
Citation: Rajeswari, M.; Ramalingam,

R.; Basheer, S.; Babu, K.S.; Rashid, M.;

Saranya, R. Multi-Objective ABC-NM

Algorithm for Multi-Dimensional

Combinatorial Optimization Problem.

Axioms 2023, 12, 395. https://

doi.org/10.3390/axioms12040395

Academic Editors: Ivan Mauricio

Amaya-Contreras and José

Carlos Ortiz-Bayliss

Received: 23 January 2023

Revised: 12 April 2023

Accepted: 15 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Multi-Objective ABC-NM Algorithm for Multi-Dimensional
Combinatorial Optimization Problem
Muniyan Rajeswari 1, Rajakumar Ramalingam 2 , Shakila Basheer 3 , Keerthi Samhitha Babu 4,
Mamoon Rashid 5,* and Ramar Saranya 6

1 Department of Computer Science and Engineering, Sri Manakula Vinayagar Engineering College,
Pondicherry 605107, India

2 Department of Computer Science and Technology, Madanapalle Institute of Technology and Science,
Madanapalle 517325, India

3 Department of Information Systems, College of Computer and Information Science, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4 Department of Computer Science and Information Technology, KL Deemed to be University, Guntur District,
Vaddeswaram 522302, India

5 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, India

6 Department of Computer Science and Engineering, Manonmaniam Sundaranar University,
Tirunelveli 627012, India

* Correspondence: mamoon.rashid@vupune.ac.in

Abstract: This article addresses the problem of converting a single-objective combinatorial problem
into a multi-objective one using the Pareto front approach. Although existing algorithms can identify
the optimal solution in a multi-objective space, they fail to satisfy constraints while achieving optimal
performance. To address this issue, we propose a multi-objective artificial bee colony optimization
algorithm with a classical multi-objective theme called fitness sharing. This approach helps the
convergence of the Pareto solution set towards a single optimal solution that satisfies multiple
objectives. This article introduces multi-objective optimization with an example of a non-dominated
sequencing technique and fitness sharing approach. The experimentation is carried out in MATLAB
2018a. In addition, we applied the proposed algorithm to two different real-time datasets, namely the
knapsack problem and the nurse scheduling problem (NSP). The outcome of the proposed MBABC-
NM algorithm is evaluated using standard performance indicators such as average distance, number
of reference solutions (NRS), overall count of attained solutions (TNS), and overall non-dominated
generation volume (ONGV). The results show that it outperforms other algorithms.

Keywords: artificial bee colony; Nelder—Mead; multi-objective optimization; 0-1 knapsack problem;
nurse scheduling problem

MSC: 68Q17; 68Q25; 68Q30; 68Q87

1. Introduction

Multi-objective optimization is the method of finding a single optimal result which
has the potential to satisfy more than one objective for the given problem. There are three
possible situations in multi-objective optimization problems [1,2]:

• Diminish all the objective functions;
• Increase all the objective functions;
• Diminish a few objectives and increase other objective functions.

Max f (x) = min(− f (x)) (1)
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A multi-objective optimization problem (MOP) aims to determine a better compro-

mising solution than a solitary individual. The vector of the decision variable
→
x* ∈ F is

Pareto optimal when there is no other decision variable
→
x ∈ F such that fi

(→
x
)
≤ fi

(→
x*
)

,

i = 1, 2, . . . , n. The vector
→
x* is determined as Pareto optimal or globally non-dominated if

no other solution in the set can dominate [3]. The set of solutions thus produced is said to
be a Pareto-optimal set. The optimal set is specified as the Pareto-optimal front. From the
multi-objective set, the user can select an ideal solution [4].

The dominance relation is used to associate two individuals. For example, a solution
u is said to lead to another solution v if and only if fi(u) ≤ fi(v), for i = 1, 2, . . . , n and
fi(u) < fi(v) for at least one i, it is known as a globally non-dominated set. No other
solution among the set can dominate it. The Pareto dominance for the solution is to
dominate other solutions, and should not get worse in any given objectives with strict
efficiency than one of them [5]. The Pareto dominance among two solutions u and v can
possibly occur in any one of these cases:

• The solution u dominates solution v, denoted as ui ≺ vi;
• The solution u is dominated by solution v, denoted as vi ≺ ui;
• Both the solutions u and v are not dominated by each other, and they are said to be

non-dominated. It is denoted as ¬(ui ≺ vi) ∧ ¬(vi ≺ ui).

Recently, several meta-heuristic algorithms have been introduced to address the multi-
dimensional combinatorial optimization problem [6]. Some of the famous techniques,
namely genetic algorithm [7], differential evolution [8], particle swarm optimization [9],
grey wolf optimization [10], and firefly algorithm [11], have been applied in various real-
time applications, including optimum design for a centrifugal pump [12,13], Optimizing
Magnification Ratio for the Flexible Hinge Displacement Amplifier [14], clustering [15], eco-
nomic load dispatch [16], and job scheduling [17], to determine optimal solutions. However,
the algorithms must be reinforced while applying them to multi-objective problems [18].
In this work, we utilized the ABC algorithm, which is more robust in mathematical analy-
sis and provides more adequate solutions than all other algorithms. However, the ABC
algorithm consumes ample computation time due to inefficient search direction while
handling multi-objective problems. To eradicate these issues, we introduced the Nelder—
Mead technique with non-dominated sorting and fitness allotment methods to address the
multi-objective concerns.

The main theme of this work is discussed below:

• A novel algorithm, MBABC-NM, is proposed to improve the exploitation of the
artificial bee colony (ABC) technique. The algorithm incorporates a modified non-
dominated sorting and fitness-sharing approach to handle multi-dimensional prob-
lems efficiently.

• The proposed MBABC-NM algorithm is tested on two different real-time datasets: the
knapsack problem and the nurse scheduling problem.

• The algorithm’s performance is compared with other state-of-the-art algorithms, like
genetic algorithm, cyber swarm optimization, and particle swarm optimization.

• The results of the experiments demonstrate that MBABC-NM outperforms the com-
pared algorithms significantly. This result suggests that the proposed algorithm can
effectively solve real-world optimization problems.

The rest of the paper is structured such that Section 2 discusses modified non-dominated
sorting and fitness-sharing techniques over the multi-dimensional problem; Section 3
illustrates the detailed working process of the proposed MBABC-NM algorithm; and
Section 4 presents the experimental setup for NSP and the 0-1 knapsack problem. The
empirical study and the discussion of the results are shown in Section 5, while Section 6
summarizes the work and its future directions.
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2. Methodology
2.1. Modified Non-Dominated Sorting

In modified non-dominant sorting, the algorithm divides the population L, 1 ≤ L ≤ N
fronts in decreasing order of their dominance F = {F1, F2, . . . , FL}. Each solution in a
front is non-dominated by the other. Each individual in Fl is conquered by at least one
individual in its preceding front Fĺ . Non-dominated arrangement aids in arranging the
solutions sequentially based on the dominance, as mentioned in the above relation [19]. It
improves the search capability of the multi-objective approach by introducing modified
non-dominated solutions into the search space. The detailed narrative of the modified
non-dominated arrangement is discussed in Algorithm 1. This algorithm is specified as
one function involved in Algorithm 3.

Algorithm 1: Non-Dominated Sort (Z)

Input: Z
For each individual a ∈ Z do
Individuals dominated by a

Pa ← ∅
Pb ← ∅

Solutions which dominate a
Ca ← 0
For each solution b ∈ Z do

if (a ≺ b) then
Add the individuals b to the set of solutions dominated by a
Pa ← Pa ∪ {b}
else if (b ≺ a) then
Increment the domination counter a
Ca ← Ca + 1
End if

end for
if Ca = 0 then
Assign non-dominance rank as 1 for individual a

arank ← 1
L1 ← L1 ∪ {a}

End if
end for
Initialize front counter
u← 1
While Lu 6= ∅ do

Members of next front K
K ← ∅
For each solution a ∈ Lu do

For each solution b ∈ Pa do
Decrement the dominant counter of b
Cb ← Cb − 1

if Cb = 0 then
Assign rank for the individual b
brank ← u + 1
K ← K ∪ {b}
End if

end for
end for

u← u + 1
Lu ← K
The dominant solution of Lu are stored in Ĺu
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This section discusses a modified non-domination sorting process that helps improve
the multi-objective algorithm’s search capability. In addition, the fitness-sharing function
that aids the population in exploring diverse groups based on individual similarity is
discussed in Section 2.2.

2.2. Fitness Sharing

Fitness sharing in evolutionary computing is used for isolating the population into
diverse groups based on individual similarity [1]. It transforms an individual’s fitness
into the shared fitness value; usually, it is a lower value than the original. Only a limited
amount of fitness value is available in each niche, and individuals in the same niche will
share fitness value. The shared fitness fshared(i) of food particle i with fitness f iti can be
measured by

fshared(i) =
f iti
ni

(2)

where ni is the niche total, which counts the number of food particles with fitness f iti
shared. The niche count can be calculated by summating the distribution function over
the swarm.

ni = ∑FP
j=1 ϕ(d ij) (3)

where FP denotes number of food particles and (d ij) is the distance between the food
particles i and j. The sharing function ϕ computes the relationship between two food
particles. The sharing function returns one if the food particles are identical and return
0 if the distance (d ij) is greater than a threshold of dissimilarity value. The distribution
function can be represented as

ϕ(d ij) = f (x) =

{
1−

( dij
θr

)ϕ
, d < θr

0, otherwise
(4)

where θr represents the sharing radius, which defines the size of the niche and threshold of
dissimilarity. The food particles within this sharing radius are like each other and share
their fitness. ϕ is the constant which normalizes the shape of the distribution function. dij
is the distance between two food particles measured based on genotypic or phenotypic
resemblance. The genotypic similarity is based on bit-string and is usually measured using
Hamming distance. The phenotypic resemblance measures accurate parameters available
in the search space using Euclidean distance.

d(a, b)ψ =

([
(pa − pb)

2 + (qa − qb)
2
] 1

2
)ψ

(5)

The Euclidean distance d(a, b) is the distance between the nodes a and b, (pa, qa) are
the coordinates of the node a, and (pb, qb) are the coordinates of the node b. The minimum
transmission energy TEsoli

contains the near-optimal solution. Fitness distribution based
on phenotypic resemblance provides an improved outcome compared to distribution based
on genotypic similarity [20–22].

In our algorithm, every individual finds a new solution. If a new solution dominates
the original individual, it is entered into the external archive. If both do not dominate, then
solutions are chosen randomly. When many non-dominated solutions exceed the archive
size, our proposed algorithm uses a niching technique to truncate the crowded member and
maintain uniform distribution among the archive members. Maintaining diversity among
archive members is a complex task. Thus, in our proposed algorithm, we incorporated a
fitness-sharing technique based on niche count, to ensure the diversity of the population.

The niching method maintains diversity and permits the algorithm to examine multi-
ple summits in parallel. It also prevents the algorithm from being stuck in the local optima
of search space, and can be viewed as the subspace of the population. For each niche in
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our proposed algorithm, the fitness is finite and shared among the population. It is the
process of optimizing the entire domain set. Fitness sharing transforms the raw fitness of a
solution into a shared one. It helps to sustain diversity among the population, and thus
our algorithm explores a better search space. The proposed fitness sharing technique is
shown in Algorithm 2. Algorithm 3 invokes Algorithm 2 as a function while processing
the execution.

Algorithm 2: Fitness Sharing (Lu)

Number of solutions in Front counter L
g←|Lu|

For k← 1 to g do
Lu(Sharek)← 0
For each objective m do
Sort population with respect to all objectives

Lu ← sort(Lu, m)
Lu[1]← ∞
Lu[g]← ∞

For k← 2 to g− 1 do
Calculate Shared fitness of the kth solution with f itk

Lu(Sharek)←
f itk
nk

Niche count can be measured by

nk ← ∑
|L|
j=1 ϕ(d kj)

The sharing function between two population elements can be measured using

ϕ(d kj)←
{

1−
(

dkj
θr

)ρ
, d < θr

0, otherwise
End for
End for

End for

3. Multi-Objective BABC-NM for a Multi-Dimensional Combinatorial Problem

Multi-Objective BABC-NM consists of an algorithm explained in this thesis and Algo-
rithms 3–6 in this chapter. Algorithm 3 is modified based on a multi-objective perspective,
and the pseudocode of the proposed MBABC-NM was described in detail in Algorithm 3.
The working process of the formulated MBABC-NM is portrayed in Figure 1. The mapping
process of this algorithm involves the following steps:

Initialization: The algorithm randomly generates a population of candidate solutions
to the MDCOP. Each candidate solution is represented as a vector of decision variables.

Fitness Evaluation: The fitness of each candidate solution is evaluated by computing
its objective function values. In multi-objective optimization, multiple objective functions
usually need to be optimized simultaneously. Thus, the fitness of a candidate solution is
represented as a vector of accurate function values.

Employed Bees: In this step, some bees are selected to perform the exploration process.
The selected bees modify the solutions in the population by adding or subtracting a random
value from the decision variables. It generates a new solution for each bee.

Onlooker Bees: Some other bees are selected to perform the exploitation process in
this step. The selected bees choose solutions from the population based on their fitness
and then modify them similarly to the employed bees. It generates a new solution for each
onlooker bee.
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Neighbourhood Mutation: In this step, the solutions generated by the employed
and onlooker bees are subjected to a neighbourhood mutation process. It involves se-
lecting a neighbourhood around each solution and generating a new solution within
that neighbourhood.

Scout Bees: In this step, if a solution has not been improved after a certain number
of iterations, it is considered a non-promising solution and is replaced by a new random
solution generated by a scout bee.

Pareto Optimization: After generating the new solutions, the algorithm performs
a Pareto optimization process to determine the best solutions. The Pareto optimization
process identifies solutions not dominated by any other solution in the population.

Termination: The algorithm continues to iterate through steps 3 to 7 until a termination
criterion is met. It could be a maximum number of iterations or a satisfactory level of
solution quality.



Axioms 2023, 12, 395 7 of 19

Algorithm 3: MBABC-NM

Input
FS: Number of Food Sources
MI: Maximum iteration
Limit: number of predefined trials

Iter = 0
Prepare the population
For i = 1 to FS do

For j = 1 to S do
Produce xi,j solution

xi,j ← xmin,j ± rand(0, 1) ∗
(

xmax,j − xmin,j

)
Where xmin,j and xmax,j are the min and max bound of the dimension j
x̂i,j ← BinaryConv(xi,j) using Algorithm 5
For h = 1 to M do

Evaluate the fitness of the population for a M number of Objectives

fh ← fh

(
x̂i,j

)
End for

trial(i)← 0
End for

End for
iter ← 1
Repeat
{
//*Employed Bee process*//

For each food source i do
Create new individual vi using

vi,j ← xi,j +∅i,j

(
xi,j − xk,j

)
v̂i,j ← BinaryConv(vi,j) using Algorithm 5

Evaluate f (v̂i)
Select between f (v̂i) and f (x̂i) using greedy method
If f (v̂i) < f (x̂i)

xi ← vi
f (x̂i)← f (v̂i)

trial(i)← 0
Else

trial(i)← trial(i) + 1
End if

End For

//*Onlooker Bee Phase*//
If iter = 1
Set r = 0, i = 1;

While (r ≤ FS)
Calculate Probabilities for onlooker bees using Algorithm 4
If rand (0, 1) < Proi

r ← r + 1
For each food source, i do
Generate new individual vi using Algorithm 6
NM method (vi)
v̂i,j ← BinaryConv (vi,j) using Algorithm 5
Evaluate f (v̂i)

Select between f (v̂i) and f (x̂i) using greedy method
If f (v̂i) < f (x̂i)

xi ← vi
f (x̂i)← f (v̂i)

trail(i)← 0
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Algorithm 3: Cont.

Else
trial(i)← trial(i) + 1

End if
End For

End if
i← (i + 1)mod FS

End while
Else

For each food source, i do
Generate new individual vi using Algorithm 6
NM method (Lu)

u ∈ Lu
Divide {Lu} into |Lu| equal chunks

Su ← {Lu}
|Lu |

∀Lui, i ∈ 1, 2, . . . , |Lu|
Txi ←Rank (Lui, Sui)
Txi ← Delete least rank individual (Txi)
vi ← celltomat {Txi}

End For
End if
//*Scout Bee Phase*//
q = {i : trial(i) = max (trial)}
If trial(q) > limit

Abandon the food source xi

xq,j ← xmin,j ± rand(0, 1) ∗
(

xmax,j − xmin,j

)
x̂q,j ← BinaryConv(xq,j) using Algorithm 5

For h = 1 to M do
Evaluate the fitness of the population for a M number

of Objectives
fh ← fh

(
x̂q
)

End for
trial(q)← 0

End if
Add the new solution obtained to Zi
Non-Dominated Sort ( Zi) using Algorithm 1

L← Z i
Fitness Sharing (L) using Algorithm 2//density estimation where L denotes dense population
around the individual i
Memorize the best solution obtained so far
iter ← iter + 1
}
Until iter = MI
Output: Optimal value of the objective function

Algorithm 4: Probability Computation

For i = 1 to FS, do
Compute the probability Pij for the individual vi,j

Proi ←
f iti

∑FS
j=1 f itj

f iti ←
{

1
1+ fi

, fi ≥ 0
1 + abs( fi), fi < 0

End for
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Algorithm 5: BinaryConv(xi,j)

For i = 1 to FS do
For j = 1 to S do

bit
(

xi,j

)
= sin

(
2πxi,j cos

(
2πxi,j

))
x̂i,j =

{
1, i f bit

(
xi,j

)
> 0

0, otherwise
End for

End for

Algorithm 6: NM method (vi)

Generate new food source vi using modified NM technique
Let vi denotes list of vertices

1 
 

ɽ    , μ,  , µ, λ and ζ are the coefficients of reflection, expansion, contraction, and shrinkage
ƒ is the objective function to be minimized
For i = 1, 2, . . . , n + 1 vertices, do

Arrange the values from lowest fit value ƒ(v1) to highest fit value ƒ(vn+1)
ƒ(v1) ≤ ƒ(v2) ≤ . . . ≤ƒ(vn+1)

Compute mean for best two summits
vm ← ∑ vi

n , where i = 1, 2, . . . , n
//*Likeness point vr*//

vr ← vm +

1 
 

ɽ    , μ,  (vm − vn+1)
If ƒ(v1) ≤ ƒ(vr) ≤ ƒ(vn) then
vn←vr and go to end condition
End if

//*Enlargement point ve*//
If ƒ(vr) ≤ ƒ(v1) then
ve ← vr + µ(vr − vm)
End if
If ƒ(ve) < ƒ(vr) then
vn←ve and go to end condition

Else
vn←vr and go to end condition

End if
//*Reduction point vc*//

If ƒ(vn) ≤ ƒ(vr) ≤ ƒ(vn+1) then
Compute outside reduction

vc ← λvr + (1− λ)vm
End if
If ƒ(vr) ≥ ƒ(vn+1) then
Compute inside reduction
vc ← λvn+1 + (1− λ)vm .
End if
If ƒ(vr) ≥ ƒ(vn) then
Contraction is done among vm and the best vertex among vr and vn+1.
End if
If ƒ(vc) < ƒ(vr) then

vn←vc and go to end condition
Else go to Shrinkage part
End if
If ƒ(vc) ≥ ƒ(vn+1) then

vn+1←vc and go to end condition
Else go to Shrinkage part
End if
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Algorithm 6: Cont.

//* Shrinkage part *//
Shrink towards the best solution with new vertices
vi ← ζvi + v1(1− ζ) , where i = 2, . . . , n + 1

End condition
Arrange and rename the newly constructed simplex’s summits according to their fit
values, then carry on with the reflection phase.

4. Experimental and Environment Setup

This section specifies the experimental structure of the proposed approach and other
techniques. In addition, the projected outcomes with other methods are compared, to
confirm the model’s efficacy.

4.1. Experimental Setup

The proposed MBABC-NM algorithm to solve NSP and 0-1 knapsack problems, is
demonstrated concisely in this division. The simulation is conducted on various optimiza-
tion algorithms with similar environmental constraints, and the outcomes are analyzed.
The technique proposed to handle NSP and 0-1 knapsack problems is implemented us-
ing a MATLAB 2018a tool under a Windows Intel I7 processor with 8GB of RAM. The
experimental analysis will set the bounds of the formulated work. The parameters are
considered based on the trial and error method. We used the standard dataset for both the
NSP and the 0-1 knapsack problem. The compared algorithms are selected to ensure the
performance of the formulated technique for the NSP in Table 1. The heuristic parameters
and the consistent values are symbolized in Table 2.

Table 1. List of competitors’ methods of comparing an NSP dataset for MBABC-NM.

Type Method Reference

M1 Multi-objective genetic algorithm: NSGA-II Zhang et al., 2021 [23]
M2 Multi-objective cyber swarm optimization algorithm Yin et al., 2013 [24]
M3 Multi-objective particle swarm optimization Han et al., 2021 [25]
M4 Multi-objective ABC Li et al., 2015 [26]

Table 2. Configuration parameters of MBABC-NM for experimental evaluation.

Type Method

number of bees 100
maximum iterations 1000

initialization technique binary
stop criteria maximum iterations

run 20
heuristic Nelder—Mead method

likeness factor α > 0
enlargement factor γ > 1

reduction factor 0 > β > 1
shrinkage factor 0 < δ < 1

4.2. Standard 0-1 Knapsack Problem Dataset

This work performs experiments on standard instances of the 0-1 knapsack problem
from OR-Library to evaluate the performance of the proposed algorithm MBABC-NM. We
used nine different instance classes to illustrate the outcomes of the proposed approach.
Each problem suite is classified based on the number of knapsack constraints and object
items used. A detailed description of the problem suite is discussed in Table 3. Table 3,
column 2 describes the number of knapsacks constraints available in the corresponding
problem suite. Column three represents the number of available object items within it, and
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column four shows the known optimum solution provided by the standard OR-Library.
The compared algorithms are selected to ensure the efficacy of the formulated model on
the 0-1 knapsack problem, as shown in Table 4.

This section discussed the experimental setup and dataset description used for imple-
menting the proposed algorithm and other compared techniques. Moreover, the perfor-
mance of the proposed algorithm with other compared techniques is discussed in Section 5.

Table 3. The features of MKP datasets for MBABC-NM.

Instance No. of Objectives No. of Items

kn250_2 2 250
kn250_3 3 250
kn250_4 4 250
kn500_2 2 500
kn500_3 3 500
kn500_4 4 500
kn750_2 2 750
kn750_3 3 750
kn750_4 4 750

Table 4. List of competitors’ techniques to associate MKP dataset for MBABC-NM.

Type Method Reference

M1 Pareto evolutionary algorithm Luo et al., 2019 [27]
M2 GRASP Yuan et al., 2021 [28]
M3 Genetic Tabu search for MKP Alharbi et al., 2018 [29]
M4 ACO for MKP Fidanova et al., 2020 [30]

5. Experimental Result Analysis and Discussion
5.1. Standard NSP Dataset

The experimental outcomes achieved by the MBABC-NM algorithm on solving the
standard NSP dataset are presented in Tables 5 and 6. The performance of the proposed
algorithm is compared with existing multi-objective algorithms listed in Table 1 for M1,
M2, M3, and M4. The value present in the table specifies the ONGV value attained via the
consistent system. The multi-objectives of the NSP are the minimization of cost, maximizing
nurse preferences, and minimizing the deviation between the number of nurses required
and the least numeral of nurses for the shift; day shift followed by night shift is not
permissible. To legalize the proposed algorithm, we utilized 15 test cases of various sizes
with multiple issues. It is proven that projected MBABC-NM accomplished maximum
ONGV values for a maximum number of instances. The experimentation has been carried
out on four different algorithms with the same simulation parameters.

Table 5 reviews the comparison and assessment of ONGV performance indicators
attained by our proposed technique MBABC-NM associated with other methods, as shown
in Table 1.

On comparing the mean values of ONGV for the NSP dataset, our proposed MBABC-
NM outperforms existing algorithms for smaller datasets, with 14.99% against genetic
NSGA, 59.67% against the cyber swarm, 28.70% against PSO, and 63.24% against the
MABC algorithm. Our proposed MBABC-NM also outperforms existing algorithms for
medium-sized datasets, with 84.75% against genetic NSGA, 23.12% against the cyber
swarm, 60.43% against PSO, and 54.21% against the MABC algorithm. For larger-sized
datasets, it achieved 43.15% against genetic NSGA, 44.27% against the cyber swarm, 25.14%
against PSO, and 16.50% against the MABC algorithm.

Table 6 reviews the comparison and valuation of the SP performance indicator and
shows the proposed MBABC-NM with another competitor’s technique, as shown in
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Table 1. Our proposed algorithm achieved minimized Euclidean distance among the
Pareto solutions.

Table 5. Experimental result of NSP dataset in terms of ONGV.

Case Type Instance MBABC-NM M1 M2 M3 M4

C-1 N25 1 135 121 92 104 53
C-1 N25 7 132 125 86 106 63
C-1 N25 12 131 119 91 115 51
C-1 N25 19 128 119 88 101 50
C-1 N25 25 128 122 83 104 56
C-2 N25 2 143 118 86 99 67
C-2 N25 5 142 121 80 113 69
C-2 N25 9 136 124 85 116 69
C-2 N25 15 149 124 78 115 60
C-2 N25 27 146 124 79 99 63
C-3 N25 1 145 123 77 97 61
C-3 N25 3 150 125 82 97 65
C-3 N25 16 151 125 77 99 71
C-3 N25 27 146 121 91 113 73
C-3 N25 35 151 117 93 107 70
C-4 N25 5 139 122 92 98 63
C-4 N25 10 136 117 88 112 71
C-4 N25 25 150 120 78 111 65
C-4 N25 38 151 121 97 110 59
C-4 N25 41 135 122 79 99 72
C-5 N25 7 150 122 78 97 59
C-5 N25 11 127 118 92 107 70
C-5 N25 30 135 120 80 114 61
C-5 N25 42 135 121 91 104 71
C-5 N25 47 148 118 83 100 64
C-6 N50 1 192 40 90 109 73
C-6 N50 4 229 47 91 107 60
C-6 N50 12 222 35 87 125 73
C-6 N50 26 244 47 96 114 66
C-6 N50 29 223 41 87 126 76
C-7 N50 3 242 36 96 65 57
C-7 N50 6 248 42 90 60 60
C-7 N50 12 246 34 87 67 66
C-7 N50 26 233 36 88 62 65
C-7 N50 36 214 39 89 72 61
C-8 N50 4 251 43 95 55 71
C-8 N50 9 255 48 98 74 55
C-8 N50 15 249 34 97 65 58
C-8 N50 40 196 37 87 57 57
C-8 N50 47 228 47 88 57 73
C-9 N60 5 225 36 94 63 61
C-9 N60 10 210 49 89 60 58
C-9 N60 23 207 33 99 73 63
C-9 N60 29 203 41 91 65 72
C-9 N60 40 183 37 100 73 67

C-10 N60 6 196 49 94 76 58
C-10 N60 14 180 47 90 65 66
C-10 N60 20 208 49 95 54 64
C-10 N60 32 184 42 91 64 60
C-10 N60 41 218 39 92 69 63
C-11 N60 2 349 82 137 123 129
C-11 N60 8 374 98 151 126 121
C-11 N60 14 316 83 144 113 111
C-11 N60 20 364 96 145 118 118
C-11 N60 32 292 96 139 112 134
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Table 5. Cont.

Case Type Instance MBABC-NM M1 M2 M3 M4

C-12 N60 3 327 98 140 121 115
C-12 N60 12 335 94 151 121 125
C-12 N60 19 351 98 145 120 124
C-12 N60 23 384 78 144 111 118
C-12 N60 34 289 98 140 121 107
C-13 N60 1 450 97 138 126 108
C-13 N60 4 438 87 141 118 109
C-13 N60 19 446 99 149 122 133
C-13 N60 29 347 81 152 126 109
C-13 N60 40 464 88 152 120 121
C-14 N60 5 335 100 141 108 121
C-14 N60 9 420 96 139 124 107
C-14 N60 15 400 90 146 116 115
C-14 N60 30 398 99 144 108 108
C-14 N60 43 483 94 140 117 110
C-15 N60 6 380 87 150 119 136
C-15 N60 15 433 87 141 123 125
C-15 N60 26 481 88 151 125 108
C-15 N60 35 477 90 151 124 136
C-15 N60 44 469 99 149 123 115

Table 6. Experimental results of NSP dataset in terms of SP.

Case Nurse Instance MBABC-NM M1 M2 M3 M4

C-1 N25 1 1.1 × 10−4 3.9 × 10−4 2.0 × 10−4 2.1 × 10−4 4.2 × 10−5

C-1 N25 7 1.1 × 10−5 8.8 × 10−4 2.4 × 10−4 9.2 × 10−5 3.1 × 10−4

C-1 N25 12 1.1 × 10−4 9.8 × 10−4 2.2 × 10−4 9.4 × 10−5 8.4 × 10−5

C-1 N25 19 1.9 × 10−4 7.0 × 10−4 1.1 × 10−4 8.1 × 10−6 1.3 × 10−5

C-1 N25 25 1.1 × 10−4 2.6 × 10−4 1.0 × 10−4 5.6 × 10−4 3.3 × 10−4

C-2 N25 2 1.8 × 10−4 3.1 × 10−4 4.7 × 10−4 5.5 × 10−4 2.3 × 10−4

C-2 N25 5 9.7 × 10−5 6.1 × 10−4 3.4 × 10−4 1.1 × 10−4 2.9 × 10−5

C-2 N25 9 7.4 × 10−5 8.2 × 10−4 4.0 × 10−4 3.4 × 10−4 9.5 × 10−6

C-2 N25 15 6.6 × 10−5 9.0 × 10−5 3.5 × 10−4 2.5 × 10−4 3.3 × 10−4

C-2 N25 27 3.7 × 10−5 4.3 × 10−5 2.7 × 10−4 1.6 × 10−4 1.0 × 10−4

C-3 N25 1 7.2 × 10−5 7.6 × 10−4 4.4 × 10−4 7.4 × 10−5 1.0 × 10−4

C-3 N25 3 1.4 × 10−4 9.0 × 10−4 1.0 × 10−4 4.7 × 10−4 3.5 × 10−4

C-3 N25 16 1.5 × 10−4 3.2 × 10−4 2.0 × 10−4 1.7 × 10−4 1.4 × 10−4

C-3 N25 27 6.6 × 10−5 2.3 × 10−4 3.5 × 10−4 2.3 × 10−4 2.7 × 10−4

C-3 N25 35 4.5 × 10−5 5.6 × 10−4 3.8 × 10−4 1.9 × 10−4 2.7 × 10−4

C-4 N25 5 1.9 × 10−4 5.1 × 10−4 7.0 × 10−5 5.6 × 10−4 1.9 × 10−5

C-4 N25 10 9.4 × 10−5 9.1 × 10−4 8.4 × 10−5 5.0 × 10−4 1.0 × 10−4

C-4 N25 25 1.6 × 10−4 6.9 × 10−4 6.3 × 10−5 5.4 × 10−4 2.0 × 10−4

C-4 N25 38 3.2 × 10−5 4.6 × 10−4 1.0 × 10−4 7.8 × 10−5 8.1 × 10−5

C-4 N25 41 1.4 × 10−4 5.3 × 10−4 1.9 × 10−4 7.2 × 10−5 1.3 × 10−4

C-5 N25 7 1.8 × 10−4 3.8 × 10−5 2.4 × 10−4 9.9 × 10−5 1.2 × 10−4

C-5 N25 11 3.5 × 10−5 4.3 × 10−4 4.2 × 10−4 2.4 × 10−4 1.2 × 10−4

C-5 N25 30 1.2 × 10−4 2.3 × 10−4 4.1 × 10−4 4.9 × 10−4 2.0 × 10−4

C-5 N25 42 2.1 × 10−5 2.5 × 10−4 4.6 × 10−4 1.0 × 10−4 2.2 × 10−5

C-5 N25 47 1.8 × 10−4 2.9 × 10−4 6.2 × 10−5 1.4 × 10−4 1.0 × 10−4

C-6 N50 1 1.2 × 10−4 4.4 × 10−4 1.7 × 10−4 5.3 × 10−4 2.3 × 10−4

C-6 N50 4 1.9 × 10−4 6.8 × 10−4 6.3 × 10−5 2.5 × 10−5 3.2 × 10−4

C-6 N50 12 1.4 × 10−4 3.2 × 10−5 2.5 × 10−5 2.5 × 10−4 1.5 × 10−4

C-6 N50 26 9.4 × 10−5 8.4 × 10−4 1.1 × 10−4 2.6 × 10−4 3.3 × 10−4

C-6 N50 29 3.4 × 10−5 2.2 × 10−4 1.8 × 10−4 2.9 × 10−4 3.4 × 10−4
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Table 6. Cont.

Case Nurse Instance MBABC-NM M1 M2 M3 M4

C-7 N50 3 9.2 × 10−5 3.5 × 10−4 1.9 × 10−4 2.4 × 10−4 3.5 × 10−4

C-7 N50 6 1.3 × 10−4 4.5 × 10−4 8.8 × 10−5 2.5 × 10−4 3.5 × 10−4

C-7 N50 12 3.1 × 10−5 4.0 × 10−4 2.2 × 10−4 8.0 × 10−5 9.3 × 10−5

C-7 N50 26 3.4 × 10−5 1.8 × 10−4 1.3 × 10−4 4.3 × 10−4 4.1 × 10−5

C-7 N50 36 1.2 × 10−4 2.1 × 10−4 2.7 × 10−4 3.7 × 10−4 9.1 × 10−5

C-8 N50 4 9.2 × 10−5 1.3 × 10−4 4.9 × 10−4 3.5 × 10−4 2.7 × 10−4

C-8 N50 9 1.9 × 10−4 1.2 × 10−5 4.0 × 10−5 8.6 × 10−5 3.7 × 10−5

C-8 N50 15 1.8 × 10−4 1.2 × 10−4 9.3 × 10−5 4.3 × 10−4 1.6 × 10−4

C-8 N50 40 9.1 × 10−5 5.7 × 10−4 3.1 × 10−4 2.1 × 10−4 1.2 × 10−4

C-8 N50 47 2.0 × 10−4 8.6 × 10−4 2.1 × 10−4 2.3 × 10−5 3.1 × 10−4

C-9 N60 5 1.0 × 10−4 9.6 × 10−4 2.0 × 10−4 3.5 × 10−5 2.8 × 10−4

C-9 N60 10 4.4 × 10−5 6.2 × 10−4 1.3 × 10−4 4.5 × 10−4 1.3 × 10−4

C-9 N60 23 1.6 × 10−4 5.5 × 10−4 3.2 × 10−4 3.6 × 10−4 1.3 × 10−5

C-9 N60 29 9.8 × 10−5 6.6 × 10−4 6.9 × 10−5 2.3 × 10−4 6.7 × 10−5

C-9 N60 40 1.2 × 10−4 2.0 × 10−4 7.8 × 10−5 2.6 × 10−4 3.0 × 10−4

C-10 N60 6 3.9 × 10−5 2.0 × 10−5 4.1 × 10−4 5.4 × 10−5 3.3 × 10−4

C-10 N60 14 7.2 × 10−5 2.3 × 10−4 1.9 × 10−4 1.4 × 10−4 1.4 × 10−4

C-10 N60 20 1.5 × 10−4 8.8 × 10−4 4.2 × 10−5 2.1 × 10−4 2.4 × 10−4

C-10 N60 32 1.5 × 10−4 8.4 × 10−4 3.0 × 10−4 7.0 × 10−5 1.4 × 10−4

C-10 N60 41 3.6 × 10−5 7.0 × 10−4 9.8 × 10−5 2.4 × 10−4 2.8 × 10−4

C-11 N60 2 4.0 × 10−5 9.4 × 10−4 4.9 × 10−4 4.1 × 10−4 7.3 × 10−5

C-11 N60 8 1.4 × 10−5 4.5 × 10−4 1.8 × 10−4 3.8 × 10−4 1.7 × 10−4

C-11 N60 14 8.7 × 10−5 2.1 × 10−4 3.5 × 10−4 2.7 × 10−4 2.0 × 10−4

C-11 N60 20 1.9 × 10−4 4.3 × 10−4 4.8 × 10−4 2.3 × 10−4 4.7 × 10−5

C-11 N60 32 5.2 × 10−5 2.3 × 10−4 8.0 × 10−5 5.4 × 10−4 3.1 × 10−4

C-12 N60 3 5.8 × 10−5 1.1 × 10−4 3.7 × 10−4 4.5 × 10−5 2.9 × 10−4

C-12 N60 12 1.9 × 10−4 9.1 × 10−4 2.8 × 10−4 2.0 × 10−4 1.5 × 10−4

C-12 N60 19 3.4 × 10−5 7.5 × 10−4 1.0 × 10−4 3.3 × 10−4 2.6 × 10−4

C-12 N60 23 1.8 × 10−4 3.4 × 10−4 2.9 × 10−4 9.3 × 10−5 7.2 × 10−5

C-12 N60 34 1.2 × 10−4 5.2 × 10−4 4.0 × 10−4 5.3 × 10−5 1.7 × 10−4

C-13 N60 1 5.4 × 10−5 9.8 × 10−4 3.3 × 10−4 3.6 × 10−4 3.5 × 10−4

C-13 N60 4 1.3 × 10−4 6.7 × 10−4 2.3 × 10−4 3.5 × 10−4 2.0 × 10−4

C-13 N60 19 6.6 × 10−6 7.5 × 10−4 1.9 × 10−4 1.4 × 10−5 2.0 × 10−4

C-13 N60 29 2.0 × 10−4 4.9 × 10−4 1.3 × 10−4 4.3 × 10−4 1.5 × 10−4

C-13 N60 40 1.1 × 10−4 5.8 × 10−4 1.9 × 10−4 1.3 × 10−4 1.3 × 10−5

C-14 N60 5 1.1 × 10−4 7.5 × 10−4 2.6 × 10−4 5.0 × 10−4 3.3 × 10−4

C-14 N60 9 2.0 × 10−4 3.9 × 10−4 1.7 × 10−4 3.0 × 10−4 3.0 × 10−4

C-14 N60 15 1.1 × 10−4 1.9 × 10−4 8.2 × 10−5 1.3 × 10−4 3.2 × 10−4

C-14 N60 30 2.3 × 10−4 6.5 × 10−4 2.1 × 10−4 1.1 × 10−4 3.3 × 10−4

C-14 N60 43 1.5 × 10−4 8.1 × 10−4 4.4 × 10−4 5.4 × 10−4 1.9 × 10−4

C-15 N60 6 2.1 × 10−6 5.7 × 10−5 2.7 × 10−4 5.5 × 10−4 3.2 × 10−4

C-15 N60 15 1.5 × 10−4 3.5 × 10−4 3.4 × 10−4 1.4 × 10−5 1.2 × 10−4

C-15 N60 26 1.2 × 10−4 7.7 × 10−4 3.8 × 10−4 1.6 × 10−5 2.6 × 10−4

C-15 N60 35 2.2 × 10−5 1.3 × 10−4 2.2 × 10−4 8.1 × 10−5 1.0 × 10−4

C-15 N60 44 9.6 × 10−5 8.4 × 10−5 1.5 × 10−4 1.6 × 10−4 9.7 × 10−7

Comparing the mean values of SP for the NSP dataset, our proposed MBABC-NM
outperforms existing algorithms for smaller datasets, with 80.90% against genetic NSGA,
68.48% against the cyber swarm, 60.46% against PSO, and 43.86% against MABC algo-
rithm. Our proposed MBABC-NM also outperforms existing algorithms for medium-sized
datasets, with 79.55% against Genetic NSGA, 59.14% against the cyber swarm, 68.37%
against PSO, and 57.84% against the MABC algorithm. For larger-sized datasets, it achieved
74.30% against Genetic NSGA, 53.72% against the cyber swarm, 63.22% against PSO, and
32.98% against the MABC algorithm.
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5.2. Standard 0-1 Knapsack Problem

The experimental outcome achieved by the MBABC-NM algorithm on solving the
standard 0-1 knapsack problem was presented in Tables 7 and 8. The performance of the
proposed algorithm was compared with existing multi-objective meta-heuristic methods
listed in Table 3. The values in the table specify the mean value attained for number of the
reference solution and the total number of solutions using the corresponding algorithm.
Our proposed MBABC-NM obtained better results for a maximum number of instances
shown in [31].

Table 7. Experimental results of MKP dataset in terms of NRS and TNS.

Instance
NRS TNS

MBABC-NM M1 M2 M3 M4 MBABC-NM M1 M2 M3 M4

kn250_2 288.45 125.77 120.09 3.77 61.9 304.96 156.16 201.62 194.21 198
kn250_3 549.19 191.68 183.63 0.69 92.2 663.75 207.34 376.82 1472.45 925
kn250_4 742.71 215.63 207.90 1.28 104.6 791.22 254.71 617.90 3958.62 2288
kn500_2 5019.36 1505.53 1500.14 1222.24 1361.2 5198.89 1543.83 1761.34 257.31 1009
kn500_3 6751.66 2986.63 2980.58 1827.03 2403.8 6935.97 3032.85 3601.36 2368.15 2985
kn500_4 17,156.62 4282.56 4277.53 2258.97 3268.2 17,255.48 5455.92 4930.68 5705.94 5318
kn750_2 18,236.52 4247.75 4240.96 3765.41 4003.2 20,515.01 6087.35 4525.30 6362.16 5444
kn750_3 33,682.95 8035.34 8029.33 5336.95 6683.1 34,520.30 9102.70 8297.50 7915.18 8106
kn750_4 58,129.46 11,307.37 11,299.73 6515.64 8907.7 60,293.70 13,065.30 11,648.42 6976.39 9312

Table 8. Experimental results of MKP dataset in terms of the reference solution and Davg.

Instance |R|
Davg

MBABC-NM M1 M2 M3 M4

kn250_2 320 2.10 × 10−4 9.70 × 10−3 3.20 × 10−3 1.48 × 10−2 7.50 × 10−3

kn250_3 564 3.50 × 10−4 1.50 × 10−3 4.60 × 10−3 2.02 × 10−2 1.06 × 10−2

kn250_4 778 1.00 × 10−4 3.14 × 10−3 3.10 × 10−3 3.24 × 10−2 6.32 × 10−3

kn500_2 8844 7.20 × 10−4 1.78 × 10−2 4.50 × 10−3 1.61 × 10−2 2.36 × 10−2

kn500_3 11978 6.00 × 10−4 1.41 × 10−2 2.20 × 10−3 3.24 × 10−2 1.28 × 10−2

kn500_4 33374 2.50 × 10−3 1.01 × 10−2 3.60 × 10−3 5.60 × 10−2 3.00 × 10−3

kn750_2 34890 6.40 × 10−3 2.46 × 10−2 6.80 × 10−3 3.17 × 10−2 2.15 × 10−2

kn750_3 74504 9.50 × 10−3 3.12 × 10−2 7.80 × 10−3 2.80 × 10−2 9.80 × 10−2

kn750_4 105161 7.20 × 10−3 2.93 × 10−2 1.32 × 10−2 3.18 × 10−2 1.01 × 10−2

The experimentation has been carried out on four different algorithms with the same
simulation parameters. The outcome attained by the proposed technique MBABC-NM and
another competitor algorithm is presented in Table 7. The values in the table represent the
number of reference solutions obtained for corresponding algorithms. TNS symbolizes an
overall count of attained solutions, and NRS defines the number of reference solutions for
the instances. Table 8 describes the experimental work gained by our projected technique
MBABC-NM and another competitor algorithm. |R| represents several Pareto optimal
or reference sets obtained for our proposed algorithm. Davg denotes the average distance
between the non-dominated individual and the reference set.

Compared with an existing algorithm, our proposed algorithm MBABC-NM gener-
ated a maximum number of reference solutions from the total solutions, as illustrated in
Figures 2 and 3. The mean value of NRS for a smaller dataset with 250 objects, our pro-
posed algorithm had achieved 38% more than other competitor algorithms. The mean value
of TNS was 40% against the competitor algorithm. For a medium dataset with 500 objects,
the NRS was 29%, and the TNS was 21% against the competitor algorithm. For a larger
dataset with 750 objects, our proposed algorithm MBABC-NM achieved 43% of NRS and
38% of TNS against the competitor algorithm.
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On comparing the mean values of Davg for the 0-1 knapsack problem dataset, as
shown in Figure 4, our proposed MBABC-NM outperforms existing algorithms for smaller
datasets with 250 objects, as it achieved 95.07% against Local search, 93.94% against GRASP,
98.87% against Genetic Tabu search, and 97.30% against the ACO algorithm. For a medium-
sized dataset with 500 objects, our proposed algorithm achieved 90.90% against Local
search, 62.91% against GRASP, 96.34% against Genetic Tabu search, and 90.30% against the
ACO algorithm. For a larger dataset with 750 objects, we achieved 72.85% against Local
search, 16.90% against GRASP, 74.75% against Genetic Tabu search, and 82.17% against the
ACO algorithm.
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6. Conclusions

This paper proposed multi-objective BABC-NM on the multi-dimensional combinato-
rial problem. The proposed multi-objective BABC-NM with fitness sharing and modified
non-dominated sorting algorithm have been incorporated. The experimentation is carried
out on a MATLAB 2018a. In addition, we consider the experimental setup to assess the
outcome of the projected approach MBABC-NM. The practical results and discussions on
the obtained effects prove the significance of the projected work. In all three experimental
methodology stages, the projected algorithm MBABC-NM’s enhanced outcome was out-
classed by attaining precise and satisfactory outcome factors. The projected multi-objective
binary ABC with Nelder—Mead (MBABC-NM) is outstripped for all the test cases when
associating with other standard classical algorithms. These studies indeed confirmed the
competence of the projected algorithm in all perceptions. The proposed algorithm could be
extended to handle more complex real-time optimization problems, including scheduling
and resource allocation. In addition, the algorithm could be further optimized to reduce its
computational complexity and improve its scalability.
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