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Abstract: When predicting the defaults of a large number of samples in a region, this will be affected
by industry default heterogeneity. To build a credit risk model that is more suitable for Chinese-listed
firms, which have highly industry-specific default heterogeneity, we extend the forward intensity
model to predict the defaults of Chinese-listed firms with information about the default heterogeneity
of industries. Compared with the original model, we combine the Bayes approach with the forward
intensity model to generate time-varying industry-specific default heterogeneity indicators. Our
model can capture co-movements of different industries that cannot be observed based on the original
forward intensity model so that the model can flexibly adjust the firm’s PD according to the industry.
In addition, we also consider the impact of default heterogeneity in other industries by studying
the influence of the level and trends of other industries’ default heterogeneity on a firm’s credit
risk. Finally, we compute PDs for 4476 firms from January 2001 to December 2019 for 36 prediction
horizons. The extended model improves the prediction accuracy ratios both for the in-sample and
out-of-sample firm’s PDs for all 36 horizons. Almost all the accuracy ratios of the prediction horizons’
PDs are increased by more than 6%. In addition, our model also reduces the gap between the
aggregated PDs and the realized number of defaults. Our industry-specific default heterogeneity
indicator is helpful to improve the model’s performance, especially for predicting defaults in a large
portfolio, which is of significance for credit risk management in China and other regions.

Keywords: forward intensity; industry; default heterogeneity; probability of default; Bayes approach

1. Introduction
1.1. Background and Purpose

Currently, credit risk management is an important topic for individual investors,
banks, and financial regulators. To analyze the different structures of credit risk for multi-
ple periods, credit risk models have developed to calculate the probability of default (PD)
with concerning term structure. Firms’ PDs have been employed by researchers and practi-
tioners to do credit analysis on firms or large portfolios. Recently, researchers have found
that industry-specific default heterogeneity exists among different industries. Traditional
credit risk models, without information on industry-specific default heterogeneity, cannot
meet the needs of financial regulators and obligors who loan to a large number of corpo-
rates. A credit risk model which does not consider industry-specific default heterogeneity
cannot capture the co-movements of defaults in the industry. As the largest emerging
market, China has a huge impact on the global economy. As the industry-specific default
heterogeneity of Chinese-listed firms is complex, the prediction of Chinese-listed firms’
PDs by various credit risk models is influenced by the industry’s default heterogeneity.

Therefore, the purpose of this paper is to build a credit risk model that is more suitable
for Chinese-listed firms than the traditional model. In addition, in order to solve the
problem of default heterogeneity in different industries in China, this model needs to
contain information on industrial default heterogeneity, so that it can adjust according to
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the default heterogeneity of different industries when predicting the defaults of a large
number of Chinese-listed firms, which makes the model more applicable. Such a model
also has strong practicability when applied to the credit analysis of large portfolios, whether
for China or other countries.

1.2. Research Objectives and Main Work

According to our research purpose, the main objectives of this paper are as follows:
(1) We apply an advanced PD model to predict the PDs of Chinese-listed firms, which
has rarely been used for Chinese firms before. Firstly, the model can realize dynamic
measurement, which can automatically predict forward PDs with an update of the firm’s
risk factors. Secondly, the model should be able to predict the term structure of the PD
and realize muti-period PD estimation. (2) In view of the default heterogeneity of different
industries in China, we need to adjust the model to make the new model contain default
heterogeneity information when predicting future defaults, so that our PDs have more
accurate ratios. In addition, when predicting the defaults of a large number of Chinese-
listed firms, the aggregated PDs should be closer to the realized default than the original
model. As long as the research objectives are met, the model’s practicability in the credit
analysis of large portfolios can be improved.

Based on the above research objectives, this paper mainly addresses the following
problems: (1) What PD model can realize the dynamic measurement of multi-period PDs
for Chinese-listed firms? (2) How is it possible to improve the PD model to make it contain
information on the default heterogeneity of different industries? (2) How is it possible to
improve the accuracy ratios of multi-period PDs and reduce the gap between aggregated
PDs and the realized number of defaults for multiple periods?

To solve the above problems, we develop a richer model based on the forward intensity
approach proposed by Duan et al. [1], which has been applied to estimate the PDs of
more than 73,000 listed firms worldwide. The forward intensity model can address the
term structure effect and predict PDs for different horizons for a firm, which makes it
an advanced credit risk measurement approach. Our model has two major differences
compared with the original model. Firstly, we constructed time-varying industry-specific
default heterogeneity indicators, which can reflect an unobserved part of the differences in
defaults among different industries through a Bayesian approach based on the forward
intensity model. The indicators we constructed can capture co-movements of defaults in
all industries. Secondly, we consider the impact of co-movements of defaults both within
industries and across industries when computing PDs. In fact, the situations of defaults
in the industry and in the whole country both influence the PD of each listed firm to
different degrees.

Because firms in different industries have different characteristics, we divided all
Chinese-listed firms into 10 industries. Our extended model can measure the influence on
different industries’ firms. In our preliminary analysis, we found there was great hetero-
geneity of default among different industries. In this paper, we compute PDs according
to default heterogeneity in different industries and improve the predictive ability of the
forward intensity model.

1.3. Hypothesis, Novelties and Contributions

In this paper, Chinese-listed firms’ PDs are estimated based on the forward intensity
model. Comparing with the original model, we introduce the default heterogeneity indi-
cator to characterize the default correlations within the industry. Therefore, the model in
this paper has three hypotheses in total. Hypothesis (1): Firms’ defaults and other exits
obey the Poisson process. Since the forward intensity model is modified by the doubly
stochastic Poisson intensity model, we keep this basic assumption. This also means that
defaults and other exits do not affect the firms’ covariates. Hypothesis (2): The firms’
defaults are conditionally independent. This is also called CID hypothesis. The tradi-
tional default intensity model is usually built into the framework of the CID model. This
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means that default correlations only depend on common factors, which are observable
or potential. Hypothesis (3): Default heterogeneity causes default correlations within the
industry. According to the CID hypothesis, we believe that the default correlations within
the industry come from potential common factors, which can be described by industry
default heterogeneity.

Compared with previous research, our novelties mainly include two aspects: (1) In
recent research on the PD prediction of Chinese-listed companies, the forward intensity
model, which has better performance, is rarely applied or modified by researchers com-
pared with the structural model. In this paper, we fill this gap. (2) The original forward
intensity model does not capture the co-movement of defaults within the industry when
predicting the PDs of a large number of firms in a region. We propose a Bayesian approach
to make the forward intensity model include information on industry default heterogeneity,
so that the model can flexibly adjust the firm’s PD according to industry.

Our main work is as follows. Firstly, we introduce the industry-specific default het-
erogeneity indicator into our model with a Bayesian approach and maximize the pseudo
log-likelihood function to estimate the parameters of our Bayesian model. Then, default
heterogeneity indicators for 10 industries are generated from January 2000 to December
2019. Secondly, we measure industry-specific default heterogeneity’s influence on each
Chinese-listed firm, both from its industry and from other industries, for all prediction hori-
zons. In addition, our model also includes trends in industry-specific default heterogeneity
indicators within the industry and among other industries. Due to default heterogeneity
among different industries, we estimate four parameters of 10 industries for 36 prediction
horizons in our second estimation, and, finally, we compute PDs from them based on
forward intensity.

The main contributions of this paper are as follows: (1) We construct a credit risk
measurement model considering industry-specific default heterogeneity to predict the
PDs of Chinese-listed firms based on the forward intensity model. Including information
on industry-specific default heterogeneity can make the model more practical in stress
testing for an industry. (2) We introduce industry-specific default heterogeneity indicators
into the forward intensity model. We capture co-movements in firms’ defaults within the
industry and among other industries for all prediction horizons. PDs are computed by
considering the impact of default heterogeneity among different industries. (3) Compared
with the original forward intensity model, our extended model improves the accuracy ratio
and reduces the gap between aggregated PDs and the realized number of defaults for all
prediction horizons.

This paper is organized as follows. In Section 2, we review the theoretical development
of credit risk models and introduce recent research on industry-specific default heterogene-
ity. In Section 3, we extend the forward intensity model and introduce the industry-specific
default heterogeneity indicator. This section also explains how we compute PDs. Section 4
gives details about how to estimate the parameters of our extended model. Section 5
presents the data and some preliminary analyses on defaults for all industries. In Section 6,
we show the estimated values of the parameters of our model. We tested the model’s
performance for all horizons by comparing its predictive ability for PDs. Section 7 presents
our conclusions and discusses future developments.

2. Literature Review
2.1. Credit Risk Models

Credit risk models that can compute PDs with term structure can be classified into two
main categories: structural and reduced-form models. A structural model uses the structure
of assets and liabilities to estimate the expected default frequency in the future. The
earliest structural model was proposed by Merton [2] based on the famous Black–Scholes
option pricing model. Later, the KMV company proposed the KMV model, based on the
Merton model. Hillegeist et al. [3] believe that structural models have stronger predictive
power than Z-scores. Because the structural model only relies on market information as
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a predictive variable, it misses much information. Research usually combines structural
models with other models, and recent examples are Zhang and Shi [4], Song et al. [5], and
Zeng et al. [6].

In this paper, we extend the forward intensity model, which falls into the class of
reduced-form models. Compared with structured models, reduced-form models make
it possible to select risk factors freely, but early reduced-form models could not calculate
PDs with term structure. The earliest reduced-form models date back to the 1960s. Altman
and Edward [7] and Beaver William [8] only calculated the credit score using discriminant
analysis. In 2007, Duffie et al. [9] proposed a doubly stochastic Poisson intensity model,
making it possible to predict PD concerning its term structure. They addressed the term
structure effect to realize multi-period prediction, which provides the theoretical basis for
our study. In 2012, Duan et al. [1] proposed a forward intensity approach to make the
doubly stochastic Poisson intensity model more practical. The forward intensity approach
was implemented by maximizing the decomposable pseudo-likelihood function. They
realized multi-period prediction using only the data available at the time they made the
prediction from, providing the practical basis for this paper. Some researchers compute
PDs based on the doubly stochastic Poisson intensity model or the forward intensity model.
Recent examples are Hwang and Chu [10], Caporale et al. [11], Berent and Rejman [12],
and Sigrist and Leuenberger [13].

2.2. Default Heterogeneity in Industries

Compared with structured models, the forward intensity approach includes more risk
factors due to its broader assumptions. However, the original forward intensity approach
computes PDs for a large sample of firms without considering default heterogeneity in
industry and its influence. Recently, more and more researchers have studied industry-
specific default heterogeneity among different industries. Bhimani et al. [14] computed
PDs for 31,025 private enterprises in Portugal and found that industry and geographical
location affect default. Dakovic et al. [15] constructed a generalized linear mixed model and
modeled unobserved default heterogeneity in different industries, and found that a model
considering unobserved heterogeneity had a higher accuracy ratio. Giesecke and Kim [16]
developed a dynamic measurement method for systemic risk in the entire financial sec-
tor, which captures the impact of industry-specific risk factors on the timing of failure.
Koopman et al. [17] proposed a high-dimensional, nonlinear, non-Gaussian dynamic factor
model to decompose system default risk into (1) macro financial risk, (2) autonomous
default dynamics, and (3) potential components of industry-specific effects. They found
that about 35% of the variation in default rate was caused by industry-specific factors.
Mensi et al. [18] investigated the short-term and long-term effects of FFR, VIX index, and
crude oil price on credit risk in the US banking, financial service, and insurance sectors,
which are quantile-dependent, and found that the short-term and long-term effects of
risk factors are time-varying and heterogeneous under different credit market conditions.
Gertler et al. [19] used the quasi-panel method to model the corporate loan default rates
of four major economic industries. This model allowed the combination of long-term and
short-term technologies at the same time to maintain a flexible unified framework, so as to
capture heterogeneity among different industries, and found that significant default hetero-
geneity exists in industries. Lee [20] examined whether industry-level credit risk affects the
yield spread of corporate bonds and used three types of industry risk variables: dilemma
exposure measures, industry status, and product market competition. Evidence suggests
that industry systemic risk does play an important role in explaining bond yield spreads.

This paper extends the forward intensity approach by including information on
default heterogeneity in industries. We computed PDs with information on the default
heterogeneity of all industries to make them more helpful for predicting defaults both for
one firm and a large portfolio of firms.
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3. Computed PDs by Industry-Specific Heterogeneity Indicators
3.1. Industry-Specific Default Heterogeneity Indicators

It is an effective method to construct different categories of samples’ indicators as
independent variables impacting credit risk. For example, Batrancea [21] constructed
10 ratios concerning financial performance to study their influence on bank assets and the
liabilities of the most important 45 banks in Europe and Israel, the United States of America,
and Canada, which provides a good basis for the research in this paper. In this paper,
we extend the forward intensity model by constructing industry-specific heterogeneity
indicators for all industries to compute PDs for multiple periods.

Duffie et al. [9] described defaults and other types of delisting excluding bankruptcy
(other exit) as two independent doubly stochastic Poisson processes. For the i-th firm,
default and other exit intensities can be denoted by hi(m, n) and hi(m, n), respectively. The
two intensities represent two average arrival rates during the interval [nτ, (n + 1)τ] with
observation time point mτ. Here, τ is set as one month, which means the basic time interval.
Therefore, in a basic time interval, τ = 1/12 and the default intensity is deterministic, so
we can get the following probabilities:

PDi(m, n) = 1− exp(−hi(m, n)τ),
POEi(m, n) = exp(−hi(m, n)τ)

[
1− exp

(
−hi(m, n)τ

)]
,

PSi(m, n) = exp
[
−
(

hi(m, n) + hi(m, n)
)

τ
]
.

(1)

Here, PDi(m, n), POEi(m, n), and PSi(m, n) are the probabilities of default, other exit
and survival, respectively, during the interval [nτ, (n + 1)τ] and observed at the time point
mτ. Obviously, PDi(m, n) + POEi(m, n) + PSi(m, n) = 1. For more details, readers are
referred to Duan et al [1].

A lot of evidence shows that industry-specific default heterogeneity exists in different
industries. In our preliminary analysis, Chinese-listed firms also show that there are
different co-movements in different industries over time. Besides, a firm’s default tendency
changes with co-movements of defaults in the industry and in the whole economy. Section 5
shows the details of the preliminary analysis. To study unobserved co-movements of
defaults in industries, we take an industry as a whole by averaging the default intensities
of all the firms in the industry:

Hj(m, n) =
∑

Ij(m)

i=1 hi(m, n)
Ij(m)

, (2)

where Ij(m) is the total number of surviving firms in the sample at the time point mτ in the
j-th industry.

A Bayesian approach was often employed when modeling the firms’ credit risk.
Ni et al. [22] found that Bayesian estimation can be employed on the firm’s default forward
intensity to introduce default heterogeneity into the forward intensity model. In this
paper, we take the industry’s average default intensity, estimated by the forward intensity
approach, as the average prior default intensity of the industry. According to the additivity
of Poisson processes, the number of firm defaults in the j-th industry follows the Poisson
distribution. If we take all firms in the j-th industry as a whole, the number of defaults for
every firm in the j-th industry follows the Poisson distribution with the industry's average
prior default intensity Hj(m, n). According to the properties of the Poisson process, in a
basic time interval, the conjugate prior distribution of Hj(m, n) is a Gamma distribution
expressed as Γ

(
αj(m, n), β j(m, n)

)
, and

Hj(m, n) ∼ Γ
(
αj(m, n), β j(m, n)

)
. (3)
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Then, the density function of Hj(m, n) is

π
(

Hj(m, n)
)
=

βi(m, n)αi(m,n)

Γ(αi(m, n))
Hj(m, n)αi(m,n)−1e−βi(m,n)hi(m,n). (4)

Let yi(n) denote whether the i-th firm has a default during the interval [nτ, (n + 1)τ].
When the observation time is after (n + 1)τ, the probability function of yi(n) is expressed as

p(yi(n)) =
hi(m, n)yi(n)

Γ(yi(n) + 1)
e−hi(m,n). (5)

Because default is a low-probability event, we assume a firm defaults at most once
a month. Let yj(m, n) denote the number of defaults during the interval [nτ, (n + 1)τ] for
all firms in the j-th industry which are surviving in the sample at time point mτ. We then
get the posterior distribution of Hj(m, n) for the j-th industry when the observation time is
after (n + 1)τ:

π
(

Hj(m, n) | yj(m, n)
)
=

p(yj(m,n)|Hj(m,n))π(Hj(m,n))∫ +∞
0 p(yj(m,n)|Hj(m,n))π(Hj(m,n))dHj(m,n)

,

=

 Hj(m,n)∑
Ij(m)

i=1 yi(n)e
−Ij(m)Hj(m,n)

∏
Ij(m)

i=1 Γ(yi(n)+1)


 βj(m,n)

αj(m,n)

Γ(αj(m,n))
Hj(m,n)

αj(m,n)−1e−βj(m,n)Hj(m,n)


∫ +∞

0

 Hj(m,n)∑
Ij(m)

i=1 yi(n)e
−Ij(m)Hj(m,n)

∏
Ij(m)

i=1 Γ(yi(n)+1)


 βj(m,n)

αj(m,n)

Γ(αj(m,n))
Hj(m,n)

αj(m,n)−1e−βj(m,n)Hj(m,n)

dHj(m,n)

=
(Ij(m)+βi(m,n))

αi(m,n)+yj(m,n)

Γ(αi(m,n)+yj(m,n))
Hj(m, n)αi(m,n)+yj(m,n)−1e−(Ij(m)+βi(m,n))Hj(m,n).

(6)

Let Ĥj(m, n) be the parameter of the posterior intensity of Hj(m, n), then

Ĥj(m, n) ∼ Γ
(
αj(m, n) + yj(m, n), β j(m, n) + Ij(m)

)
. (7)

According to the properties of the Gamma distribution, during the period [nτ, (n + 1)τ],
the mean values of the prior and posterior default intensities can be expressed correspond-
ingly as

E
(

Hj(m, n)
)
=

αj(m,n)
β j(m,n) = τHj(m, n),

E
(

Ĥj(m, n)
)
=

αj(m,n)+yj(m,n)
β j(m,n)+Ij(m)

= τĤj(m, n).
(8)

Combining the above formulas to eliminate αj(m, n), we have a relationship between
Hj(m, n) and Ĥj(m, n):

Ĥj(m, n) =
β j(m, n)Hj(m, n) +

yj(m,n)
τ

β j(m, n) + Ij(m)
. (9)

According to the properties of conjugate distributions, the higher βi(m, n), the more
confidence we have in Hj(m, n). Specially, as βi(m, n) approaches positive infinity, Ĥj(m, n)
= Hj(m, n), which means default intensity computed by the forward intensity approach
completely dominates posterior default intensities. On the contrary, if βi(m, n) = 0,

Ĥj(m, n) =
yj(n)

τ Ij(m)
means that the posterior default intensity depends on the data we

observe, which is the average number of defaults of all firms in the j-th industry during the
n-th month. If we combine the above formulas:

Ĥj(m, n) =

β j(m, n) + Ij(m)
yj(m,n)

τ ∑
Ij(m)

i=1 hi(m,n)

β j(m, n) + Ij(m)
Hj(m, n). (10)
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The above equation shows the relationship between the average posterior intensity

and the average prior intensity for all the j-th industry’s firms. Here, τ ∑
Ij(m)

i=1 hi(m, n) is the
expectation of the number of defaults in the j-th industry in month n, which is estimated
using the forward intensity approach, while yj(m, n) is actual number of defaults in the

n-th month in the same sample from this industry. If τ ∑
Ij(m)

i=1 hi(m, n) > yj(m, n), it means
that the original model overestimates the default intensity of the whole industry in the n-th

month, then Ĥj(m, n) < Hj(m, n). On the contrary, if τ ∑
Ij(m)

i=1 hi(m, n) < yj(m, n),it means
that the original model underestimates the default intensity of the whole industry in the
n-th month, then Ĥj(m, n) < Hj(m, n). Let the ratio of the posterior default intensity to
the prior default intensity be the industry-specific default heterogeneity indicator, which
reflects the extent to which the total number of defaults in the industry exceeds or falls
below the aggregated prior PDs.

Zj(m, n) =
Ĥj(m, n)
Hj(m, n)

=

β j(m, n) + Ij(m)
yj(m,n)

τ ∑
Ij(m)

i=1 hi(m,n)

β j(m, n) + Ij(m)
. (11)

Note that the industry-specific default heterogeneity indicator is time-varying, and
depends on the difference between the total number of firm defaults in the n-th month
and the expectation of the number of defaults estimated by the original model in the same
industry in the same month. It can capture the co-movements of defaults in the industry.
Because the original model does not consider industry-specific default heterogeneity, it can
only capture less information on the time dynamics in the industry or the whole economy
by including observable common factors in the input variables. Our industry-specific
default heterogeneity indicator is calculated by comparing the posterior and prior default
intensity in the industry, which can capture an unobserved part of the co-movements of
defaults in industries. For example, when the average posterior default intensity is much
greater than the average prior default intensity of an industry, we can know a co-rise of
defaults in the industry has not been captured by the original model. If we ignore this
information, we will underestimate the firms’ PDs when the default cluster occurs in
this industry. Besides, we can also measure the average tendency to default in different
industries over different time periods due to its time-varying nature. On the other hand,
for industries with low credit risk, due to fewer default events within the industry, the
number of realized defaults for different default prediction horizons will be far less than the
aggregated PDs for all firms within the industry. According to Formula (11), the industry-
specific default heterogeneity indicator Zj(m, n) will be less than 1. If a firm’s credit risk
is very dependent on the industry-specific default heterogeneity indicator for its industry,
when we estimate firms’ PDs in this industry, the new default forward intensity will be
obviously lower than the original default forward intensity, which means the new PDs are
lower. Therefore, when we estimate PDs, we will introduce default heterogeneity in the
industries into the forward intensity function. Duan and Miao [23] found that short-term
PDs can capture more co-movements in credit risk. Therefore, we calculated the shortest
horizon’s industry-specific default heterogeneity indicators to capture most co-movements
by set n = m. Then, hi(m, m) denotes the i-th firm’s default intensity during the m-th month
observed on the first day of the m-th month. We assume that for firms in the same industry
the posterior 1-month PDs share the same confidence in the 1-month prior PD. Then, we
replace β j(m, m) and Zj(m, m) by β j(1) and Zj(m) respectively.

Zj(m) =

β j(1) + Ij(m)
yj(m,m)

τ ∑
Ij(n)

i=1 hi(m,m)

β j(1) + Ij(m)
. (12)

To predict forward PDs in the future, we assume that an industry maintains a similar
industry default heterogeneity during close periods. We calculate the most recent available
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industry-specific default heterogeneity indicators to represent co-movements of defaults in
industries in the current month. We define the industry-specific posterior default intensity
of the m-th month in terms of the prior default intensity multiplied by the most recent
available industry-specific default heterogeneity indicator:

ĥij(m) = Zj(m− 1)hi(m, m), (13)

Here, we use 1-month-horizon prior default intensity and an industry-specific default
heterogeneity indicator to make ĥij(m) as close as possible to the current situation. When we
observe at the first day of the m-th month, Zj(m, m) is unknown. Then, the industry-specific
posterior default intensity is as follows:

ĥij(m) =

β j(1) + Ij(m− 1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1) + Ij(m− 1)
hi(m, m). (14)

The 1-month industry-specific posterior default intensity of every firm is calculated
taking industry-specific default heterogeneity into account. In addition, if the PDs of an
industry are aggregated, the systematic credit risk of the industry can also be estimated,
which can be applied for stress testing of the industry’s credit risk. This way of calculating
portfolio credit risk by aggregating every firm’s PD is a bottom-up method. However,
this industry-specific posterior default intensity cannot be regarded as our final calibrated
default intensity. This is because a firm’s default can not only be influenced by the industry
the firm is in, but may also be influenced by other industries. Therefore, if we calibrate
a firm’s PD, we need to take all industries’ default situations into account. But we need
industry-specific posterior default intensity to estimate β j(1), which will be introduced in
the next section. With β j(1), we can calculate Zj(m) for all past months, which reflects the
average level of default heterogeneity of the j-th industry in the m-th month.

3.2. PDs for All Horizons

If the default heterogeneity of other industries is not taken into account, the impact of
co-movement of the whole economy’s defaults will not be adequately considered. Thus, we
constructed a new variable, Zj,other(m), denoting the weighted average industry-specific
default heterogeneity of other firms:

Zj,other(m) =
∑10

s=1 Zs(m)Is(m)− Zj(m)Ij(m)

∑10
s=1 Is(m)− Ij(m)

. (15)

Here, Zj(m) and Zj,other(m) both contribute to our calibrated default intensity. On the
other hand, when we compute the longer prediction horizons’ PDs, it is not enough to
just consider the current value of industry-specific default heterogeneity. Duan et al [1]
found trends in some input variables are helpful to predict PDs. We also take the trends in
our industry-specific default heterogeneity indicators into account. Trends are calculated
using the difference between current value and the average value over the past period of
time. To be consistent, we take the average value of the past 12 months following Duan
et al [1]. Because the default intensity function is a proportional-hazards form of the original
forward intensity approach, our forward default intensity function is as follows:

ĥi(m, m + l − 1) = exp
(
Xj(m)γj(l)

)
hi(m, m + l − 1). (16)

Here, γj(l) is a column vector and Xj(m) is a row vector:

γj(l) =
[
γj1(l), γj2(l), γj3(l), γj4(l)

]T ,

Xj(m) =
[
Zj(m− 1), TZj(m− 1), Zj,other(m− 1), TZj,other(m− 1)

]
,

(17)
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where Xj(m) is the industry-specific default heterogeneity indicator of the j-th industry.
Here, TZj(m− 1) and TZj,other(m− 1) are the trends of Zj(m− 1) and Zj,other(m− 1), re-
spectively. The next section will describe how we estimate γj(l) for all the prediction
horizons. As long as we estimate γj(l), we can calibrate the default intensity estimated
by the forward intensity approach to compute ĥi(m, n), which considers co-movements
in the industry’s credit risk. With ĥi(m, n), we can compute cumulative POEs, PDs for
different prediction horizons. Firstly, we compute conditional PDs and POEs by ĥi(m, n)
and hi(m, n), where hi(m, n) is calculated by the original models. Then, we can compute
forward PDs, which are conditional PDs timed by probabilities that the firm survives be-
tween the predicting month and the observed month. Finally, we can compute cumulative
PDs by cumulating forward PDs. For more details of computing PDs, readers may also
refer to Duan et al. [1].

In this paper, we compute cumulative PDs for horizons from 1 month to 36 months
and evaluate the prediction performance of our PDs computed with industry-specific
default heterogeneity and PDs estimated by the original model in Section 6.

4. Pseudo-Likelihood Functions

Firstly, we employ the forward intensity model to calculate default forward intensity.
Then, let τi and τi be the months after the (m− 1)-th months in which the default and other
exit occur, respectively, for the i-th firm. We assume the firms’ defaults are conditionally
independent, and the 1-month horizon pseudo-likelihood function of the j-th industry’s
posterior probability is expressed as:

Pposterior
l=1

(
β j(1), τD, τOE, h

)
= ∏M

m=1 ∏J
j=1 ∏

Ij(m)

i=1 P̂posterior
j,l=1

(
β j(1), τi, τi, hi(m, m)

)
(18)

where M denotes the last month of the sample, I is the number of firms in the sample, J is
the number of industries in the sample, P̂l(βl , τDi, τOEi, hi(m)) is a probability depending
on the actual status of the i-th firm during month m, and hi(m) is default intensity estimated
by the forward intensity model on the first day of month m for the i-th firm. Then,

P̂posterior
j,l=1

(
β j(1) τi, τi, hi(m, m)) = 1{t0i≤m,min (τi ,τi)>m}P(t0i ≤ m, min(τi, τi) > m)

+1{t0i<m,τi≤τi ,τi=m}P(t0i ≤ m, τi ≤ τi, τi = m)

+1{t0i<m,τi≤τi ,τi=m}P(t0i ≤ m, τi ≤ τi, τi = m) + 1{t0i>m}P(t0i > m)

+1{min (τi ,τi)<m}P(min(τi, τi) < m),

(19)

where t0i is the first month for the i-th firm. The above formula is like the overlapped
pseudo-likelihood function proposed by Duan et al. [1]. Here, the first term is the probability
the firm survives during month m. The second term is the probability the firm defaults
during month m. The third term is the probability the firm has another exit event during
month m. The last two terms are the situations where the firm has not entered the sample
and the firm has already exited from the market. We introduced Formula (14) into the
overlapped pseudo-likelihood function:
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P̂posterior
j,l=1

(
β j(1), τi, τi, hi(m, m)

)
= 1{t0i≤m,min(τi ,τi)>m} × exp

−τ


β j(1)+Ij(m−1)

yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m) + hi(m, m)




+1{t0i≤m,τi≤τi ,τi=m}

1− exp

−τ

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m)




+1{t0i≤m,τi≤τi ,τi=m}

{
− exp

[
−τhi(m, m)

]}
× exp

−τ

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m)


+1{t0i>m} + 1{min(τi ,τi)<m}.

(20)

Then, we keep the terms associated with β j(1):

P̂posterior,β
j,l=1

(
β j(1), τi, τi, hi(m, m)

)
= 1{t0i≤m,min(τi ,τi)>m} × exp

−τ


β j(1)+Ij(m−1)

yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m)




+1{t0i≤m,τi≤τi ,τi=m}

1− exp

−τ

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m)




+1{t0i≤m,τi≤τi ,τi=m} exp

−τ

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) hi(m, m)


+1{t0i>m} + 1{min(τi ,τi)<m}.

(21)

Appendix A shows how to maximize Lposterior
l=1

(
β j(1), τD, τOE, h

)
and estimate β j(1).

With β j(1), we can compute all firms’ PDs and calculate the trends and current values of
our industry-specific default heterogeneity indicators. The industry-specific default hetero-
geneity indicators of all industries are then calculated. The pseudo-likelihood function of
new default intensity with industry-specific default heterogeneity indicators is expressed
as:

Pl(γ, τD, τOE, X, h) =
M−1

∏
m=1

J

∏
j=1

Ij(m)

∏
i=1

P̂j,l
(
γj1, γj2, γj3, γj4, τi, τi, Xj(m), hi(m, m + l − 1)

)
(22)

where
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P̂j,l
(
γj1, γj2, γj3, γj4, τi, τi, Xj(m), hi(m,+l − 1)

)
= 1{t0i≤m,min(τi ,τi)≥m+l} exp(−τ

{
l−1
∑

k=0

{
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k) + hi(m, m + k)

}}
)

+1{t0i≤m,τi≤τi ,τi<m+l} exp(−τ

{
τi−m−1

∑
k=0

{
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k) + hi(m, m + j)

}}
)

×
{

1− exp
[
−τ exp

[
Xj(m)γj(τi −m + 1)

]
hi(m, τi)

]
]

+1{t0i≤m,τi≤τi ,τi<m+l} exp(−τ

{
τi−m−1

∑
k=0

{
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k) + hi(m, m + k)

}}
)

×
{

1− exp
[
−τhi(m, τi)

]}
exp

{
−τ exp

[
Xj(m)γj(τi −m + 1)

]
hi(m, τi)

}
+1{t0i>m} + 1{min(τi ,τi)<m}.

(23)

Here, the first term is the probability that a firm survives during l months from the
m-th month. The second term is the probability that a firm defaults during l months from
the m-th month. The third term is the probability that a firm has another exit during l
months from the m-th month. The last two terms are the situations that a firm has not
entered the sample and that a firm has already exited the market. Similarly, we keep the
terms associated with γ :

P̂γ
j,l
(
γj1, γj2, γj3, γj4, τi, τi, Xj(m), hi(m,+l − 1)

)
= 1{t0i≤m,min(τi ,τi)≥m+l} exp[−τ

l−1
∑

k=0
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k)]

+1{t0i≤m,τi≤τi ,τi<m+l} exp

[
−τ

τi−m−1
∑

k=0
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k)

]
×
{

1− exp
[
−τ exp

[
Xj(m)γj(τi −m + 1)

]
hi(m, τi)

]}
+1{t0i≤m,τi≤τi ,τi<m+l} exp[−τ

τi−m−1
∑

k=0
exp

[
Xj(m)γj(k + 1)

]
hi(m, m + k)]

× exp
[
−τ exp

[
Xj(m)γj(τi −m + 1)

]
hi(m, τi)

]
+1{t0i>m} + 1{min(τi ,τi)<m}.

(24)

Details about how to maximize Pl(γ, τD, τOE, X, h) and to estimate γ are also intro-
duced in Appendix A.

5. Data and Preliminary Analysis
5.1. Data

Our data consist of firm-specific variables, firms’ events information, and common fac-
tors obtained from the NUS-CRI database. Default events are defined using the standards
of CRI: (1) bankruptcy filing; (2) a missed or delayed payment; or (3) debt restructur-
ing/distressed exchange. Our data set is all Chinese-listed firms from 1991 to 2020. In our
sample, we used firm-specific and common variables for the first available day of each
month from January 2000 to December 2019 to estimate our models’ parameters. To test
the out-of-sample performance, the data were divided into the experimental group and the
evaluation group at a ratio of 5 to 1, randomly. There were in total 3747 and 729 firms in
the experimental group and the evaluation group, respectively.

To compare the model, we construct the forward intensity function with the same
variables used by Duan et al. [1]. There are four common factors: stock index return, interest
rate, financial aggregated DTD, and non-financial aggregated DTD. Here, aggregated DTD
is the median DTD of all financial or non-financial Chinese-listed firms. DTD is calculated
by an adjustment method provided by Duan and Wang [24]. The firm-specific variables
include DTD, CASH/TA, CA/CL, NI/TA, SIZE, M/B, and SIGMA. Duan et al. [1] found it
helpful for estimating default to consider the trends in some firm-specific variables, which
are the differences in value between the current values and the 1-year mean values of the
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variables. Therefore, DTD, CASH/TA, CA/CL, NI/TA, and size are calculated for the
trend and level. Here, the level is the 1-year mean value of the variable.

5.2. Preliminary Analysis

According to the NUS-CRI database, Chinese-listed firms are divided into 10 in-
dustries: basic materials, communications, consumer (cyclical), consumer (non-cyclical),
diversified, energy, financial, industrial, technology, and utilities. Figure 1 shows the
number of all industry defaults per year from January 2000 to December 2019. Figure 2
shows the frequency of all industry defaults per year in the same period. Because there
are many industries, we show five industries with more defaults and five industries with
fewer defaults in two figures, respectively.
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We find that there are different fluctuations of default frequency in different industries.
In terms of the overall default ratio, diversified firms have a higher default frequency than
average. Comparatively, PDs in the utilities industry are very low. In addition, there are
differences in time span and degree of fluctuation in different industries. From 2003 to 2007,
for example, default frequency was high in the financial and communications industries.
Compared with the energy industry, the time span of default clustering is between 2004 and
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2008. We believe that corporate defaults are not only related to the overall default ratio and
trend in the region but also related to the overall default ratio and trends in the industry.

Currently, credit risk models are able to measure a firm’s PDs for multiple periods. By
aggregating the PDs of all firms, the PD of the whole industry or region can be obtained.
Therefore, credit risk models can also be employed to stress test. However, if a credit
risk model does not contain information on industry-specific default heterogeneity, it
cannot capture unobserved co-movements of defaults in the industry. Our model considers
different co-movements of defaults in all industries. The prediction performance for
aggregated PDs calculated by a bottom-up approach will be closer to the real situation with
information on industry-specific default heterogeneity.

6. Empirical Results
6.1. Parameter Estimates

After employing the forward intensity model to estimate the original default forward
intensity of all firms, we estimate β j(1) by maximizing the pseudo-likelihood function 17.
Table 1 shows the estimated values of 10 industries’ parameters.

Table 1. Maximum pseudo-likelihood estimates for βj(1).

Industry Basic Materials Communications Consumer
(Cyc)

Consumer
(N-Cyc) Diversified

β j(1) 775.41 873.63 1152.10 19,243.82 705.98

Industry Energy Financial Industrial Technology Utilities

β j(1) 2423.68 276.79 1135.92 613.32 685.59

According to Formula (14), the larger β j(1) is, the closer posterior PDs are to prior PDs.
This means that the firm in the j-th industry is slightly influenced by other firms’ defaults
in the same industry, and posterior probability does not change much. According to the
estimated values of 10 industries’ parameters, a firm in the consumer (non-cyclical) industry
is least influenced by other firms’ defaults in the same industry. In contrast, financial firms’
defaults influence other financial firms the most. Firms in basic materials, diversified,
technology, and utilities industries can also be influenced by other firms’ defaults in the
same industries.

After computing all Zj(m) and TZj(m) values, we estimate γj(l) for all horizons
in all industries. Tables 2–5 show estimated values of γj1(l), γj2(l), γj3(l), γj4(l) for
some representative prediction horizons, and γj1(l), γj2(l), γj3(l), γj4(l) are parameters of
Zj, TZj, Zj,other, TZj,other.

Table 2. Maximum pseudo-likelihood estimates for γj1(l).

Zj γj1(1) γj1(2) γj1(3) γj1(6) γj1(12) γj1(24) γj1(36)

Basic
Materials 2.491185 2.280642 2.155384 1.899994 −0.17849 −1.35955 −0.44241

Communications −2.33016 −2.48579 −2.58817 −3.55322 −1.46946 −0.95426 −1.068
Consumer

(Cyc) −0.17068 −0.3005 −0.29659 −1.6231 0.270778 0.515792 2.265838

Consumer
(NC) −2.71041 −2.76414 −2.86428 −2.44659 −3.08668 −1.99594 −0.90574

Diversified −1.40276 −0.98109 −0.66264 −1.03316 −0.40614 −0.40304 −0.98643
Energy −4.25579 −4.065 −4.19237 −3.32675 −1.30519 −0.38496 1.197159

Financial 2.734843 2.868124 2.859868 2.655078 2.034357 −0.37494 0.082072
Industrial 2.854156 2.871496 2.946054 3.540954 3.536143 2.546084 0.027085

Technology −0.25124 −0.24487 0.196717 −0.99298 −0.11297 −1.51631 −0.15389
Utilities −2.21956 −2.17543 −2.34536 −2.69005 −2.0572 −2.72963 −0.02748
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Table 3. Maximum pseudo-likelihood estimates for γj2(l).

TZj γj2(1) γj2(2) γj2(3) γj2(6) γj2(12) γj2(24) γj2(36)

Basic
Materials −2.24804 −3.07666 −2.29236 −1.39137 0.774615 2.2439 0.465381

Communications 2.417619 3.533761 2.423067 4.272601 −0.84387 0.828925 0.20722
Consumer

(Cyc) 0.258211 0.999959 0.223138 0.895433 0.307311 −0.60722 −1.1084

Consumer
(NC) −2.17874 2.099645 2.688754 2.547406 1.794337 9.730836 3.621596

Diversified −1.33008 −1.43756 1.718504 −0.99719 1.340722 −1.39585 −0.19119
Energy 0.945732 1.48091 3.675942 1.215448 3.31764 0.285514 2.258077

Financial −2.99554 −2.91961 −3.03768 −2.8092 −1.84164 0.348643 0.618982
Industrial −2.59238 −2.71164 −2.95667 −3.20924 −3.50535 −2.62851 −0.19389

Technology 0.411408 −0.05615 −0.10175 1.319924 0.447983 0.477757 0.030217
Utilities 1.668564 3.580656 −0.04558 0.004809 2.576682 −0.74262 0.720997

Table 4. Maximum pseudo-likelihood estimates for γj3(l).

Zj,other γj3(1) γj3(2) γj3(3) γj3(6) γj3(12) γj3(24) γj3(36)

Basic
Materials −2.52744 −2.34069 −2.21324 −2.02293 0.116848 1.208248 0.370522

Communications 2.736875 2.871824 2.979698 3.771385 1.623522 1.195812 1.250113
Consumer

(Cyc) 0.086383 0.211614 0.229138 1.523775 −0.33232 −0.54249 −2.31581

Consumer
(NC) 2.8266 2.876228 2.993546 2.629115 3.242611 2.099184 0.765712

Diversified 2.039327 1.601927 1.279474 1.789817 1.038678 0.736229 1.258517
Energy 4.680227 4.462585 4.607325 3.661166 1.546356 0.606136 −1.10992

Financial −2.80724 −2.94792 −2.92779 −2.76668 −2.16542 0.132517 −0.26506
Industrial −2.80509 −2.84218 −2.90324 −3.50324 −3.48343 −2.55798 −0.07193

Technology 0.568141 0.597914 0.083002 1.318448 0.537657 1.79763 0.146919
Utilities 1.677209 1.614704 1.666923 1.967737 1.404774 2.075835 −0.47442

Table 5. Maximum pseudo-likelihood estimates for γj4(l).

TZj,other γj4(1) γj4(2) γj4(3) γj4(6) γj4(12) γj4(24) γj4(36)

Basic
Materials 2.147868 3.726177 2.787542 1.373924 0.439178 −1.03204 1.224042

Communications −2.72153 −2.59917 −2.4975 −2.92083 0.923662 −1.47403 0.027272
Consumer

(Cyc) −0.63154 −0.00092 −0.08518 −1.26268 1.590467 2.310409 2.734578

Consumer
(NC) −2.89664 −2.00488 −2.07615 −2.74982 −2.17565 −1.41085 0.23462

Diversified −0.90503 −1.67394 0.751807 −1.69593 1.085887 2.508569 1.608284
Energy −3.07229 −2.68038 −4.0168 −5.10284 0.382157 1.557167 1.929201

Financial 4.367602 4.145667 2.898224 0.882199 3.998458 0.975475 0.269972
Industrial 3.307187 3.975671 3.591346 2.965927 4.566214 2.623784 0.640499

Technology 1.176082 0.753229 1.602314 −1.25978 0.404673 1.77964 2.752035
Utilities −2.04431 −1.27136 −2.15938 −3.01697 −0.00345 −1.59101 −0.13897

Table 2 reflects the impact of current values of industry-specific default heterogeneity
indicators in 10 industries for some representative horizons. Table 3 reflects the impact of
trends in default heterogeneity indicators in 10 industries for some representative horizons.
In the industrial industry, the impact of co-movements is largest and longest. Default
clustering may influence the industrial industry over more than 2 years. In the financial
industry, the impact of co-movements is also large and lasts for more than a year.
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Table 4 reflects the impact of the current values of industry-specific default hetero-
geneity indicators in other industries for some representative horizons. Table 5 reflects the
impact of trends in industry-specific default heterogeneity in other industries for some
representative horizons. Some industry categories, like communications, consumer (non-
cyclical), diversified, and energy are influenced much more by co-movements in other
industries’ defaults than by themselves.

6.2. Comparing with the Number of Defaults

Since the forward intensity model is practical for estimating multi-period PDs with
term structure, we chose to extend it by constructing industry-specific default heterogeneity
indicators. Therefore, we need to compare the original forward intensity model with our
extended model. In addition, neural networks and machine learning are also good ways to
improve default prediction. Previous research on machine learning usually only predicts
defaults through discrimination or calculation of credit scores rather than estimation
of accumulative PDs for multiple periods. For example, Barboza et al. [25] predicted
bankruptcy one year prior to the event and compared the performance of different machine
learning models, including support vector machines, bagging, boosting, and random
forest. Gunnarsson et al. [26] constructed a multilayer perceptron network and a deep
belief network and compared their performance for credit scoring. However, with the
development of PD models, it is possible to predict multi-period PDs through machine
learning. For example, Sigrist and Leuenberger [13] combined econometric models with
different machine learning models to estimate multi-period cumulative PDs and found that
tree-boosting has the highest prediction accuracy. In this paper, we need to judge whether
our industry default heterogeneity indicators are helpful to improve default-predicting
ability for Chinese-listed firms, and the comparison between the original forward intensity
model and our extended model is as follows.

Comparing the aggregated number of defaults with aggregated PDs is widely used to
evaluate credit risk model performance. For each horizon, we computed the aggregate accu-
mulated PDs of all surviving firms using data for the first day of the month and aggregated
numbers of defaults in the prediction horizons for the same firms. Then, we compared
them for all prediction horizons. Figures 3 and 4 show a comparison of the realized number
of defaults, original aggregated accumulated PDs, and new aggregated accumulated PDs
for a 12-month prediction horizon in sample and out of sample, respectively.
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Figure 4. This figure shows a comparison of the realized number of defaults, original aggregated
accumulated PDs, and new aggregated accumulated PDs for a 12-month prediction horizon out
of sample.

Obviously, new aggregated PDs that consider industry-specific default heterogeneity
are closer to the realized number both in and out of sample. From 2003 to 2005, a large
number of firms defaulted, and new aggregated PDs that consider industry-specific default
heterogeneity are higher than the original PDs for the prediction horizon of 12 months. In
contrast, the new aggregated PDs are lower than the original PDs for the period 2013 to 2015.
This indicates that our model can capture more effective information on industry-specific
default heterogeneity and its impact.

6.3. Prediction Accuracy Ratio

Accuracy ratio (AR) is widely adopted to evaluate the predictive ability of credit risk
models. AR can reflect the effective information on defaults in the future that a credit
risk model contains. If the AR is zero, it means the model is a zero-information model.
If the cumulative accuracy profile is at the 45◦ line, then the model is a zero-information
model. The higher the AR, the better the predictive power of the model, and the cumulative
accuracy profile will be further above the 45◦ line. Readers may refer to Vassalou and
Xing [27] for more details. The AR they obtained for Merton’s model is 0.592, which
means the model contains substantial, effective information on defaults in the future.
Figures 5 and 6 show the cumulative accuracy profiles for calibrated PDs from January
2000 to December 2019 for horizons of 1, 2, 3, 6, 12, 24, and 36 months in and out of sample,
respectively. The model’s cumulative accuracy profiles are obviously above the 45◦ line
for all prediction horizons. In particular, the predictive power of the model is strong for
horizons of no more than 1 year.

Figures 7 and 8 contrast the ARs of new PDs with the original PDs for all horizons in
and out of sample. The ARs of new PDs are always higher than those of original PDs, both
in sample and out of sample, for all horizons. On the other hand, the out-of-sample ARs of
the new PDs are not lower than the in-sample ARs. For the short-term prediction horizons,
the ARs of our new PDs were greatly improved compared with the original PDs out of
sample. When the prediction horizons increase, our calibrated PDs improve less. However,
when the prediction horizon increases to 3 years, the ARs of our new PDs are still higher
than for the original PDs.
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Tables 6 and 7 show the values of the ARs for horizons of 1, 2, 3, 6, 12, 24, and
36 months in and out of sample, respectively. The ARs of our new PDs in the sample show
a similar increase, of about 7%. Out of sample, the ARs of our new PDs are relatively
increased by 8% when the prediction horizons are no more than 3 months. When the
prediction horizons increase to more than 6 months, the relative increase in ARs is stable at
around 6%. This means that our model is also helpful for long-horizon prediction.

Table 6. Comparison of the ARs in the sample.

Accuracy
Ratio 1 Month 2 Months 3 Months 6 Months 12 Months 24 Months 36 Months

Original PDs 0.5785 0.5782 0.5811 0.5772 0.5520 0.5083 0.4913
Revised PDs 0.6246 0.6202 0.6255 0.6238 0.6056 0.5554 0.5293
Increased (%) 7.4 6.8 7.1 7.5 8.8 8.5 7.2

Table 7. Comparison of the ARs out of sample.

Accuracy
Ratio 1 Month 2 Months 3 Months 6 Months 12 Months 24 Months 36 Months

Original PDs 0.5543 0.5733 0.6032 0.6149 0.6131 0.5254 0.5174
Revised PDs 0.6262 0.6335 0.6559 0.6557 0.6418 0.5628 0.5527
Increased (%) 11.5 9.5 8 6.2 4.8 6.6 6.4

7. Conclusions

All in all, industry-specific default heterogeneity is a problem that cannot be ignored
in default prediction for a large portfolio. To address this issue, we extended the forward
intensity model and introduced industry-specific default heterogeneity indicators into the
model. We divided Chinese-listed firms into 10 industries and estimated the parameters of
industry-specific default heterogeneity indicator functions for different industries. Then,
we calculated the default heterogeneity indicators for all industries for each month and
maximized the pseudo-likelihood function of new PDs. We measured the impacts that
all firms received from within- and across-industry default heterogeneity for all horizons.
Finally, we computed new PDs containing information about co-movements of default
within and across industries over time. The new PDs improve the ARs and reduce the
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gap between aggregated PDs and the realized number of defaults, both in and out of
sample, for all horizons. Through theoretical modeling and data analysis, we reached the
following conclusions:

(1) Co-movements in different industries are very heterogeneous. Defaults in some
industries are greatly affected by co-movements of defaults within the industry, and
some industries are greatly affected by co-movements of default in other industries.

(2) Extending the forward intensity model, we studied how firms’ defaults are influenced
by co-movements of default within the industry and across industries. We computed
all Chinese-listed firms’ PDs by measuring the influence of co-movements of default
within the industry and across industries.

(3) The empirical results show that new PDs considering the impact of industry-specific
default heterogeneity within and across industries have stronger predictive ability.

For both in-sample and out-of-sample predictions, new PDs’ ARs improved by more
than 6% relative to all prediction horizons. Out of sample, short-term PDs’ ARs improved
by up to 8% or more. We also compared the aggregated PDs and the realized number
of defaults for one year and found that new PDs have a smaller gap from the realized
number of defaults. The main contribution of this paper is that we extended the forward
intensity model to make PDs contain information about default heterogeneity in industries.
In addition, we measured the impact of default heterogeneity within and across industries.
This makes the model capture more co-movements of defaults in the industry and the
region. This is of significance not only for individual investors to avoid risk but also
for credit risk supervision departments to detect systemic credit risk. For examples, it is
helpful for a stress test to capture risk spillover within and across industries when default
clustering occurs.

In addition, we find that the levels and trends of systemic credit risk across the region
have a very different impact on various industries. The credit risk of industrial and financial
firms, for example, is more sensitive to the increasing frequency of defaults across the region.
While the cluster of defaults across the region is accelerating rapidly, even if it has not
yet reached a high level, regulators must pay attention to these two industries. When
the default cluster is already severe, diversified, energy, and communications firms are
more likely to default. The non-cyclical consumption sector is more affected by external
influences than the cyclical consumption sector. In a bad economic climate, regulators
can focus on limiting leverage in these sectors to avoid a chain reaction. In addition,
industries with large fluctuations in the industry-specific default heterogeneity indicator
are more affected by systemic credit risk, such as the financial industry. When a default
cluster appears, the financial industry's overall credit risk rises much higher than in other
industries. When economic environment is good, the financial industry's overall credit
risk declines more than in other industries. For industries with small fluctuations in the
industry-specific default heterogeneity indicator, credit risk is mainly affected by the firm-
specific attributes and observed common factors, and the new PD is closer to the original
PD. Therefore, regulators could use such a model to do stress testing on the whole region
and control the leverage of firms in financial, diversified and energy industries according
to the level of systemic credit risk.

Credit risk modeling for large portfolios still faces challenges. Future research has
several directions. In order to maintain stability, the spillover credit risks from other
industries which we did not classify in this paper could be considered. Researchers can
use machine learning methods to study the relationships between risk spillovers across
industries. On the other hand, Duan et al. [1] adopted the exponential function to fit
the firm's forward default intensity in the forward intensity approach. Compared with
the linear function, the exponential function has more advantages. Researchers can also
try to use the neural network method to fit the forward default intensity and realize a
combination of the machine learning model with the forward default intensity model.
Researchers can also conduct a more detailed study on how defaults spread within and
across industries. We need deeper study on sources of default heterogeneity in industries,
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and it is important to improve credit risk models. Credit risk models which capture more
unobserved co-movements of defaults in industries will be meaningful for improving credit
risk models.
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Appendix A

In this paper, we employed the gradient descent method to maximize the pseudo log-
likelihood function and estimate β j(1). Appendix A will show the pseudo log-likelihood
function of β j(1) and its gradient.

We substitute Formula (14) into Formula (18) and take the log of it:

Lposterior
l=1 =

M

∏
m=1

Ij(m)

∏
i=1

lnP̂j,l=1
(

β j(1), τi, τi, hi(m, m)
)
=

J

∏
j=1

Lposterior
j,l=1 . (A1)

Here, Lposterior
l=1 can be decomposed by industry, and m = 1 denotes the first month

from which we want to compute new PDs. Note that we also have data before this month,
so we can also calculate Zj(m) and TZj(m) when m < 1. If we maximize j sets of Lposterior

j,l=1 ,

Lposterior
l=1 will be the maximum. Let hE

i (m, n) be the default intensity, on the condition that
the firm has this kind of event at n-th month:

hE
i (m, n) = 1{Ei(n)=E} × hi(m, n), (A2)

where E is the event type, which can be 0, 1, or 2 to denote survival, default, or other exit
respectively. Here, Ei(n) is the event type of the i-th firm in the n-th month and Lβ,posterior

j,l=1

is the decomposed part of Lposterior
j,l=1 , which is only associated with β j(1). Then, it can be

expressed as follows:

Lβ,posterior
j,l=1 = −τ

M
∑

m=1

Ij(m)

∑
i=1

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) (h0
i (m, m) + h2

i (m, m))

+
M
∑

m=1

Ij(m)

∑
i=1

ln

1− exp

−τ

β j(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

β j(1)+Ij(m−1) h1
i (m, m)




(A3)
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The gradient of Lβ,posterior
j,l=1 is expressed as

Gβ,posterior
j,l=1 = −τ

M
∑

m=1

Ij(m)

∑
i=1

Ij(m−1)−Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

(β j(1)+Ij(m−1))
2

(
h0

i (m, m) + h2
i (m, m)

)

+τ
M
∑

m=1

Ij(m)

∑
i=1

exp

−τ

βj(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)
βj(1)+Ij(m−1) h1

i (m,m)



1−exp

−τ

βj(1)+Ij(m−1)
yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)
βj(1)+Ij(m−1) h1

i (m,m)



×
Ij(m−1)−Ij(m−1)

yj(m−1,m−1)

τ ∑
Ij(m)

i=1 hi(m−1,m−1)

(β j(1)+Ij(m−1))
2 h1

i (m, m).

(A4)

Similarly, we also calculate the log of the pseudo likelihood functions of γj(l) and then
calculate the gradient. The pseudo log-likelihood functions of γj can be expressed as:

Ll =
lmax

∏
l=1

M−l+1

∏
m=1

I(m)

∏
i=1

lnP̂j,l
(
γj1, γj2, γj3, γj4, τi, τi, Xi(m), hi(m, m + l − 1)

)
=

lmax

∏
l=1

J

∏
j=1

Lj,l , (A5)

where lmax is the largest prediction horizon we set and Ll can be decomposed by industry
and prediction horizon. Then, Lγ

j,l is the decomposed part of Lj,l which is only associated
with γj(l), and can be expressed as follows:

Lγ
j,l = −τ

M
∑

m=1

Ij(m)

∑
i=1

{
exp

[
Xj(m)γj(l)

]
[(h0

i (m, m + l − 1) + h2
i (m, m + l − 1)]

}
+

M
∑

m=1

Ij(m)

∑
i=1

ln
{

1− exp
{
−τ · exp

[
Xj(m)γj(l)

]
h1

i (m, m + l − 1)
}}

,

(A6)

Let Gγ
j,l be the gradient of Lγ

j,l :

Gγ
j,l = −τ

M
∑

m=1

I(m)
j

∑
i=1

Xj(m)T exp
[
Xj(m)γj(l)

][
h0

i (m, m + l − 1) + h2
i (m, m + l − 1)

]
+τ

M
∑

m=1

I(m)
j

∑
i=1

exp{−τ· exp[Xj(m)γj(l)]h1
i (m,m+l−1)}

1−exp{−τ· exp[Xj(m)γj(l)]h1
i (m,m+l−1)}

×Xj(m)T exp
[
Xj(m)γj(l)

](
h1

i (m, m + l − 1)
)
.

(A7)

The gradient descent method is used to estimate β and γ. Then, Lβ
j,l=1 and Lγ

j,l will be
the maximum. Finally, we realize the estimation on the pseudo likelihood function and get
the value of all parameters.
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