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Abstract: We address the problem of craniofacial morphometric analysis using geometric models,
which has important clinical applications for the diagnosis of syndromes associated with craniofacial
dysmorphologies. In this work, a novel geometric model is proposed to analyze craniofacial structures
based on local curvature information and Teichmüller mappings. A key feature of the proposed
model is that its pipeline starts with few two-dimensional images of the human face captured at
different angles, from which the three-dimensional craniofacial structure can be reconstructed. The
3D surface reconstruction from 2D images is based on a modified 3D morphable model (3DMM)
framework. Geometric quantities around important feature landmarks according to different clinical
applications can then be computed on each three-dimensional craniofacial structure. Together with
the Teichmüller mapping, the landmark-based Teichmüller curvature distances (LTCDs) for every
classes can be computed, which are further used for three-class classification. A composite score
model is used and the parameter optimization is carried out to further improve the classification
accuracy. Our proposed model is applied to study the craniofacial structures of children with and
without the obstructive sleep apnoea (OSA). Sixty subjects, with accessible multi-angle photography
and polysomnography (PSG) data, are divided into three classes based on the severity of OSA.
Using our proposed model, our proposed model achieves a high 90% accuracy, which outperforms
other existing models. This demonstrates the effectiveness of our proposed geometric model for
craniofacial analysis.

Keywords: obstructive sleep apnoea; quasiconformal geometry; machine learning; preliminary
disease diagnosis; image analysis; 3D facial model reconstruction

MSC: 30C75; 65K10; 65E10; 52C26; 65D19; 92C55

1. Introduction

Craniofacial morphometric analysis is a critical field in the study of human anatomy
and biology. The utilization of mathematical models in craniofacial morphometric analysis
has gained significant attention in recent years, providing a powerful tool for analysing
and comprehending the intricate structural relationships of the human cranial and facial
bones. These models not only aid in the diagnosis and treatment of syndromes associ-
ated with craniofacial anomalies, but also offer valuable insights into the genetic basis of
craniofacial variability.

Conventional methods for craniofacial analysis are based on simple geometric mea-
sures on 2D X-ray images capturing the craniofacial bone structures [1–5]. In [1], the po-
sition of the hyoid bone and lateral parapharyngeal wall (LPW) thickness were used as
anatomical markers to analyze a breathing disorder. In [4], the mentum–hyoid distance of
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patients with a severe sleep disorder was longer compared to the other mild groups. Ref. [3]
found a significant correlation between cephalometric data and apnoea–hypopnoea index
(AHI) score severity in children with sleep disorder. The use of simple geometric measure-
ments in conventional craniofacial analysis models has several drawbacks. One of the main
limitations is that these measurements are based on 2D X-ray images, which can result in a
loss of important information about the depth and thickness of cranial and facial bones.
Additionally, 2D X-ray images may not accurately reflect the complex three-dimensional
structure of the human head, leading to inaccurate measurements and predictions. Fur-
thermore, the use of simple geometric measurements may not be suitable for capturing
the geometric anomalies in more complex cases, such as those involving cranial and facial
asymmetry or severe craniofacial anomalies. These limitations can result in incorrect mor-
phometric analysis. Therefore, while conventional craniofacial structure analysis may be
useful in some cases, it is important to use it in combination with other more advanced
geometric models, to ensure accurate and comprehensive analysis of craniofacial structures.

Recently, many researchers also explored methods using mathematical imaging, ma-
chine learning, and artificial intelligence to improve the craniofacial analysis. Asghar’s
team [6] proposed a logistic classifier in craniofacial photographic features and a neural
network in 2017 to automatically process frontal and profile photographs and classify
patients as normal or diseased subjects. In 2018, Syed’s team [7] created a deep learning
model based on the VGGface data set [8] and 69 adult subjects for craniofacial analysis
using a depth map of a person’s facial scans. Curvatures have been proposed in recent
years for craniofacial structure analysis. Kiaee’s team [9] computes the L2 distance between
two subjects using curvature.

Quasiconformal geometry has proved its effectiveness and accuracy in shape analysis
for many years [10–12]. For example, ref. [10] developed an algorithm to automatically
register hippocampal (HP) surfaces with complete geometric matching, avoiding the need
to manually label landmark features. A recent study shows that based on quasiconformal
geometry, X-ray images can be used to diagnose OSA [11]. In this work, we develop a new
quasiconformal-based geometric model for craniofacial analysis. Our model is based on
the local curvature information and Teichmüller mappings, which aims to provide a more
comprehensive analysis of craniofacial structures. The proposed model starts with the
acquisition of few two-dimensional images of the human face captured at different angles.
These images are then used to reconstruct the three-dimensional craniofacial structure
through a modified 3DMM framework. This reconstruction process is crucial as it allows us
to compute geometric quantities around important feature landmarks. The landmarks can
be manually labelled by experts according to different clinical applications or automatically
delineated based on the local geometric information. The Teichmüller mapping is then
applied to compute LTCDs for each class. These LTCDs serve as the geometric information
for our three-class classification problem. To further improve the classification accuracy,
a composite score model is used, and the parameters of the model are optimized.

In order to validate the effectiveness of our proposed model, we apply it to study
the craniofacial structures of children with and without OSA. OSA is a common sleep-
related breathing disorder characterized by recurrent episodes of partial or complete
upper airway obstruction during sleep that leads to disruption of normal respiration
and sleep patterns [13]. This disorder has a prevalence of 3% to 5% in children and is
associated with cardiovascular, metabolic and neurocognitive sequelae [13]. Childhood
OSA should be diagnosed promptly and treated early since some detrimental impacts,
including adverse cardiovascular events and neurocognitive dysfunctions, can be induced
by untreated OSA [13]. This calls for the development of an efficient and accurate diagnosis
methodology. To test the effectiveness of our proposed mathematical model, we use a
data set of 60 subjects, with accessible multi-angle photography and PSG data, and divide
them into three classes based on the severity of OSA. Our proposed model achieves a high
accuracy of 90%, outperforming other existing models. This demonstrates the efficacy of
our proposed geometric model in the analysis of craniofacial structures.
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The forthcoming section shall provide an exposition on the mathematical background
of our proposed model.

2. Mathematical Background

Quasiconformal geometry and differential geometry are the key concepts that allow
us to perform analysis on the subjects [14]. Quasiconformal geometry is used for image
registration and differential geometry is used for shape analysis of 3D facial surfaces.

2.1. Quasiconformal Mapping

Quasiconformal mapping is a class of homeomorphisms on complex numbers that is
orientation-preserving and has bounded conformality distortions. It is defined by the so
called Beltrami equation.

Definition 1. A mapping f : C→ C is quasiconformal if there exists a complex-valued function
µ f (z) with ‖µ f (z)‖∞ < 1 such that

∂ f
∂z

= µ f (z)
∂ f
∂z

. (1)

An important special case is when µ f (z) is equal to 0, then the equation above is
reduced to the Cauchy–Riemann equation and so f is conformal. The function µ f is called
the Beltrami Coefficient. It is a measurement of how far f is from being conformal. Further-
more, note that the above equation gives us a way to calculate the Beltrami Coefficient by

µ f (z) =
∂ f
∂z

/∂ f
∂z

. (2)

Clearly, given a mapping f , we can calculate the Beltrami Coefficient by computing
partial derivatives. On the other hand, we can restore a mapping if we are given a Beltrami
Coefficient. The mapping restored is unique if a stronger condition is imposed.

Theorem 1 (Measurable Riemannian Mapping Theorem). Let µ : C → C be a Lebesgue
measurable function with ‖µ(z)‖∞ < 1 for all z ∈ C, then there exists a quasiconformal homeo-
morphism f mapping from unit disk to itself, which is in the Sobolev space W1,2(C) and satisfies
the Beltrami equation in the distribution sense. Furthermore, if µ is stationary at 0, 1, and ∞, then
the uniqueness of f is guaranteed.

By the last part of the theorem, normalization can be performed and the uniqueness
result can then allow one to register between two images by homeomorphisms.

2.2. Teichmüller Map

Consider two Riemann surfaces S1, S2 in R3. A Beltrami differential µ(z) dz
dz on a

Riemann surface S is an assignment to each chart (Uα, φα) on a L∞ complex-valued function

µα, defined on the local parameter zα such that µα
dzα
dzα

= µβ
dzβ

dzβ
on the domain which is also

covered by another chart (Uβ, φβ). An orientation-preserving diffeomorphism f : S1 → S2

is called a quasiconformal mapping associated with the Beltrami Differential µ(z) dz
dz if

for any chart (Uα, φα) on S1 and for any chart (Uβ, ψβ) on S2, the mapping defined by
fαβ = ψβ ◦ f ◦ φ−1

α is a quasiconformal mapping.
In our application, all 3D facial surfaces reconstructed are simply-connected open

surfaces, and hence they can be covered and represented by a single chart. Hence, the com-
putation of quasiconformal mappings between any two facial surfaces can be performed
through composition of mappings on the complex plane. A useful formula is given below
to find the composition.
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Theorem 2. Let f , g : C→ C be two quasiconformal mappings, then g ◦ f is also quasiconformal,
and the Beltrami Coefficient of the mapping can be explicitly represented by

µg◦ f (z) =
µ f (z) +

fz
fz

µg( f (z))

1 + fz
fz

µ f (z)µg( f (z))
. (3)

Back to our main problem. The tool used to do the image registration is called
Teichmüller map (or T-map for short). The Definition of T-map is as follows:

Definition 2 (Teichmüller Map). Let f : S1 → S2 be a quasiconformal mapping with the
Beltrami coefficient µ. f is a Teichmüller map (T-map) associated with the quadratic differential
q = ϕdz2 where ϕ : S1 → C is a holomorphic function if its associated Beltrami Coefficient is of
the form

µ( f ) = k
ϕ

|ϕ| (4)

for some constant k < 1, and the quadratic differential q must satisfy q 6= 0 and ‖q‖1 =
∫

S1
|ϕ| < ∞.

Next, we introduce another type of mapping that is closely related to T-map.

Definition 3 (Extremal Quasiconformal Map). Let f : S1 → S2 be a quasiconformal mapping.
f is said to be extremal quasiconformal if for any quasiconformal map h : S1 → S2 isotopic to f
relative to the boundary, then

K( f ) ≤ K(h) (5)

where K( f ) is the maximal quasiconformal dilation of f . Furthermore, it is uniquely extremal if the
above inequality is strict when h 6= f .

The following theorem will show the relation between the two mentioned classes
of mapping.

Theorem 3 (Landmark-matching Teichmüller map [15]). Let g : ∂D→ ∂D be an orientation-
preserving diffeomorphism of ∂D, where D is the unit disk. Furthermore suppose g′(eiθ) 6= 0
and g′′(eiθ) is bounded. Let {lk}n

k=1 ∈ D and {qk}n
k=1 ∈ D be the corresponding interior

landmark constraints. Then, there exists a unique Teichmüller mapping f : (D, {lk}n
k=1) →

(D, {qk}n
k=1) matching the interior landmarks, which is the unique extremal extension of g to D.

Here, (D, {lk}n
k=1) denotes the unit disk D with prescribed landmark points {lk}n

k=1.

Hence, besides having uniform conformal distortion, T-maps are extremal in the sense
that they minimize the maximal quasiconformal distortion, and so are useful to perform
registration. Next, it can be seen that T-maps induce a natural metric, called the Teichmüller
distance [16] that can be used to measure the difference between two shapes in terms of
local geometric distortion.

Definition 4 (Teichmüller distance). For every i, let Si be the ith Riemann surface with land-
marks {pk

i }n
k=1. The Teichmüller distance between ( fi, Si) and ( f j, Sj) is given by

dT(( fi, Si), ( f j, Sj)) = inf
ϕ

1
2

log K(ϕ) (6)

where ϕ : Si → Sj varies over all quasiconformal mappings with {pk
i }n

k=1 corresponding to
{pk

j }n
k=1, which is homotopic to f−1

j ◦ fi, and K is the maximal quasiconformal dilation.
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2.3. Curvature

After performing registration using T-map, the Gaussian and Mean curvature of
specific points are extracted and statistical testing will be conducted on the curvature data.

2.3.1. Shape Operator

Let M be a regular orientable surface on R3 with respect to the Normal N. The shape
operator can be defined as follows.

Definition 5 (Shape Operator). Let p ∈ M be a point and v ∈ Tp(M), where Tp(M) is the
tangent space of M at p. Let α(t) : (−ε, ε) → M be a curve on M such that α(0) = p and
α′(0) = v. Then, the shape operator Sp(v) is defined as

Sp(v) = −
d
dt
(N(α(t)))|t=0. (7)

Now, consider a parametrization X(u, v) of the surface M, the tangent space at any
point can be spanned by the set of vectors β = {Xu, Xv} since M is regular. Now, also note
that Sp map vectors from Tp(M) to itself. We then have the matrix representation of the
shape operator.

Theorem 4. Suppose Sp(Xu) = a1
1Xu + a2

1Xv and Sp(Xv) = a1
2Xu + a2

2Xv. The matrix represen-
tation of the shape operator with respect to the basis β is given by

[Sp]β =

(
a1

1 a1
2

a2
1 a2

2

)
. (8)

2.3.2. Gaussian and Mean Curvature

Using the notion of shape operator, curvatures can be defined as follows.

Definition 6 (Gaussian and Mean Curvature). The Gaussian curvature K(p) of the surface M

at p is the determinant of Sp. The Mean curvature H(p) of the surface M at p is equal to
1
2

Tr(Sp).

Note that this matrix Sp must be diagonalizable. If it is written in the diagonalized

form Sp = P−1
(

k1 0
0 k2

)
P, it can be obtained that K = k1k2 and H =

k1 + k2

2
. The numbers

k1 and k2 are called the principle curvatures at that point.

Note that Gaussian Curvature is an intrinsic measure while Mean curvature is an
extrinsic measure. Both curvatures are incorporated in the model for more comprehen-
sive testing.

3. Proposed Model

This section discusses about the proposed model for preliminary classifying OSA
patients. The first subsection talks about the image registration method based on a 3D
morphable model and Teichmüller map. Then, geometric distortions of the specific land-
marks are calculated based on quasiconformal geometry to generate a feature vector for
each subject, which is discussed in the second subsection. With the discriminating feature
vectors, an OSA classification model is proposed in the last subsection.

3.1. The 3D Surface Reconstruction from 2D Images

The 3D surface reconstruction from 2D images captured from multiple angles is a
crucial step in accurate shape analysis. This process provides a more comprehensive repre-
sentation of the object’s shape, including its depth and three-dimensional structure, which
is essential for analysing and understanding its geometric patterns. The use of multiple
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images captured from different angles helps to overcome the limitations of 2D imaging,
such as occlusions, and provides a more complete representation of the surface. Further-
more, 3D surface reconstruction enables the use of advanced shape analysis techniques,
such as surface registration and shape comparison. As such, the first step of our proposed
model is to convert 2D images capturing the human face from multiple angles into one 3D
facial surface. This procedure is carried out using a deep neural network that regresses the
coefficients of the 3DMM face model.

The 3D reconstruction model is based on the 3D morphable face model, commonly
referred to as a 3DMM. The 3DMM is a statistical model of the shape and appearance of
human faces. The model is created by analysing a large number of 3D scans of human
faces, which are then used to generate a set of parameters that can be used to generate an
infinite number of 3D faces. With the 3DMM, the face shape S and the texture T can be
represented as:

S = S(α, β) = S̄ + Bidα + Bexpβ

T = T(δ) = T̄ + Btδ
(9)

where S̄ and T̄ are the average face shape and texture; Bid, Bexp, and Bt are the PCA bases of
identity, expression, and texture, respectively; α, β, and δ are the corresponding coefficient
vectors for generating a 3D face. The Basel Face Model [17] is used for S̄, Bid, T̄, and Bt,
and the expression bases Bexp in [18] is used. In order to train the backbone deep neural
network for obtaining the 3D face from a 2D image, every 3D face in the training data set is
matched with a corresponding 2D image. These 2D images are taken from different angles,
including 0 degree (frontal view), 30 degrees, 45 degrees, −30 degrees, and −45 degrees. A
subset of the bases is selected based on the five images, resulting in α ∈ R80, β ∈ R64 and
δ ∈ R80. Given the training data with pairs of 2D images and their associated 3D shapes,
a deep neural network regresses the coefficient vector x = (α, β, δ, γ, p) ∈ R239. In this
work, we adopt the method in [19] to obtain the coefficient vector xj associated with an
image Ij capturing the human face from one angle.

Now, to integrate all images from multiple angles to obtain a more accurate 3D model,
the following procedure is carried out. For each image Ij, the spatial dependent weight wj is
assigned. The weight depends on how informative the image Ij for the 3D reconstruction of
the 3D model. For images of poor image quality, we assign a smaller weight. The weight of
each image is determined by its sharpness and information content. Specifically, the weight
for each image is represented as a vector with the same size as the number of vertices on
the 3D reconstructed surface. Therefore, each vertex on the 3D surface is assigned a weight
associated with each image. The image sharpness S(I) of an image I is calculated using the
Laplacian operator, which is defined as S(I) = ||∆I||1, where ∆ represents the Laplacian
kernel. By convolving I with the Laplacian kernel, ∆I captures the features and edges of
objects in the image. The magnitude of ∆I is higher for sharper images, resulting in a larger
value of S(I) for sharper images. In addition to image sharpness, the image information
content is also taken into account. The image information refers to the reliability of the
2D image in providing information for determining the 3D coordinates of a point on the
reconstructed face. For example, a frontal image (captured at 0 degree) provides reliable
information for the central region of the 3D face. Therefore, the image information weights
associated with vertices of the central region are defined as 1. However, if an image cannot
capture a region of the 3D face, the image information weights associated with vertices of
the occluded region are defined as 0. The final weight for each vertex associated with each
image is calculated as the product of its image sharpness and image information weight.
For spatial position with a poor quality, such as the existence of occlusions, a smaller weight
associated with that particular position can be assigned. The final 3D reconstructed model
is given by:

S =
N

∑
j=1

wj � S(αj, β j) =
N

∑
j=1

wj � (S̄ + Bidαj + Bexpβ j), (10)
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where � refers to the pointwise multiplication of two vectors and N is the number of
images from multiple angles.

Figure 1 gives an illustration of the 3D reconstruction from 2D images.

Figure 1. Demonstration of the 3D facial model reconstructed from 2D photos.

3.2. Landmark-Based Teichmüller Curvature Distance (LTCD)

In order to train a three-class classification machine, the distances of each data from
each classes have to be defined. The choice of distances play an important role for the
classification accuracy. Computing distances between data and classes is important for clas-
sification because it provides a way to measure the similarity between each datapoint and
each class. This information is crucial for assigning each datapoint to the most appropriate
class, and can be used to determine the class membership of each datapoint based on the
closest match. Furthermore, the computation of distances between data and classes can
also provide valuable insights into the underlying structure and relationships between the
data and the classes, which can be useful for developing better classification models and
improving accuracy.

In this work, our choice of distances is based on surface geometry on selected feature
landmarks, which will be described in this subsection.

3.2.1. Surface Registration

First of all, LTCD is defined as the distance of each data to each class. In order to
define distances between different data, a one-to-one correspondence between data must
be obtained. In this work, a landmark-matching registration model by computing the
Teichmüller mapping that matches facial landmark features is adopted to compute the
mutual correspondence between subjects [14]. The Teichmüller mapping can be formulated
as an extremal mapping minimizing the local geometric distortion. As such, the problem of
computing the Teichmüller mapping can be converted into an optimization problem

(v, f ) = argmin
v:D1→C

{‖v‖∞ + ‖∇v‖2} (11)

subject to: (i) v = µ( f ) and ‖v‖∞ < 1; (ii) v = k
ϕ

|ϕ| for some constant k and holomorphic

function ϕ : D1 → C ; and (iii) f satisfies certain boundary condition and/or landmark
constraints. The optimization problem can be solved by the Quasiconformal Iteration (QC)
using the Linear Beltrami Solver (LBS).

The best quasiconformal mapping associated with a given Beltrami coefficient can be
obtained with the use of LBS. An algorithm (QC iteration for open surfaces) can be used
to obtain the extremal mapping f [14]. The main idea of the algorithm is to iteratively
search for the optimal Beltrami Coefficient associated with f . Using the optimal Beltrami
coefficient, the desired extremal mapping f can be easily reconstructed using the LBS. One
benefit of the application of the quasiconformal registration is that the effect of global
scaling, global rotation, and global translation is minimized.
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Two 3D triangular meshes are used as input as well as the expected boundary con-
dition. An optimal Beltrami coefficient v and the Teichmüller mapping f are output as a
result. The algorithm follows a three-steps approach.

Firstly, the initial mapping is set

f0 = LBSLM(µ0 := 0) (12)

and fix the initial Beltrami coefficient v0 = µ( f0).
Secondly, we can iteratively compute

µn+1 := A(L(vn))

fn+1 := LBSLM(µn+1)

vn+1 := µ( fn+1)

(13)

where A is the averaging operator, L is the Laplacian operator, and LBS is the Linear
Beltrami Solver. Lastly, this alternating process continues unless ||vn+1− vn|| < ε. For more
details about the algorithm of the registration model, readers are referred to [14].

Once the pairwise surface registration is computed, every craniofacial surfaces can be
represented by a triangulation mesh with the same connectivity and the same number of
vertices with correspondence.

3.2.2. Surface Geometric Feature Vector

Our next step is to obtain a geometric feature vector for each surface, which can be
used to define distances between surfaces. The feature vector should comprise the most
crucial geometric information that accurately characterizes the surface, as determined by
the specific application and its relevant discriminating power. We construct the geometric
feature vector for our classification machine as follows. Suppose there are N subjects,
in which the first N/3 subjects are in the control class (class 0), the second N/3 subjects are
in the mild OSA class (class 1), and the last N/3 subjects are in the moderate-to-severe OSA
class (class 2). In this work, a method to construct a feature vector containing Gaussian and
Mean curvature data is proposed.

Each of the 3D images is registered to 35,710 indices by the above registration model.
In this work, we propose to consider geometric information around some feature landmarks
only. This avoids misleading geometric information from unimportant region to interrupt
the classification result. Therefore, n landmarks around are selected either manually or
automatically according to each practical applications (see Figure 2 for an illustration).

For each landmark point that is selected manually, the closest w2 points based on
Euclidean distances are chosen as feature points as well, where w is adjusted in the iterations
of the algorithm. Therefore, 28w2 points are considered for each subject. Some of the points
may be duplicate in this process and duplicate entries are removed. After reordering the
index in ascending order, a collection of these landmark points can be constructed and
denoted as S, where Sj represents the j-th item in the collection S. Figure 3 provides a
visual representation of the outcome obtained through automatic landmark selection.

To obtain corresponding curvature data, a standard algorithm is used. The normalized
Gaussian and Mean curvature are denoted as K and H, respectively, which are combined
to form a feature vector Ci for the i-th subject, that is, Ci = [Ki, Hi]. More specifically, we
normalize both the mean curvature and Gaussian curvatures to be within the interval [0, 1].
Denote the length of the feature vector by L and Ci(j) be the j-th entry of the feature vector.

To augment the discriminating power of the feature vector, a t-test incorporating
the bagging predictors is used to select a certain percentage of features with the highest
discriminating power [11,20]. In the general t-test, a probability pj called the p-value
is computed for each feature point Ci(j) which evaluates the power of the feature in
discriminating the given three classes. The bagging predictors strategy uses a leave-one-out
scheme to improve the stability of the t-test. Specifically, N tests are performed, and each
test is performed on all the subjects excluding the i-th one. This gives the p-value pi

j for
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feature point j in the i-th iteration. After all the tests, the p-value of each feature is calculated
by pj = min

i
pi

j. According to the t-test, the discriminating power of each feature increases

as its p-value decreases. So, L̃ of the features with the highest discriminating power are
L̃ of the features with the smallest p-values, where L̃ is adjusted in the iterations of the
algorithm. Based on the p-values, the features with low discriminating power can be
removed from our classification machine by remaining only the L̃ features with the highest
discriminating power given a certain percentage. Figure 4 provides a visual depiction of
the bagging outcome.

Figure 2. Demonstration the facial landmark points (red dots) superimposed on a sample 3D
face model.

Figure 3. Automatic landmark selection by the Euclidean Distance Method.

In this work, our model uses the discriminating feature vector C̃i for each craniofa-
cial structure.
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Figure 4. Landmarks having high classification power chosen by the bagging algorithm.

3.2.3. LTCD Computation

Based on the above preparation, the LTCD can be constructed. In this work, a simple
L2-norm is applied for three-class classification. The idea is that subjects from each class
possess an analogous geometrical structure to the skull. The subjects can then be classified
by the difference between the template feature vector and subjects. Note that each surface
meshes to be analysed are in pairwise correspondence with each others. This ensures
that each entry of the feature vector for a given subject can be compared directly to the
corresponding entry for another subject, without the need to adjust for point mismatching
issues. Evidently, the choice of surface correspondence is critical to the success of this
analysis, as it determines the quality of the comparison between subjects. In our model,
we use the Teichmüller mapping, which minimizes the conformality distortion and hence,
the local geometric distortion. This ensures that the comparison between subjects is accurate
and meaningful, with the most important geometric information being captured and
considered in the analysis. Since the discriminating feature vector is obtained by bagging,
the median of the feature vectors among each class can be generated. The median of each
class is used instead of the mean to avoid extreme data. If a larger set of data is adopted,
the mean may replace the median to achieve a higher accuracy.
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Let Vi = {C̃k | Subject k is in class i}, for i = 0, 1, 2, be the three collections of the
trimmed feature vectors belongs to the three classes. Then, the template feature vectors T0,
T1, T2 of each class can be defined as

Ti(j) = median
v∈Vi

v(j) (14)

for i = 0, 1, 2 and j = 1, 2, ..., L̃. Since there are 3 classes, the distances to T0, T1 and T2 are
defined for each subject in the L2 sense as follows.

dij = ‖C̃i − T̃j‖ (15)

dij is called the LTCD of subject i to the class j.
If the subject i has a smaller distance to the template vector of class j, it is more likely

that the subject belongs to class j. We remark that the choice of landmark points plays
a crucial role in the analysis of surface meshes and can greatly affect the definition of
geometric features. This in turn affects the landmark-based Teichmüller curvature distance,
which is used to quantify the similarity between meshes. The choice of landmarks can be
made either manually or automatically, depending on the specific practical application.
It is important to carefully consider the choice of landmarks, as it can greatly impact the
accuracy and validity of the analysis.

Last but not least, since we have three classes, it is difficult to judge when the mag-
nitude of two of the distance vectors are close. A non-linear balancing term is added to
increase the gap between classes, and the details will be discussed in the later section.

3.3. Composite Score Model and Parameter Optimization

In our work, since the length of the feature vector is rather long (usually with at least
500 coordinates), it is not suitable to adapt the commonly used classification algorithm,
such as supporting vector machine (SVM) or K-nearest neighbour (KNN) algorithm. These
algorithms are sensitive to a small perturbation of the feature vector, and also to outliers.
Since medical data on class-1 patient is insufficient, training with outliers is not desirable.
In particular, according to the opinion of the medical doctors, it is very difficult for them to
distinguish class-0 and class-1 subject. In view of this situation, we need a model that can
tolerate a margin of error whilst maintaining overall accuracy.
We propose the following composite score model, with the set of parameter {α, β, δ, γ}.
These composite scores are based on the l2 distance between the subject feature vector and
the template feature vectors which can be computed fast and easily across machines.

Definition 7 (Composite Score Model). For the i-th subject, the set of composite score {Si0, Si1, Si2}
is defined by

Si0 = α(di0)
δ − β(di2)

γ

Si1 = α(di1)
δ −

(
β

2

)
(di0 + di2)

γ

Si2 = α(di2)
δ − β(di0)

γ

. (16)

The same α, β, δ, γ for the three composition scores instead of αi, βi, δi, γi for each class
since the sample size is small and this can avoid over-fitting. Furthermore, this composition
score based on l2-norm is considering all the coordinates of the feature vector as a whole,
and so the influence from a particular extreme coordinate of a feature vector is minimized.

Furthermore, the criterion for classification using the composite scores is defined
as follows.
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Definition 8 (Criterion for Classification). Suppose the set {Si0, Si1, Si2} contains distinct
numbers. The i-th subject is classified into the class p if

Sip = min
k

Sik. (17)

For the intuition behind the model, it is based on the fact if the i-th subject is closer
to the template surface of class k, the value of dik will be the smallest among di0, di1, di2.
Furthermore, if the i-th subject is of class k, the distance between the subject and the
other two classes will be bigger. By considering this two push-and-pull factors, the above
composite score model is defined.

We now use the following illustration to help understand the composite score model.

Graphical Illustration of the Composite Score Model

We can interpret the class “0, 1, 2” as the degree of severity of the disease. If we plot
the template feature vector T0, T1, T2 in RL̃, we should expect that T1 should be lying on
somewhere near the midpoint of T0 and T2, as shown in Figure 5.

T0

T2

T0+T2
2

T1

Figure 5. Reasonable expectation of the distribution of the template feature vector T0, T1, T2.

Let us say we have a new subject K and we want to classify it, as shown in Figure 6.
Suppose dk0 = dk1. That means the new subject is equidistant from the template feature
vectors T0 and T1.

T0

T2

T0+T2
2

T1

New subject K

Figure 6. A new subject K that is equidistant from T0 and T1 is needed to be classified.

In this case, it is difficult to classify K. However, we can consider dk2 as a “push factor”,
as shown in Figure 7. Note that dk2 is large.

For example, we can define sk0 = dk0 − dk2, sk1 = dk1 − dk0+dk2
2 as two “composition

scores”. This is a special case of our original composition score model Definition 7 with
(α, β, δ, γ) = (1, 1, 1, 1). Now, since sk0 < sk1, we can classify the new subject as class 0.
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Going back to our original composition score model, to simplify and speed up the
process, we fix α = 1 and iterate β in (0, 2) with 0.2 difference each time. The parameters
α, β are used to balance the two push-and-pull factors. Furthermore, to provide a more
flexible variation space, δ and γ are added for non-linear approximation/optimization. It
can provide a different approach for improving accuracy. To avoid over-fitting, γ and δ are
only chosen in (0.6, 1.4) with 0.1 difference each time.

After iteration, we obtain the best result with

(α, β, δ, γ) = (1.0, 0.4, 1.2, 1.3)

T0

T2

T0+T2
2

T1

New subject K

Figure 7. Take dk2 into the consideration of classification.

4. Experiments Results

In order to validate the effectiveness of our proposed model, we apply it to study the
60 craniofacial structures of children with and without OSA. The subjects are grouped into
three classes according to the severity of OSA. Class 0 refers to the control group, Class 1
refers to the mild group, and Class 2 refers to the severe group. We report the classification
result in this section, as well as comparing our results with other methods.

4.1. Data Information

The present section is dedicated to presenting the data pertaining to the subjects, along
with an exposition on polysomnography and multi-angle photography.

4.1.1. Subjects

This work was based on 60 normal and OSA subjects of Chinese children recruited
for sleep studies in the Prince of Wales Hospital, with accessible multi-angle photography
and PSG. The same classification criterion for OSA is also used in [11]. Obstructive apnoea–
hypopnoea index (OAHI) is the total number of obstructive and mixed apnoeas and
hypopnoeas per hour of sleep. The group of OSA patients can be classified into three types,
non-OSA, mild OSA, and moderate-to-severe OSA, which are defined by OAHI ≤ 1/h,
OAHI between 1/h and 5/h, and OAHI ≥ 5/h, respectively, where h represents hour.
Photos of children’s faces from different angles were taken on the same day of admission.
Patients with surgical treatment for OSA before photography and PSG, congenital or
acquired neuromuscular disease, genetic or syndromal disease, craniofacial abnormalities,
or obesity secondary to an underlying cause were excluded. In order to obtain the local
deformation information, 3D facial models were reconstructed based on 2D photos of those
subjects using a 3DMM machine learning model. To study OSA, 28 landmarks on the
lower-half face were selected for classification.

4.1.2. Polysomnography

The nocturnal PSG was conducted at the Prince of Wales Hospital. A model Sies-
taTM ProFusion III PSG monitor (Compumedics Telemed, Abbotsford, Victoria, Australia)
was adopted to record the following parameters: electroencephalogram (F4/A1, C4/A1,
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O2/A1), bilateral electro-oculogram, electromyogram of mentalis activity and bilateral
anterior tibialis. Inductance plethysmography was used to measure respiratory movements
of the chest and abdomen. Electrocardiogram and heart rate were constantly recorded
from two anterior chest leads. An oximeter was used to estimate arterial oxyhaemoglobin
saturation (SaO2) with a finger probe. A nasal catheter connected to a pressure transducer
was placed at the anterior nares to measure respiratory airflow pressure signal. The absence
of airflow was also detected by an oronasal thermal sensor. Snoring was recorded by a
snoring microphone placed near the throat. A body position sensor was used to monitor
body position.

An adequate nocturnal PSG requires at least 6 hours of total recorded sleep time.
Respiratory events, including obstructive apnoeas, mixed apnoeas, central apnoeas, and hy-
popnoeas, were evaluated based on the recommendation from the American Academy of
Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events Respiratory
effort-related arousals (RERAs) were scored when the amplitude of nasal pressure signal
fell under a half of baseline with flattening of the nasal pressure waveform, accompanied
by snoring, noisy breathing, or signals of increased effort of breathing. A respiratory event
was scored when it lasted ≥ 2 breaths regardless of its duration. Arousal is defined as
a sharp shift in electroencephalographic (EEG) frequency during sleep, including theta,
alpha, and/or frequencies larger than 16 Hz but not spindles, lasting for 3 to 15 s. In rapid
eye movement (REM) sleep, arousal is scored only when submental electromyogram (EMG)
amplitude increases concurrently.

A senior research assistant who has Registered Polysomnographic Technologist (RPSGT)
qualification and experience in performing paediatric PSG was responsible for the PSG
scoring and reporting. The research assistant had no access to other assessment data of
the subjects.

4.1.3. Multi-Angle Photography

Photos of children’s faces from multiple angles were taken on the same day of admis-
sion to overnight PSG. To reconstruct the 3D facial mesh, three 2D images are used for each
subject. These 2D images are taken from different angles, including 0 degree (frontal view),
45 degrees, and −45 degrees. An iPhone was used this time.

4.2. Results of the Main Model

This work is based on 60 subjects consisting of 20 control subjects, 40 OSA subjects,
including 20 mild OSA subjects and 20 moderate-to-severe OSA subjects. The accuracy of
the prediction is defined by the total number of subjects correctly classified as non-OSA
subjects and OSA subjects divided by the number of all subjects involved, regardless of
severity. All subjects are used for training the parameters.

4.2.1. Binary-Class Model

For simplicity, a binary model is built with only control subjects and moderate-to-
severe OSA subjects. As mentioned in Section 3.2, the p-value of each feature is calculated.
According to the t-test, feature having higher discriminating power will have smaller
p-value. So, L̃ of the features with the highest discriminating power are L̃ of the features
with the smallest p-values. When using 0.51% of the features with the highest discrim-
inating power, the accuracy is the highest. With 592 discriminating features, the model
achieves 97.5% accuracy, with 100% sensitivity and 95% specificity. The optimal cut of the
distances is 0.011824. Figure 8 shows the relation of the number of feature used and the
classification accuracy.

4.2.2. Three-Class Model

To develop a model suitable for all subjects, mild subjects are also included in the
revised version. When using 2.4% of the features with the highest discriminating power
and (α, β, δ, γ) = (1.0, 0.4, 1.2, 1.3), respectively, the accuracy is the highest. With 567
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discriminating features, the model achieves 90.0% accuracy, with 100% sensitivity and 70%
specificity. Table 1 shows the corresponding parameter values and the training accuracy
when the number of feature is fixed to be 500, 1000, and 1500.
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Table 1. Statistics of the classification accuracy of the proposed model including all three classes
using different numbers of features.

Number of Feature (α, β, γ, δ) Sensitivity Specificity Accuracy

500 (1.0, 0.8, 1.2, 1.1) 90.00% 80.00% 86.67%
1000 (1.0, 0.4, 0.6, 0.8) 67.50% 80.00% 71.67%
1500 (1.0, 0.2, 0.6, 0.8) 80.00% 85.00% 81.67%

Figure 9 shows the relation between the number of feature used and the training
accuracy of the three-class model.
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4.2.3. Models with Unsatisfactory Results

Methods using geodesic distances of 3D facial models reconstructed from 2D images
and distances between selected landmarks of 2D images are also tried among non-OSA
and moderate-to-severe OSA patients. The method based on distances between selected
landmarks of 2D images achieves only 57.5% accuracy, with 80% sensitivity and 35%
specificity. The method based on geodesic distances of 3D faces reconstructed from 2D
images achieves 72.5% accuracy, with 70% sensitivity and 75% specificity. The two methods
having relatively poor results also prove the superiority of the model using curvature
information, which is obtained by quasiconformal theory.

4.3. Cross Validation on Models

Due to the limited availability of facial data and OSA index measurements for children,
we opted to use the entire data set for both training and validation, for all the models in
Section 4.2. As bias may be induced, 20-fold cross validation is performed to the binary-
class model.

The binary model, which included 20 normal subjects and 20 subjects with severe
OSA, was run twenty times, with one subject from each class being excluded from training
each time. The template feature vector and detection threshold trained by the remaining 38
subjects were then used for classification of these two subjects. This process was repeated
for each subject exactly once. As a result, bias can be eliminated, since subjects to be tested
are not included in the training set in this cross validation process.

After incorporating cross validation, the accuracy decreased to 77.5%, with 75% sensi-
tivity and 80% specificity. Despite the reduction in accuracy, the results are still acceptable
given the extremely small data set. Furthermore, this results still demonstrated the strong
discriminative power of curvatures of facial points, validating the underlying principle
of surface geometry. One point to note is that since the data set is small, misclassification
of a single subject could significantly impact the accuracy, sensitivity, and specificity of
the model.

4.4. Comparison with Other Models

To emphasis the contribution of the use of 3D surfaces, a model using 2D images is built
based on the same database. Similar landmarks on the jaw and chin are picked in the same
sense. With the help of the MATLAB classification learner, the highest accuracy is about
50% which is far below the accuracy of our proposed model. This may follow that the local
distortion information has a stronger relationship to traditional cephalometric proportions.

While some previous models already achieve similar two-class OSA classification,
their subjects are most adults and 3D images obtained by X-ray or 3D scanner are required.
A previous OSA classification model also used quasiconformal geometry for OSA classifi-
cation [11]. However, this model has a non-negligible disadvantage. X-ray images must
be taken, and landmarks are required to be manually selected by doctors, which is also
time-consuming and inefficient. Our proposed model only requires a few pictures which
can be taken by a mobile phone, and landmarks can be automatically selected. Moreover,
our proposed model can achieve equivalent accuracy as the previous QC model. Therefore,
it helps reduce the existing hospital’s workload in Hong Kong.

5. Conclusions

This study presents a novel quasiconformal based geometric model for craniofacial
analysis. The model is based on quasiconformal Teichmüller mapping and local curva-
ture information around feature landmarks and can be used for medical classification.
The model starts from few 2D images of the human face, which are used to reconstruct
the 3D craniofacial structure for further analysis. The significance of each 2D image for
the 3D reconstruction can be adjusted through weighting functions. The geometric infor-
mation is extracted near feature landmarks, which helps to avoid unnecessary influence
from meaningless regions of the structure. The LTCD is used to build the classification
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machine and a non-linear balancing term is added to increase the gap between classes.
More specifically, the composite score model and the parameter optimization are proposed
in this work to further increase the classification accuracy. The model has been applied to
study the craniofacial structures of children with and without OSA and has achieved a high
accuracy of 90%, while some previous models already adopt two-class OSA classification
based on adult subjects and 3D images [6,7,9,21,22], our model only requires 2D images
taken by a mobile phone, which provides a preliminary selection of potential OSA patients
in an inexpensive, convenient and accurate way. Furthermore, our method addresses
the three-class childhood OSA classification by our composite score model. According
to the first person experience of paediatrician, the shape of the lower half of face of a
child can significantly reflect if children have OSA or not. This is reasonable since the
upper respiratory tract is closer to the lower half than the upper half of the face. Utilizing
this piece of information, we have selected landmarks from the lower half of the face to
perform training and classification, which results in satisfactory classification accuracy. This
demonstrates the benefits of using a landmark-based geometric approach for craniofacial
structure classification.

Potential future work includes applying the model to analyze craniofacial structures to
study other syndromes associated with craniofacial anomalies, as well as developing more
advanced geometric models to capture geometric differences more accurately to increase
the classification accuracy.
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