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Abstract: Dynamical properties of numerically approximated discrete systems may become incon-
sistent with those of the corresponding continuous-time system. We present a qualitative analysis
of the dynamical properties of two-species Lotka-Volterra and Ricker-type predator-prey systems
under discrete and continuous settings. By creating an arbitrary time discretisation, we obtain sta-
bility conditions that preserve the characteristics of continuous-time models and their numerically
approximated systems. Here, we show that even small changes to some of the model parameters
may alter the system dynamics unless an appropriate time discretisation is chosen to return similar
dynamical behaviour to what is observed in the corresponding continuous-time system. We also
found similar dynamical properties of the Ricker-type predator-prey systems under certain conditions.
Our results demonstrate the need for preliminary analysis to identify which dynamical properties of
approximated discretised systems agree or disagree with the corresponding continuous-time systems.

Keywords: ecological models; Jacobian matrix; stability conditions; time discretisation; step size
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1. Introduction

Population density variations of interacting species in ecosystems are often modelled
as discrete-time systems using difference equations (such as the Ricker model [1]). Our
study is motivated by the dynamical properties of discrete systems with an arbitrary step
size. We consider a simple Ricker-type predator-prey system in discrete form, with a unit
time step, given by

N(t + 1) = N(t)er(1− N(t)
K )−αP(t)

P(t + 1) = P(t)eαγN(t)−c,
(1)

where N(t) and P(t) denote the prey and predator population at time t, respectively; r is
the rate of prey population increase; K is the prey carrying capacity, α is the predator attack
rate; γ is the conversion rate of eaten prey to sustenance for the predators; and c is the
predator starvation rate in the absence of prey [2,3]. The parameters r, K, α, γ and c are real
and positive constants. The system (1) is used to calculate the annual population densities
after a time step of one year [2]. We extend the Ricker-type model with arbitrary constant
step size h as

N(t + h) = N(t)
(

1 + h
(

eX(t) − 1
))

P(t + h) = P(t)
(

1 + h
(

eY(t) − 1
))

,
(2)
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where

X(t) = r
(

1− N(t)
K

)
− αP(t)

Y(t) = αγN(t)− c.
(3)

System (2) is the generalised version of (1) that considers the unit increments as a
parameter such that system (2) is the same as system (1) if h = 1.

In this paper, we also consider models such as Lotka-Volterra

N(t + h) = N(t)(1 + hX(t))
P(t + h) = P(t)(1 + hY(t)),

(4)

where h is the discrete step size. The step size h plays a critical role by permitting the
users to choose an appropriate time discretisation for each model. We observe that these
generalized discrete systems incorporating an arbitrary fixed step size are forward Euler’s
approximations of the respective continuous-time systems.

Beyond the step-size selections, the robustness of the model parameters is critical;
however, it is often a source of uncertainty in models based on real data. A slight variation of
the model parameters may change the equilibria and directly affect the system stability and
robustness of solutions of the system [4–6]. If the parameters are estimated from data, lack
of information and the inability to collect sufficient real-world data in ecological systems
can lead to an imprecise set of model parameters [7]. Therefore, investigating a suitable set
of parameters that agrees with the selection of stable or unstable dynamics is essential when
constructing population models—especially in approximating continuous-time systems [8]
(see Acknowledgements for further clarification).

Following the idea of parametrising the step size, ref. [9] derived the stability prop-
erties for a continuous-time Lotka-Volterra-type predator-prey system with scaled model
parameters and showed unstable and stable population dynamics for derived conditions in
step-size selections (see [10,11] for similar studies for Lotka-Volterra-type predator-prey
models). To the best of our knowledge, no study has investigated the dynamic inconsis-
tency under arbitrary step size for the Ricker-type ordinary differential equation (ODE)
predator-prey model [12], as given by

N′(t) = N(t)
(

eX(t) − 1
)

P′(t) = P(t)
(

eY(t) − 1
)

.
(5)

Hence, we study the required conditions for stable and unstable population dynamics
of ODE system (5) and their discretised system (2) with generalised step size. Consequently,
the results identify similar or different dynamical properties of approximated discrete
systems compared to the corresponding continuous-time model.

We perform a comparable study on qualitative analysis of the stability properties of a
commonly used continuous-time population model, a logistic growth Lotka-Volterra-type
predator-prey system [13]

N′(t) = N(t)X(t)

P′(t) = P(t)Y(t).
(6)

Here, the prey population is influenced by the prey natural growth, prey restricted
growth in terms of prey carrying capacity and prey death caused by predator attacks. The
predator abundance is governed by population growth due to predation and natural death.
We indicate that the generalised Lotka-Volterra model (4) is the approximated discrete
system of the continuous-time ODE model (6).

The dynamical properties of predator-prey systems of continuous-time models have
been studied extensively in the literature (see the examples at [14–16]), but the factors that
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can perturb the dynamical properties (e.g., stabilising or destabilising the system) have not
been fully analysed for discrete approximations of continuous-time systems.

We fill the gap of identifying the constraints that deliver similar or different dynamical
properties of two continuous-time models and their approximated discrete system in terms
of the arbitrary step size under parameter space. More precisely, we derive the stability
properties of discrete systems associated with corresponding continuous-time models such
that the interconnection of these two systems is purely observable.

The comparison of both approximated (discrete) and actual (continuous) systems
reveals the conditions that must be satisfied by the time discretisation. Our study also high-
lights the importance of the changes in (some) model parameters that direct the system to
have stable or unstable population dynamics. Therefore, our work contributes to choosing
the best-suited step size for a particular discrete-time system and helps to understand the
stabilising and destabilising factors of the continuous system and approximated discretised
system under parameter space.

This paper is organised as follows. In Section 2, a qualitative study to construct stability
constraints is performed through a Jacobian analysis of the discrete systems followed by
that of the continuous systems. In Section 3, we derive the dynamical properties of discrete
systems connected to the continuous-time systems and investigate the conditions that
lead the system solutions to become stable in terms of selecting suitable sets of model
parameters and determining the effects of the step size in time discretisation. We then
demonstrate population dynamics to justify our theoretical findings through numerical
simulations in Section 4.

2. Equilibrium Stability and Dynamics

To understand the interconnection of dynamical properties in generic discretised
systems with continuous-time systems under an arbitrary step size, we investigate the
equilibrium points and the possible stable states of all Ricker-type and Lotka-Volterra
systems mentioned in this paper. We first examine the system dynamics at the fixed points
of the generalised discrete systems (2) and (4).

In order to develop stability conditions for discrete systems, we first consider the fixed
point iteration formulation of a nonlinear map:

χ(t + h) = F(χ(t)), (7)

where χ(t) ∈ Rm, and F has a Lipschitz condition. A point η is said to be a fixed point
satisfying η = F(η), where F is a map, such that F : I → I, and I is a region in Rm. It is
proven that the fixed point η is asymptotically stable if there exists a norm such that

||JF|| < 1, (8)

where JF is the Jacobian matrix of the discrete system evaluated at η [17]. Since we consider
two dimensional systems, we have the following characterisations at η in terms of the two
eigenvalues λ1 and λ2 of the Jacobian matrix of the iterated map:

(i) |λi| < 1, i = 1, 2; a sink, locally asymptotically stable.
(ii) |λi| > 1, i = 1, 2; a source.
(iii) One of |λi| > 1 and other |λi| < 1, i = 1, 2; a saddle.
(iv) One of |λi| = 1 and other |λi| 6= 1, i = 1, 2; non-hyperbolic.

Note that our investigation is based on this eigenvalue classification. Furthermore, we
can find flip, saddle and Hopf bifurcations when we traverse the boundaries of different
stability domains.



Axioms 2023, 12, 390 4 of 14

The equilibrium points for the Ricker-type and Lotka-Volterra discrete models can be
obtained by solving

N(t + h) = N(t)

P(t + h) = P(t)
(9)

for N and P. For the generalised Ricker-type discrete model, (9) implies X(t) = Y(t) = 0,
and this also holds for the discrete Lotka-Volterra model, (4). The fixed points of both the
discrete formulations of the generalised Ricker-type discrete model and the discrete Lotka-
Volterra model ((2) and (4), respectively) are the same, namely E1 ≡ (0, 0), E2 ≡ (K, 0) and
E3 ≡

(
c

αγ , r
α

(
1− c

Kαγ

))
. Further, these are the same equilibrium points obtained for the

continuous time models since the same condition X(t) = Y(t) = 0 was satisfied, and we
use the same notation. We denote the Jacobians of discrete maps in (2) and (4) by ĴR and
ĴLV , respectively. Then, some analysis gives, after omitting the dependence on t,

ĴR =

[
1 + h

(
eX − 1− r

K NeX) −αNheX

αγPheY 1 + h
(
eY − 1

)]
and

ĴLV =

[
1 + h

(
X− r

K N
)
−αhN

αγhP 1 + hY

]
.

By using Jacobians, we derive the connection of the stability properties of the discrete
systems to their respective ODE systems in the next section.

We then classify the equilibria of the continuous-time models (5) (Ricker-type) and (6)
(Lotka-Volterra) based on the stability since unstable and stable equilibria behave differently
in population dynamics. Both systems (5) and (6) have fixed points, namely E1 ≡ (0, 0),
E2 ≡ (K, 0) and E3 ≡

(
c

αγ , r
α

(
1− c

Kαγ

))
. Then, the Jacobian matrix of (5) is

JR =

[
eX − 1− r

K NeX −αNeX

αγPeY eY − 1

]
and the Jacobian matrix for (6) is

JLV =

[
X− r

K N −αN
αγP Y

]
.

We observe similar stability properties for both ODE models even though the Jacobian
matrices are different. The Jacobian matrices evaluated at E1 = (0, 0) are

JR |E1=

[
er − 1 0

0 e−c − 1

]
and JLV |E1=

[
r 0
0 −c

]
.

Thus, the eigenvalues at E1 are

λR |E1 =
{

er − 1, e−c − 1
}

λLV |E1 = {r,−c}
(10)

where λR and λLV are the eigenvalues for system (5) and (6), respectively. E1 is unstable for
both models regardless of any choices of parameter values since it is a saddle point such
that one eigenvalue is positive and one is negative. This means that the population never
returns to E1 after a small deviation of the population variation.

The Jacobian matrices evaluated at E2 = (K, 0) are

JR |E2=

[
−r −Kα

0 eαγK−c − 1

]
and JLV |E2=

[
−r −Kα
0 αγK− c

]



Axioms 2023, 12, 390 5 of 14

and so

λR |E2 =
{
−r, eθ − 1

}
λLV |E2 = {−r, θ}

(11)

where θ = αγK− c. The θ value indicates a condition to determine the properties of the
eigenvalues. Therefore, investigations for stability properties are presented in terms of θ
where appropriate. Then, E2 is asymptotically stable for both models if the parameters
satisfy θ < 0 (i.e., αγK < c) since both eigenvalues are then real and negative. This means
that, if there is a small deviation of the population densities away from E2, the prey and
predators can return to prey-carrying capacity (N = K) and no predators, respectively.

This implies that the prey population can be sustained by reaching its maximum
carrying capacity without the presence of predators even if there are a small number of
predators present in the ecosystem or if the prey population experiences high mortality.
Moreover, this case shows the predator-prey existence under low predator populations
where their ability to survive through food availability is determined by K < c

αγ . On
the other hand, for both models, E2 is an unstable saddle point if θ > 0 and if θ = 0
E2 is a non-hyperbolic point where the system dynamics depend on the nonlinear terms
of the model equations since it cannot be predicted from the eigenvalue analysis of the
Jacobian matrix.

The Jacobian matrices evaluated at E3 =
(

c
αγ , r

α

(
1 c

Kαγ

))
are

JR |E3= JLV |E3=

[
− rc

αγK − c
γ

rγ
(

1− c
αγK

)
0

]
,

and since these Jacobian matrices are the same for both ODE models, we obtain identical
results for stability analysis. The eigenvalues calculated for E3 satisfy the characteristic
polynomial

λ2 + Tλ + D = 0 (12)

where T = rc
αγK and D = c(r− T) = θT. Thus,

λR |E3= λLV |E3= {λ1, λ2} (13)

where λj =
−T±

√
T2−4D
2 =

−T±
√

T(T−4θ)
2 , j = {1, 2}. Note that, if T ∈ (0, 4θ), the imaginary

component for the continuous-time models is
√

T(T−4θ)
2 i, and the larger the imaginary

component is, the more oscillatory are the dynamics (note that the maximum imaginary
component occurs when T = 2θ). The system stability status at a particular equilibrium
point can be observed by looking at the sign of the eigenvalues and whether they are real
or complex. We can conclude that E3 is asymptotically stable if

θ > 0, (14)

with oscillatory dynamics if T ∈ (0, 4θ), and E3 is an unstable saddle point if θ < 0. E3
is the only non-trivial equilibrium point that has positive populations for both prey and
predators. Note that, if θ = 0, we can have a non-hyperbolic property.

3. Deriving Connections of Dynamical Properties in Discrete and Continuous Systems

The connections between discrete systems and ODE systems are derived under arbi-
trary step size. Stability analysis for the discrete-time systems is simplified using derivations
from the respective ODE systems where necessary. These stability constraints are observed
through a Jacobian analysis, and the factors that could affect the system dynamics are
analysed through variations of model parameters and by defining a particular range of
step size.
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We observe that
ĴR = I + hJR

and
ĴLV = I + hJLV .

Hence, λ( ĴR) = 1 + hλ(JR) and λ( ĴLV) = 1 + hλ(JLV), where the eigenvalues of JR
and JLV are given in (10), (11) and (13). Thus, from the eigenvalue analysis, we have
locally asymptotic stability for discrete mappings if |1 + hλ(JR)| < 1 and similarly for
λ(JLV). In the case that λ(JR), λ(JLV) < 0, this leads to −hλ(JR) < 2 and −hλ(JLV) < 2.
Therefore, depending on the step size and the eigenvalues of the continuous-time system,
new conditions exist in discretised systems for stable population dynamics.

From the eigenvalue classification, E1 is not asymptotically stable, but there is a saddle
point if h(1− e−c) < 2 or 0 < hc < 2 for Ricker-type and Lotka-Volterra discrete maps,
respectively. For θ < 0, E2 is asymptotically stable for the Ricker-type discrete model, if
h <

{
2
r , 2

1−eθ

}
, and for the discrete Lotka-Volterra model, if h <

{ 2
r , −2

θ

}
. Furthermore, if

θ = 0 and h 6= 2
r , E2 is non-hyperbolic for both models. For θ < 0, E2 is a saddle point for

the Ricker-type discrete model if one of the following conditions holds

(i) θ < −r and 2
r < h < 2

1−eθ ,

(ii) θ > −r and 2
r > h > 2

1−eθ .

For θ < 0, E2 is a saddle point for the Lotka-Volterra discrete model if one of the
following conditions holds

(i) θ < ln(1− r) and 2
r < h < −2

θ ,
(ii) θ > ln(1− r) and 2

r > h > −2
θ .

In the case of the fixed point E3, we can classify the stability associated with the two
cases if the eigenvalues of JR and JLV are given as λ1 and λ2. From (12), the eigenvalues
satisfy λ2 + Tλ + D = 0, where T = rc

αγK and D = c(r− T) = θT. For θ > 0,

(i) If λ1 and λ2 are real and negative where λ1 = λ2, then E3 is asymptotically stable if

h <
T
4

.

This happens only if T = 4θ.
(ii) If both λ1 and λ2 are real and negative where λ1 6= λ2, then E3 is asymptotically stable

if the step size satisfies

h <

{
− 2

λ1
,− 2

λ2

}
.

This happens if T − 4θ > 0.
(iii) If both λ1 and λ2 are complex conjugate eigenvalues (say a± ib), then, from the above,

a2 + b2 = D = θT and T = −2a. This occurs when T − 4θ < 0. With these complex
eigenvalues, the population dynamics lead to oscillations with time. Then, the bound
for the step size is

h <

{
−2a

a2 + b2

}
=

T
D

=
1
θ

. (15)

This can only happen if 0 < 1+ hT(hθ− 1). Note that, if h = 1
θ , then both eigenvalues

have magnitude one.

For θ < 0, say λ1 > 0 and λ2 < 0, then E3 is non-hyperbolic if h = − 2
λ2

. For θ = 0, E3

is non-hyperbolic if h 6= 2
T .

Overall, the stability constraints are different in continuous-time models and their
corresponding discrete systems. A summary of the stability analysis of all eigenvalues
for the Ricker-type and Lotka-Volterra discrete and continuous-time models are given
in Table 1. Stability criteria evaluated at equilibrium point E3 are similar for both Lotka-
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Volterra and Ricker-type models. At equilibrium point E2, the stability conditions are
similar for both models under continuous-time setting only and different otherwise. We
consider the case (iii) when θ > 0 for further simulations since it is a stable spiral where the
population returns to a steady state, E3.

Thus, additional constraints are required for stable population dynamics in approx-
imated discrete systems compared with those in the continuous-time system (which is
θ > 0). Therefore, the model dynamics of approximated discrete systems depend on the
selected step size and (some) model parameters. We use (15) to observe the stability with
different step sizes and ranges of model parameters in the next section.

Table 1. Stability status for discrete and continuous Ricker-type (RK) and Lotka-Volterra (LV) models,

where E1 ≡ (0, 0), E2 ≡ (K, 0), E3 ≡
(

c
αγ , r

α

(
1− c

Kαγ

))
, and λ1, λ2 are eigenvalues of E3 calculated

from (13).

Stability Model
E1 E2

Discrete Continuous Discrete Continuous

Asym.
stable

RK - - if θ < 0 and h < { 2
r , 2

1−eθ } if θ < 0

LV - - if θ < 0 and h < { 2
r ,− 2

θ } as above

Non-
hyperbolic

RK if h = 2
1−e−c -

if θ = 0, h 6= 2
r

if θ < 0, h = 2
1−eθ , h 6= 2

r
if h = 2

r , θ 6= 0, θ 6= ln(1− r)
if θ = 0

LV if h = 2
c -

if θ = 0, h 6= 2
r

if θ < 0, h = − 2
θ , θ 6= 0, θ 6= −r

if h = 2
r , θ 6= 0, θ 6= −r

as above

Saddle

RK if h < 2
1−e−c

always a
saddle point

if θ < 0, θ < −r, 2
r < h < 2

1−eθ

if θ < 0, θ > −r, 2
r > h > 2

1−eθ

if θ > 0, h < { 2
r , 2

1−eθ }
if θ > 0

LV if h < 2
c

always
a saddle point

if θ < 0, θ < ln(1− r), 2
r < h < − 2

θ
if θ < 0, θ > ln(1− r), 2

r > h > − 2
θ

as above

Stability Model
E3

Discrete Continuous

Asym.
stable

RK
if θ > 0, T = 4θ, 0 < h < T

4
if θ > 0, T − 4θ > 0, h < {− 2

λ1
,− 2

λ2
}

if θ > 0, T − 4θ < 0, h < 1
θ , 0 < 1 + hT(hθ − 1)

if θ > 0

LV as above as above

Non-
hyperbolic

RK
if θ > 0, T − 4θ > 0, h = − 2

λi
, h 6= − 2

λj
, i 6= j, i, j = {1, 2}

if θ < 0, h = − 2
λ2

, λ2 < 0, λ1 > 0
if θ = 0, h 6= 2

T

if θ = 0

LV as above as above

Saddle
RK if θ > 0, T − 4θ > 0,− 2

λi
< h < − 2

λj
, i 6= j, i, j = {1, 2} if θ < 0

LV as above as above

4. Numerical Results

We present a numerical simulation study for the Lotka-Volterra and Ricker-type
discrete systems to illustrate the theoretical findings discussed in Section 3. The stability
condition (15), where the discrete systems become stable at E3, are demonstrated for some
parameter ranges and step sizes. The impacts of model parameter variations on the system
that change the model dynamics are then investigated through a few examples. This
numerical study clearly demonstrates the changes to the population over time in the
long-term scale.
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We observed that some parameters impact the system dynamics and can stabilise or
destabilise the populations if the time discretisation is fixed. In our discrete-time models,
model stability is governed by the parameters α, γ, K, c and r according to the derivation
of (15) given that step size h is fixed. We first observed the stability condition (15) for
discrete systems at unit step size h = 1 by assigning the parameter values described in [2],
where α = 0.05, γ = 0.01, K = 2500, c = 0.2 and r = 0.5. Then, θ = αγK − c = 21

20 and
T = rc

αγK = 2
25 (note that we use these parameters for the numerical simulation study of

this paper; some model parameters are subject to change depending on the analysis, and
changes to the model parameters are given in each figure caption). Then, (15) specifies
stability for step size

h <
20
21

,

where θ > 0, T − 4θ < 0 and 1 + hT(hθ − 1) > 0. In this case, since the eigenvalues are
complex, the size of the imaginary component of the eigenvalue evaluated at equilibrium
point E3 is

√
206
50 . For this choice of parameters with step size h = 1, the system is not

asymptotically stable at E3 since annual discretisation does not satisfy h < 20
21 . Thus, the

system dynamics diverge while oscillating around the equilibrium point E3 (blue curves
in Figure 1). If α = 0.048 with the other parameters the same and a one-year step size
h = 1, then the system may not become asymptotically stable since θ = 1, T − 4θ < 0 and
1 + hT(hθ − 1) > 0.

In this case, the condition for stability in Equation (15) is violated: h = 1
θ = 1. The

populations seem to be converging to E3 but oscillates around E3 (red curves in Figure 1).
If α = 0.04 and h = 1 with the other parameters the same, then θ = αγK − c = 1

20 >

0, T − 4θ < 0 and 1 + hT(hθ − 1) > 0; thus, h < 1
θ , and the condition (15) is true for this

case. Therefore, the populations converge to E3 = (500, 10); see the black curves in Figure 1.
Thus, there is considerable sensitivity to the choice of parameters and, hence, to the step
size, which controls the dynamics of the model.

Figure 1. Demonstration of the different dynamics that can arise with the discrete Ricker-type
system (1) when the parameter α is varied. This system is solved with K = 2500, γ = 0.01, c = 0.2
and r = 0.5. For three different α values 0.05, 0.048 and 0.04, the predator-prey populations diverge,
converge very slowly and converge, respectively. Here, system (1) is derived for a unit step size,
which is similar to system (2) when h = 1.



Axioms 2023, 12, 390 9 of 14

Moreover, if we choose c = 0.25 + ε, rather than c = 0.2 as previously, where ε is a
small positive value and the other parameters are as in [2], then

θ = αγK− c =
25
20
− 5

20
− ε = 1− ε,

and so (15) gives

h <
1

1− ε
.

Then, for the step size h = 1, the condition (15) is true such that the system generates
populations that converge to the fixed points (except for ε = 0). Therefore, if the step size
is fixed, a small deviation of a model parameter or specific parameters that define model
stability can make dramatic changes in the population dynamics.

Returning to the case of c = 0.2, we varied c by c + ζ for the step size h = 1 where ζ is
a small positive constant value. The numerical results of population densities over time in
Figure 2 confirm the stability conditions developed for discrete models as in Equation (15).
For small values of ζ near zero, the populations are oscillatory diverging; see the blue
curves in Figure 2. Special dynamics are observed for ζ = 0.05 (red curves in Figure 2), in
which case, c = 0.25 and corresponds to the case of ζ = 0 studied previously.

Figure 2. Different predator-prey dynamics of discrete Ricker-type and Lotka-Volterra models with
slightly varying parameter c as c + ζ by ζ = {0, 0.01, 0.05, 0.1, 0.2} values where h = 1, K = 2500,
γ = 0.01, α = 0.05, c = 0.2 and r = 0.5.

Fixed point convergence is observed for ζ = {0.1, 0.2}, which satisfies the stability
condition in (15); see the black curves in Figure 2. The population dynamics according to
the small changes of the parameter c shows how critical the sensitivity of the parameters
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is. This is valid for other parameters that affect the stability of the discrete model—in our
case, α, γ, K, c and r. Moreover, the numerical simulations of the discrete models support
the developed analytical results in discrete systems.

Figure 3 shows the fixed-point convergence region (yellow) for β ∈ [0, 8 × 10−4],
where β = αγ. Therefore, parameter c has different boundaries for converging populations
and preserving positive predator populations as demonstrated in the red and black curves
of Figure 3, respectively.

Figure 3. Stability regions of the discrete Ricker-type model and discrete Lotka-Volterra model as
a function of h and β = αγ, K = 2500 and r = 0.5. The fixed-point convergence region is bounded
by β = c

K + 1
h and β = c

K , and boundary changes are marked in red and black lines for different
c = {0.1, 0.2, 0.3}. The stability regions are coloured for c = 0.2, as represented in solid lines, and are
represented as dashed lines for c = 0.1 and c = 0.3.

Special dynamics of system (1) are observed when α = 0.048, which is on the upper
bound of the fixed-point converging region (the red curves in Figure 1). The black curves in
Figure 1 represent the converging predator and prey densities to their fixed points as the α
is chosen from the yellow region of Figure 3. If α is chosen from the oscillatory divergence
region, the predator-prey densities tend to oscillate continuously and increase in amplitude;
see the blue curves in Figure 1.

As a guide to selecting a suitable step size h with the required stability property, the
impacts of variable step sizes are investigated (see Figure 4). The fixed-point convergence
region becomes larger for small step sizes. Figure 4 indicates that larger step sizes are more
likely to show oscillatory divergence.

Even though the model structures of the discrete Ricker-type and Lotka-Volterra mod-
els are different, the derived stability conditions for these models are similar in certain cases.
We examine the frequency plots of the population dynamics for both models with different
step sizes. The red and blue curves in Figure 5 provide evidence of the special behaviour
when θ = αγK − c = 21/20 (with h = 1

θ ). These curves have a similar pattern that con-
verges to a fixed point at a later time. The continuously converging pattern of these curves
shows similar characteristics of the fixed-point convergence at the beginning, and, from the
long-time observations, the populations never approach fixed points. Therefore, this is an
exceptional case that behaves as an upper bound for the fixed-point convergence region.
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Figure 4. The fixed-point convergence region as a function of β and c for the discrete Ricker-type
model and discrete Lotka-Volterra model where β = αγ, K = 2500 and r = 0.5. The fixed-point
convergence region is bounded by β = c

K + 1
h and β = c

K , ∀h > 0. For h = 1, the stability regions are
coloured, and the upper and lower boundaries of the fixed-point region are plotted for β = c

K + 1
and β = c

K , as displayed in solid red and black lines, respectively. The upper boundary of fixed-point
region moves upward with decreasing step size, marked as red dashed lines. Note that the lower
boundary of the fixed-point convergence region is valid for any h.

Figure 5. Special behaviour of predator-prey populations for Ricker-type and Lotka-Volterra discrete
models if h = 1

θ = 20
21 , where K = 2500, γ = 0.01, α = 0.05, c = 0.2 and r = 0.5. Predator-prey

populations seem to converge to a fixed point at the beginning; however, after a long time, the
populations oscillate around the fixed point. Note that this exceptional case occurs only at the upper
bound of the fixed-point convergence region.

5. Discussion and Conclusions

We investigated the stability of the population dynamics of Ricker-type and Lotka-
Volterra discrete and continuous-time population models. Based on the Jacobian analysis,
important constraints were generated to identify the stability regions of the discrete systems.
The generalised discrete systems can be viewed as the Euler numerical scheme of the
approximate solution of the continuous-time models.

The discretised solution may or may not have the same properties as observed in the
original continuous-time model. Therefore, a qualitative analysis of the model dynamics in
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both the original continuous-time model and the relevant discretised system is essential
when modelling to inform ecological decisions. We showed that the two models have
similar conditions to stabilise the system depending on the constraints as shown in Table 1.
This novel work increases the understanding of the similar behaviours of two structurally
different predator-prey models, in a nonlinear setting.

The derived stability properties for continuous-time and approximated discrete-time
solutions are different at each equilibrium point. Therefore, choosing a suitable time dis-
cretisation depends on the stability criteria that are determined by the dynamical properties.
Our results are outlined in Table 1, which includes the results for asymptotic stability,
non-hyperbolic stability and saddle points. We assume the populations in real ecosystems
coexist at, or move to, a stable state, which is E3 with asymptotic stability. Therefore, select-
ing a suitable time discretisation is essential to approximate the respective continuous-time
system if the model parameters are given.

We highlighted the significance of understanding the choices of model parameters
that impact the stability of the system. Some parameters need to be verified carefully due
to the strong effect on system dynamics, such as the parameters determined by θ. Small
changes in these parameters lead to large deviations in the population count when the step
size of the time discretisation is fixed (e.g., one year). A prior analysis on the impact of
selecting a suitable time discretisation that is relevant to selected parameter sets is essential
for better performance of the models. We also numerically showed that the small changes
in parameter values and step sizes stabilise or destabilise the system and form different
dynamics in population densities.

Our results on the Ricker-type discrete model are consistent with the stabilisation
that was found in [3]. However, the discrete model stability analysis that shows the
significance of dynamical properties over the parameter space goes beyond previous studies
on investigating the stabilising and destabilising factors defined in [18,19]. Populations
become more stable and converge to the equilibrium point if the step size is small. This
generates a time discretisation (into small time intervals) where the discrete systems behave
more closely to the continuous systems.

Certainly, to preserve the characteristics in numerical simulations, this idea supports
the small step size recommendation in Euler’s scheme, since it is a first-order method [20].
These results lead to selecting suitable values for the step size in terms of preserving the
required stability states when approximating discrete systems to respective continuous
systems. On the other hand, if the step size is too small, then, on larger systems, the
simulations may take a very long time to run, especially over large time intervals. We
note that there are non-standard discretisation methods of nonlinear ODEs to preserve the
dynamic consistency regardless of the selection of the step size [21,22].

This is not a complete study of the dynamics of discrete mapping. For example,
from (7), we note χ(t + 2h) = F(χ(t + h)) = F(F(χ(t))). Hence, we can study the fixed
points of F ◦ F, and the ensuing dynamics would lead to period-two dynamics depending
on the nature of the map F. The two models will have different dynamics in this regard.
The theories on limit cycles and bifurcation analysis [23–25] were not considered; however,
this can be seen through our numerical simulations. Of course, this can be generalised to
period dynamics of any integer order and potentially lead to chaotic dynamics (of iterations
of the logistic map). Moreover, parameter-identification methods can be applied to estimate
parameters within a chaotic system [26].

The demonstrated stability analysis can be applied to other forms of two-species
continuous-time and discrete-time population models in returning more complex dynami-
cal systems, such as controlling species, functional responses, time delay [27,28] and the
Allee effect. Our work can be extended to study the dynamics of three or more species
systems [29] and to understand the stabilising and destabilising factors before obtaining
the model outcomes.

Finally, this work has implications in uncertainty quantification. In this setting, popu-
lations of models (with the same structure but different parameter sets) are constructed



Axioms 2023, 12, 390 13 of 14

based on these models satisfying a set of common outputs. If there is sensitivity of the dy-
namics to the parameters, as is the case here, then this can make the process of uncertainty
quantification also sensitive.

In conclusion, the stability criteria for the continuous-time models depend only on the
model parameters defined by θ; however, when the continuous-time models are discretised
through numerical approximations, the stability criteria depend on the step size along with
(some) model parameters. Therefore, the dynamical properties of the original ODE systems
are different from the respective discretised systems with the same parameter values unless
a suitable step size is defined.

To obtain a better understanding of the model dynamics, the discretised systems
should be thoroughly investigated under an eigenvalue analysis to identify suitable step
sizes that agree with the model parameters. In real predator-prey systems, prior knowl-
edge of the system behaviour enhances the understanding of the factors that stabilise or
destabilise the populations over time. If the parameters are estimated from a data set, this
type of theoretical study provides a detailed analysis for selecting a suitable numerical
simulation method that discretises the time component with step size.
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