q0) = {γ ∈ Rn :

γTQ0γ ≤ 1} with Q0 = W̃−T
1 Q̃0W̃−1

1 , the trajectories of nonlinear systems (4) under aperiodic
SD control can converge to the zero. In addition, the gain matrix is given by C = C̃W̃−1

1 .
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Proof. Define three partitioned diagonal matrices

W1 = diag
{

W̃1, I
}

,

W2 = diag
{

W̃1, W̃1, W̃1, Λ̃, W̃1, Λ̃1

}
,

W3 = diag
{

W̃1, W̃1, W̃1, Λ̃, W̃1, Λ̃1, W̃1

}
,

and denote W2 = aW1, W̃1 = W−1
1 , Λ̃ = Λ−1, Λ̃1 = Λ−1

1 , C̃ = CW̃1, G̃ = GW̃1, Q̃0 =

W̃T
1 Q0W̃1, Q̃1 = W̃T

1 Q1W̃1, Q21 = W̃T
1 Q21W̃1, Q22 = W̃T

1 Q22W̃1, Q23 = W̃T
1 Q23W̃1, T̃1 =

W̃T
1 T1W̃1, T̃2 = W̃T

1 T2W̃1, T̃3 = W̃T
1 T3W̃1.

It is obvious that (17) can be obtained through pre- and post-multiplying (7) by W T
1

and W1, respectively; (18) can be obtained through pre- and post-multiplying (8) by W T
2

and W2, respectively; (19) can be obtained through pre- and post-multiplying (9) by W T
3

and W3, respectively. The proof is completed.

Corollary 2. For given scalars a > 0, h ≥ h > 0, if there exist C̃, G̃ ∈ Rn×n, Q̃0, Q̃1 ∈ Sn×n
+ ,

Q̃2 =

[
Q̃21 Q̃22
∗ Q̃23

]
∈ S2n×2n

+ , diagonal matrices Λ̃, Λ̃1 ∈ Sn×n
+ , and matrices Q̃31, Q̃32, Q̃33,

Q̃34, Q̃35, T̃1, T̃2, T̃3, W̃1 ∈ Rn×n, the LMIs (17)–(19) and (20) are satisfied for hv ∈ {h, h}.

Ω̃(hv) =

 Q̃0 + hv
Q̃31+Q̃T

31
2 hv(−Q̃31 + Q̃32) hvQ̃33

∗ −hv(Q̃32 + Q̃T
32) +

hv
2 (Q̃31 + Q̃T

31) hvQ̃34

∗ ∗ hv
Q̃35+Q̃T

35
2

 > 0, (20)

Then, for any initial values γ(t0) ∈ v(Q0) = {γ ∈ Rn : γTQ0γ ≤ 1} with Q0 = W̃−T
1 Q̃0W̃−1

1 ,
the trajectories of nonlinear systems (4) under aperiodic SD control can converge to zero. In addition,
the gain matrix is given by C = C̃W̃−1

1 .

Proof. On the basis of Theorem 2, define

W4 = diag
{

W̃1, W̃1, W̃1

}
,

and denote Q31 = W̃T
1 Q31W̃1, Q32 = W̃T

1 Q32W̃1, Q33 = W̃T
1 Q33W̃1, Q34 = W̃T

1 Q34W̃1,
Q35 = W̃T

1 Q35W̃1. Obviously, (20) can be obtained through pre- and post-multiplying (16)
by W T

4 and W4. The proof is completed.

Remark 3. From Theorems 1 and 2, it can be concluded that the estimated AIA v(Q0) is contained
in the exact AIA. If γ(t0) ∈ v(Q0), the inequality (7) implies that ψT(Cγ(t0))Λ(ψ(Cγ(t0))−
Gγ(t0)) ≤ 0. Then, under the conditions of Theorems 1-2, it an be derived that V(t1)−V(t0) =
γT(t1)Q0γ(t1) − γT(t0)Q0γ(t0) < 0. Hence, γ(t1) also belongs to v(Q0). Repeating the
above derivation, we can obtain the result that γ(tv) ∈ v(Q0) and ψT(Cγ(tv))Λ(ψ(Cγ(tv))−
Gγ(tv)) ≤ 0 hold for all v ∈ N. In consequence, it can be easily concluded that v(Q0) is indeed a
positive invariant set as for the sampling states γ(tv).

4. Optimization Algorithms

Due to the input saturation phenomenon and limited bandwidth, the larger AIA and
the larger UBSP are more favorable. To handle these issues, the following two optimization
algorithms in view of Theorem 2 and Corollary 2 are presented.
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4.1. Optimization of the AIA

Given scalars h > h > 0, the aim is to obtain the largest AIA. Inspired by [39], the
maximization of the minimal axis of the set v(Q0) is equal to the minimization of the value
λmax(Q0). To address this issue, the following optimization algorithm is designed:

min σ
subject to
(17)–(19)[

σI I
∗ W̃1 + W̃T

1 − Q̃0

]
> 0,

(21)

then, it yields λmax(Q0) < σ, and thus v(σI) ⊂ v(Q0).

4.2. Optimization of the UBSP h

Given AIA v(Q0
0) = {γ ∈ Rn : γTQ0

0γ ≤ 1}, the scalar h, the aim is to maximize the
UBSP h. To solve this issue, the following optimization algorithm is designed:

max h
subject to
(17)–(19)[

Q0
0 I
∗ W̃1 + W̃T

1 − Q̃0

]
> 0.

(22)

Similar to the optimization algorithm in Section 4.1, the last LMI can guarantee v(Q0
0) ⊂ v(Q0).

5. Numerical Simulation

Example 1. Consider the master system (1) as follows:
α̇1 = −α1 + 1.2 f (α1)− 1.6 f (α2),
α̇2 = −α2 + 1.25 f (α1) + f (α2) + 0.9 f (α3),
α̇3 = −α3 + 2.2 f (α2) + 1.5 f (α3),

where f (α) = 0.5(|α + 1| − |α − 1|), from which we can derive D = diag(1, 1, 1), A = 1.2 −1.6 0
1.25 1 0.9

0 2.2 1.5

, L = diag(1, 1, 1). Take the initial value of the master system as α0 =

[0.5,−0.1,−0.1]T ; then, the chaotic behavior of the master system α(t) is displayed in Figure 1.

Set a = 0.1, u0(i) = 1 (i = 1, 2, 3), h = 0.001, h = 0.3. Then, with help of the
optimization scheme in Section 4 and the LMI toolbox in MATLAB, we obtain the results

based on Corollary 2 (method in [22,35]) as C =

−1.1096 0.2241 0.5367
−0.0168 −1.1646 −0.8325
0.0209 −0.8632 −1.0243

, σmin =

2.2771 and the AIA

v1(Q0)| =

γ ∈ R3 : γT

 2.0651 −0.0832 0.3405
−0.0832 2.1344 0.2429
0.3405 0.2429 1.4965

γ ≤ 1

,
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and the results based on the RSIDLF [22,28,35,42] as C =

−0.9909 −0.0304 0.4262
−0.0006 −0.9781 −0.8182
0.0230 −0.7972 −0.9328

,

σmin = 1.7474, and the AIA

v2(Q0)| =

γ ∈ R3 : γT

 1.5212 −0.0688 0.2473
−0.0688 1.6267 0.2194
0.2473 0.2194 1.2400

γ ≤ 1

.

More clearly, the corresponding results are shown in Table 1 and Figure 2. One can
see that the RSIDLF in Theorem 2 is helpful to expand the AIA indeed in comparison with
Corollary 2 (method in [22,35]).
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3
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Figure 1. Chaotic behavior of α(t) on (a) α1 − α2 and (b) α2 − α3.

Table 1. Comparison of the σmin and Q0 based on Corollary 2 (method in [22,35]) and Theorem 2.

Method σmin Q0

Corollary 2 (Method in [22,35]) 2.2771

 2.0651 −0.0832 0.3405
−0.0832 2.1344 0.2429
0.3405 0.2429 1.4965


Theorem 2 1.7474

 1.5212 −0.0688 0.2473
−0.0688 1.6267 0.2194
0.2473 0.2194 1.2400


Take the initial value of the slave system as β(t0) = [−1.25, 0.23, 0.5]T so that the initial

value of the error system is [−0.75, 0.13, 0.4]T belonging to the AIA v2(Q0). Then, the
trajectories of the saturated aperiodic SD controller sat(u(t)), the master system α(t) and
the slave system β(t), and the error system γ(t) under the controller sat(u(t)) are shown
in Figures 3–5, respectively.

It can be seen that the error system γ(t) and saturated aperiodic SD controller sat(u(t))
are each asymptotically stable. Furthermore, the master system α(t) and slave system β(t)
are completely opposite as t→ +∞.
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Figure 2. The allowable initial area (AIAs) based on Theorem 1 and Corollary 2 (method in [22,35]).
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Figure 3. Schematic of the saturated aperiodic sampled-data (SD) controller sat(u(t)) of Example I.
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Figure 4. Schematic of the master system α(t) and the slave system β(t) under the saturated aperiodic
SD controller of Example I.
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Figure 5. Schematic of the error system γ(t) under the saturated aperiodic SD controller of Example I.

Example 2. Consider the master system (1) as follows:
α̇1 = −α1 + 2 f (α1)− 1.2 f (α2),
α̇2 = −α2 + 1.8 f (α1) + 1.71 f (α2) + 1.15 f (α3),
α̇3 = −α3 − 4.75 f (α1) + 1.1 f (α2)− 3.85 f (α3),

where f (α) = tanh(ff); thus, we can derive that A =

 2 −1.2 0
1.8 1.71 1.15
−4.75 1.1 −3.85

, D = diag(1, 1, 1),

L = diag(1, 1, 1). Take the initial value of the master system as α0 = [2,−1, 2]T; then, the time
domain of the master system α(t) is displayed in Figure 1.

Based on optimization scheme 4.2, select a = 0.1, u0(i) = 1 (i = 1, 2, 3), h = 0.001, and

Q0
0 =

0.0329 0.0004 0.0052
0.0004 0.0191 0.0001
0.0052 0.0001 0.0066

; then, in view of Theorem 2, one can obtain hmax = 0.305,

C =

−2.6410 0.2362 0.2562
−0.6345 −3.0147 −0.4011
2.0099 −0.1005 −2.6331

, G =

−0.0206 0.0002 0.0136
−0.0048 −0.0297 −0.0103
0.0208 −0.0189 −0.0385

,

and the AIA

v3(Q0)| =

γ ∈ R3 : γT

0.0015 0.0000 0.0002
0.0000 0.0009 0.0000
0.0002 0.0000 0.0003

γ ≤ 1

.

In addition, under Corollary 2 (method in [22,35]), it yields that hmax = 0.323,

C =

−2.3314 0.2002 0.1679
−0.5446 −2.6140 −0.3251
2.2331 −0.2030 −1.9722

, G =

−0.0129 0.0010 0.0012
0.0031 −0.0120 −0.0002
0.0245 −0.0080 −0.0036

,

and the AIA

v4(Q0)| =

γ ∈ R3 : γT

0.0096 0.0002 0.0017
0.0002 0.0055 0.0000
0.0017 0.0000 0.0018

γ ≤ 1

.
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It can be seen from the above results that, compared with Corollary 2, the RSIDLF in
Theorem 2 is indeed conducive to improving the UBSP.

Take the initial value of the slave system as β(t0) = [7,−4, 6]T so that the initial value
of the error system is [5,−3, 4]T belonging to the AIA v4(Q0). Then, the the saturated
aperiodic SD controller sat(u(t)), the master system α(t) and the slave system β(t), and
the error system γ(t) under the saturated aperiodic SD controller are shown in Figures 6–8,
respectively.
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Figure 6. Schematic of the saturated aperiodic SD controller sat(u(t)) of Example II.
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Figure 7. Schematic of the master system α(t) and the slave system β(t) under the saturated aperiodic
SD controller of Example II.
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Figure 8. Schematic of the error system γ(t) under the saturated aperiodic SD controller of Example II.

It can be concluded that the designed saturated aperiodic SD controller sat(u(t)) has
the ability to stabilize the error system γ(t) as t→ +∞. That is, the anti-synchronization
of master system α(t) and slave system can be achieved. It illustrates that although
Theorem 2 relaxes the sufficient conditions to guarantee the anti-synchronization, the
anti-synchronization between the master system α(t) and slave system β(t) can also be
successfully achieved.

6. Conclusions

This article has been concerned with the anti-synchronization problem of chaotic
nonlinear systems under aperiodic SD control subject to input saturation. In view of the
characteristics of the aperiodic SD control, an RSIDLF which makes full use of the state
information in sampling intervals has been newly designed. Then, the CTLM are utilized
to derive the sufficient conditions to guarantee the local anti-synchronization of the master–
slave systems. To expand the AIA and maximize the UBSP, two convex optimization
schemes have been put forward. Two numerical examples of nonlinear systems have been
presented to illustrate the advantages of the derived results compared with the previous
methods. Our future work will pay attention to designing the lower conservative functional
to study the anti-synchronization problem of nonlinear systems under event-triggered
control and how to generalize our research to higher-order systems.
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