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Abstract: This work proposes a new numerical approach for dealing with fractional stochastic
differential equations. In particular, a novel three-point fractional formula for approximating the
Riemann–Liouville integrator is established, and then it is applied to generate approximate solutions
for fractional stochastic differential equations. Such a formula is derived with the use of the general-
ized Taylor theorem coupled with a recent definition of the definite fractional integral. Our approach
is compared with the approximate solution generated by the Euler–Maruyama method and the exact
solution for the purpose of verifying our findings.
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1. Introduction

Due to its superior properties for many problems, solutions to fractional stochastic
differential equations (FSDEs) driven by the Brownian motion have recently received much
attention from scientific researchers. For instance, the authors in [1] looked at a stochastic
viscoelastic wave equation with nonlinear damping and logarithmic nonlinear source terms
that established a blow-up result. In [2], the existence and uniqueness of mild solutions for
neutral delay Hilfer fractional integrodifferential equations were studied with fractional
Brownian motion, and consequently certain sufficient conditions for controllability of neu-
tral delay Hilfer fractional differential equations were established with fractional Brownian
motion as well. In [3], noninstantaneous impulsive conformable fractional stochastic delay
integrodifferential system driven was studied by Rosenblatt process, and accordingly suffi-
cient conditions for approximate controllability and null controllability were established for
the considered problem. More recently, the authors in [4] discussed the essential concept
behind the multilevel Monte Carlo approach with the exact coupling via performing several
numerical implementations. Through this paper, we aim to study the following formula
that represents an FSDE formulated in the Caputo sense with a noisy environment:

Dα
∗X(t, w) = f (t, X(t, w))dt + g(t, X(t, w))dW(t, w),

where f is the drift coefficient, g is the diffusion coefficient, and W(t, w) is the Wiener
process, which is also called Brownian motion. For simplicity, we consider X(t, w) = X(t)
and W(t, w) = Wt. This gives:

Dα
∗X(t) = f (t, X(t))dt + g(t, X(t))dWt, (1)

where 0 ≤ t ≤ T. The Wiener process W(t), which is a stochastic process indexed by
nonnegative real number t, satisfies the following three conditions:

Axioms 2023, 12, 388. https://doi.org/10.3390/axioms12040388 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12040388
https://doi.org/10.3390/axioms12040388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8443-8848
https://orcid.org/0000-0003-0694-1680
https://orcid.org/0000-0003-4348-6197
https://orcid.org/0000-0002-9960-2591
https://doi.org/10.3390/axioms12040388
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12040388?type=check_update&version=1


Axioms 2023, 12, 388 2 of 12

• W0 = 1.
• Wt–Ws ∼

√
t− sN(0, 1) for 0 ≤ s < t, where N(0, 1) indicates a standard normal

distribution.
• The two increments Wt–Ws and Wτ–Wυ are independent on distinct time intervals for

0 ≤ s < t < τ < υ.

Indeed, Equation (1) is an example of an FSDE. Due to the fact that their applications
are viewed as stochastic processes, such as those in mechanics, medicine, physics, biology,
population dynamics, and finance, these equations are crucial in many areas of business
and research [5,6]. In particular, such equations were established based on the fact that the
deterministic differential equation can be modified by including a random term. In the
same regard, due to the fact that these equations have not frequently exact solutions,
numerical methods must be used to approximate their solutions [7–9]. The FSDEs are
thought of as a natural type of the fractional-order systems that can involve specific random
terms because these systems are commonly produced in many real-life models [10–12].
However, in order to obtain further insights about some of numerical solutions of stochastic
differential equations, the reader may refer to references [13–15].

The Euler–Maruyama method is a method for the approximate numerical solution of
a stochastic differential equation. It is an extension of the Euler method for ordinary differ-
ential equations to stochastic differential equations [16]. It is named after Leonhard Euler
and Gisiro Maruyama [13]. As the traditional Euler method, this method is considered
unacceptably poor, and requires a too small step size to achieve some serious accuracy [13].
From this point of view, the motivation behind this study is to establish a more efficient
novel numerical method than some other existence numerical methods for dealing with
FSDEs. This method depends on establishing a new three-point fractional formula for ap-
proximating Riemann–Liouville integrator, which is derived with the use of the generalized
Taylor theorem coupled with a recent definition of the definite fractional integral.

The organization of this paper is arranged as follows: Section 2 aims to recall some
basic facts and definitions connected with stochastic differential equations. Section 3
demonstrates the main results of this work so that it contains an established numerical
method for solving the FSDEs with the help of using the so-called modified three-point
fractional formula for approximating the Riemann–Liouville fractional integrator. Such a
formula will be derived first from one of the fractional calculus’s most important results:
the generalized Taylor theorem. Then in Section 4, we will apply the derived formula to
solve the FSDEs. Section 5 illustrates numerical results that confirm the theoretical findings
of this work, followed by the final section that summarizes the conclusion.

2. Preliminaries

In this section, we recall some preliminaries and basic results related to fractional
calculus coupled with some needed concepts connected with stochastic differential equa-
tions. For more details about fractional calculus and its applications, the reader may refer
to references [17–20].

Definition 1. Let α be a real nonnegative number. Then the Riemann–Liouville fractional-order
integrator Jα

a is defined by:

Jα
a f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, a ≤ x ≤ b. (2)

In what follows, we recall certain properties of the Riemann–Liouville fractional-order
integral operator for completeness [17]:
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(1) J0
a h(t) = h(t). (3)

(2) Jµ
a (t− a)γ =

Γ(γ + 1)
Γ(µ + γ + 1)

(t− a)µ+γ, γ ≥ −1. (4)

(3) Jµ
a Jβ

a h(t) = Jβ
a Jµ

a h(t) µ, β ≥ 0. (5)

(4) Jµ
a Jβ

a h(t) = Jµ+β
a h(t) µ, β ≥ 0. (6)

Definition 2. Let α ∈ R+ and m = dαe such that m− 1 < α ≤ m. Then the Caputo fractional-
order differentiator of order α is given by:

Dα
∗ f (x) =

1
Γ(m− α)

∫ x

a
(x− t)m−α−1 f (m)(t)dt, x > a. (7)

In the following content, we list some properties of the Caputo differentiator [17]:

(1) Dµ
∗ c = 0, where c is constant. (8)

(2) Dµ
∗ (t− a)ρ =

Γ(ρ + 1)
Γ(ρ− µ + 1)

(t− a)ρ−µ, where ρ > µ− 1. (9)

(3) Dµ
∗ (µh(t) + ωg(t)) = µDµ

∗ (h(t)) + ωDµ
∗ (g(t)), (10)

where µ and ω are constant. In the same regard, we report below some other properties
related to the composition between the previous two operators [17]:

Dα
∗ Jα

0 h(t) = h(t), (11)

and

Jα
0 Dα
∗h(t) = h(t)−

n

∑
i=1

hi(0+)
ti

i!
, (12)

where t > 0 and n− 1 < α ≤ n such that n ∈ N.

Theorem 1 ([21] (generalized Taylor’s theorem)). Suppose that Dkα
∗ f (x) ∈ C(0, b] for k =

0, 1, . . . , n + 1, where 0 < α ≤ 1. Then the function f can be expanded about x = x0 as:

f (x) =
n

∑
i=0

xiα

Γ(iα + 1)
Diα
∗ f (x0) +

x(n+1)α

Γ((n + 1)α + 1)
D(n+1)α
∗ f (ξ), (13)

with 0 < ξ < x, ∀x ∈ (0, b].

Ito’s formula is a key component in the Ito Calculus, used to determine the derivative
of a time-dependent function of a stochastic process. For more overview about such
formula, the reader may refer to the reference [22].

Theorem 2 ([13] (Itô formula)). Let dξ(t) = adt + bdw(t) and let f (x, t) be a continuous
function in (x, t) ∈ R1 × [0, ∞) with partial derivatives fx, fxx, ft. Then the process f (ξ(t), t) has
a stochastic differential, given by:

d f (ξ(t), t) = [ ft(ξ(t), t) + fx(ξ(t), t)a(t)) +
1
2

fxx(ξ(t), t)b2(t)]dt + fx(ξ(t), t)b(t)dw(t).

Notice that if w(t) were continuously differentiable in t, then (by the standard calculus formula
for total derivatives) the term 1

2 fxxb2dt will not appear.

In Figure 1, we illustrate an elementary simulation of the Brownian motion with a
step size ∆t = 0.1. Such simulation can be performed by using a built-in Matlab function
(randn) for representing N(0, 1) stochastic variable.
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Figure 1. The Wiener process.

Here, we recall two highly significant results that help us in deriving the main results of
this work. The first one referred to M. Ortigueira and J. Machado who established a proper
formula to find the exact values of given definite fractional integrals [23], while the other
one referred to I. Batiha et al. who provide an approach for the Caputo derivative called
the modified three-point fractional formula for approximating Caputo derivative [24].

Definition 3 ([23] (Definite Fractional Integral)). The definite fractional integral of the function
f of order α is given by:

Jα
a f (x) =

∫ b

a
f (−α+1)(x).dx =

∫ b

a
D−α+1
∗ f (x)dx, (14)

where −∞ < a < b < ∞ and α− 1 < n ≤ α such that n ∈ N.

Theorem 3 ([24]). Suppose f ∈ C3[a, b] and x0, x1, x2 are three distinct points in the interval
[a, b] such that a = x0 < x1 = x0 + h < x2 = x0 + 2h = b with h > 0. Then the modified
three-point fractional formula for approximating the Caputo first derivative is given by:

Dα
∗ f (x) =

x2−α

h2Γ(3− α)

(
f (x0)− 2 f (x1) + f (x2)

)
− x1−α

2h2Γ(2− α)

(
f (x0)(x1 + x2)− 2 f (x1)(x0 + x2) + f (x2)(x0 + x1)

)
+

f (3)(ξ)
6

(
6x3−α

Γ(4− α)
− 2(x0 + x1 + x2)x2−α

Γ(3− α)
+

(x0x1 + x0x2 + x1x2)x1−α

Γ(2− α)

)
,

(15)

for each x ∈ [a, b], where ξ ∈ (a, b).

3. Modified Three-Point Fractional Formula

This parts aims to develop a novel fractional-order version of the classical three-
point formula that might be used to approximate integrals. Such formula will be called the
modified three-point fractional formula for approximating the Riemann–Liouville fractional
integral operator. For this purpose and based on Theorem 3, we can easily deduce the next
result that establishes an approximation for the Caputo derivative operator of order 2α.

Corollary 1. Under the same assumptions of Theorem 3, the modified three-point fractional formula
for approximating the Caputo derivative operator of order 2α is given by:

D2α
∗ f (x) =

x2−2α

h2Γ(3− 2α)
( f (x0)− 2 f (x1) + f (x2))

+
f (3)(ξ)

6

(
6x3−2α

Γ(4− 2α)
− 2(x0 + x1 + x2)x2−2α

Γ(3− 2α)

)
.

(16)



Axioms 2023, 12, 388 5 of 12

In light of the previous discussion and based on the generalized Taylor Theorem 1
coupled with the Definite Fractional Integral Definition 3, we establish the next so-called
modified three-point fractional formula for approximating Riemann–Liouville integrator.

Theorem 4. Let D5α
∗ f ∈ C4[a, b], where α = n

m such that n ≤ m with n, m ∈ Z+ and m = 2k− 1
for k ∈ Z+. Suppose x0, x1 and x2 are three distinct points in the interval [a, b] such that
a = x0 < x1 = x0 + h < x2 = x0 + 2h = b with h > 0. Then the three-point central fractional
formula for approximating Riemann–Liouville integrator is given by:

Jα
a f (x) = 2h f (x1) +

2h3αx2−2α
1

Γ(3α + 1)Γ(3− 2α)
( f (x0)− 2 f (x1) + f (x2))

+
2h3α

6Γ(3α + 1)
f (3)(ξ)

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)
+

2h5α

Γ(5α + 1)
D4α
∗ f (ξ).

(17)

Proof. In order to prove this result, we expand first the generalized Taylor Theorem 1 on f
about x = x1 to obtain:

f (x) = f (x1) + Dα
∗ f (x1)

(x− x1)
α

Γ(α + 1)
+ D2α

∗ f (x1)
(x− x1)

2α

Γ(2α + 1)

+ D3α
∗ f (x1)

(x− x1)
3α

Γ(3α + 1)
+ D4α

∗ f (ξ)
(x− x1)

4α

Γ(4α + 1)
.

(18)

By applying a Jα
a to both sides of the above equality, coupled with using Equation (14)

and Definition 3, we obtain:

Jα
a f (x) = 2h f (x1) +

Dα
∗ f (x1)

Γ(2α)

∫ b

a
(x− x1)

2α−1dx

+
D2α
∗ f (x1)

Γ(3α)

∫ b

a
(x− x1)

3α−1dx

+
D3α
∗ f (x1)

Γ(4α)

∫ b

a
(x− x1)

4α−1dx

+
D4α
∗ f (ξ)
Γ(5α)

∫ b

a
(x− x1)

5α−1dx.

(19)

This immediately gives:

Jα
a f (x) = 2h f (x1) +

Dα
∗ f (x1)

Γ(2α + 1)

(
(h)2α − (−h)2α

)
+

D2α
∗ f (x1)

Γ(3α + 1)

(
(h)3α − (−h)3α

)
+

D3α
∗ f (x1)

Γ(4α + 1)

(
(h)4α − (−h)4α

)
+

D4α
∗ f (ξ)

Γ(5α + 1)

(
(h)5α − (−h)5α

)
.

(20)

Observe that we can clearly assert that (−h)2α = (h)2α and (−h)4α = (h)4α. However,
for the other similar terms, we can find where α will be defined by taking (−h)3α = −(h)3α

and (−h)5α = −(h)5α. Actually, this is valid for α = n
m such that n ≤ m, where n, m ∈ Z+

with m = 2k− 1 for k ∈ Z+. In other words and without loss of generality, if α = 1, then we
can have (−h)2α = (h)2α, (−h)3α = −(h)3α, (−h)4α = (h)4α, and (−h)5α = −(h)5α. Based
on this discussion, we can obtain the following equation:

Jα
a f (x) = 2h f (x1) +

2h3α

Γ(3α + 1)
D2α
∗ f (x1) +

2h5α

Γ(5α + 1)
D4α
∗ f (ξ). (21)
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Now, by substituting (16) into (21), we obtain:

Jα
a f (x) = 2h f (x1)

+
2h3α

Γ(3α + 1)

[
x2−2α

1
Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2)) +
f (3)(ξ)

6

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)]

+
2h5α

Γ(5α + 1)
D4α
∗ f (ξ).

(22)

Simplifying the above equation yields:

Jα
a f (x) = 2h f (x1) +

2h3αx2−2α
1

Γ(3α + 1)Γ(3− 2α)
( f (x0)− 2 f (x1) + f (x2))

+
2h3α

6Γ(3α + 1)
f (3)(ξ)×

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)

+
2h5α

Γ(5α + 1)
D4α
∗ f (ξ).

(23)

Hence, the three-point central fractional formula for approximating Riemann–Liouville
integrator is given by:

Jα
a f (x) ≈ 2h f (x1) +

2h3αx2−2α
1

Γ(3α + 1)Γ(3− 2α)
( f (x0)− 2 f (x1) + f (x2)), (24)

which completes the desired result.

4. Handling FSDE Using the Modified Three-Point Fractional Formula

In this section, we introduce a novel numerical solution for the FSDE by using the
modified three-point fractional formula for approximating Riemann–Liouville integrator.
To this aim, we reconsider again the FSDE (1) again as follows:

Dα
∗X(t) = f (t, X(t, w))dt + g(t, X(t))dW(t), 0 ≤ t ≤ T, (25)

with the initial condition X(0) = η. Now, by taking Jα
0 to the both sides of (25), we obtain:

X(t) = η + Jα
0 f (t, X(t, w))dt + Jα

0 g(t, X(t))dW(t). (26)

Herein, we suppose that t0, t1, t2, . . . , tn are distinct points in the interval [0, T] such
that 0 = t0 < t1 = t0 + h < t2 = t0 + 2h < . . . < tn = t0 + nh = T, where h > 0 is the step
size of the discretization. Now, by applying (24) into (26), we have then an approximate
numerical solution for FSDE (25), which would be:

X(ti) ≈ η + 2h f (ti, X(ti)) +
2h3αt2−2α

i
Γ(3α + 1)Γ(3− 2α)

× [ f (ti−1, X(ti−1))− 2 f (ti, X(ti)) + f (ti+1, X(ti+1))]

+ 2hg(ti, X(ti)) +
2h3αt2−2α

i
Γ(3α + 1)Γ(3− 2α)

× [g(ti−1, X(ti−1))− 2g(ti, X(ti)) + g(ti+1, X(ti+1))],

(27)

for i = 1, 2, 3, . . . , n, where n = T
h .

5. Applications

Herein, we intend to test the validation of the approximate numerical solution (27)
proposed for the FSDE (25). For this purpose, we list the following examples.

Example 1. Assume that f (X(t)) = −10X(t) and g(X(t)) = 1 with the initial condition
X(0) = 1, i.e., we have the following nonlinear FSDE [25]:
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Dα
∗X(t) = −10X(t)dt + dW(t), 0 ≤ t ≤ 1, (28)

subject to the initial condition X(0) = 1. Accordingly, by applying the approximate numerical
solution given in (27), we obtain:

X(ti) ≈ 1 + 2h(−10X(ti)) +
2h3αt2−2α

i
Γ(3α + 1)Γ(3− 2α)

×
{
(−10X(ti−1))− 2(−10X(ti)) + (−10X(ti+1))

}

+ 2h +
2h3αt2−2α

i
Γ(3α + 1)Γ(3− 2α)

× {(1)− 2(1) + (1)},

(29)

for i = 1, 2, 3, . . . , 10.
To see how the numerical solution (29) looks according to different values of α, we plot Figure 2.

In addition, in order to validate our proposed numerical scheme, we plot once again our numerical
solution (29) in Figure 3 and compare it with the exact solution and with another numerical
solution generated by Euler–Maruyama method. We also plot the absolute error gained from such a
comparison in Figure 4.

We can notice that our proposed approximate solution (29) generated by our numerical method
is closer to the exact solution of the FSDE (28) than that of Euler–Maruyama’s solution.
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Figure 2. The numerical solution (29) of the FSDE (28) according to different fractional-order values.
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Figure 3. Comparison between the numerical solution (29), Euler–Maruyama’s solution, and exact
solution of problem (28).
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Figure 4. Absolute error generated by the numerical solution (29) and Euler–Maruyama’s solution.

Example 2. Assume that f (X(t)) = 3
10 X(t) and g(X(t)) = X

2
10 (t) with the initial condition

X(0) = 1, i.e., we have the following nonlinear FSDE [25]:

Dα
∗X(t) =

3
10

X(t)dt + X
2

10 (t)dW(t), 0 ≤ t ≤ 1, (30)

subject to the initial condition X(0) = 1. With the use of the approximate numerical solution given
in (27), we obtain:

X(ti) ≈ 1 + 2h
(

3
10

X(ti)

)
+

2h3αt2−2α
i

Γ(3α + 1)Γ(3− 2α)
×
{(

3
10

X(ti−1)

)
− 2
(

3
10

X(ti)

)
+

(
3

10
X(ti+1)

)}

+ 2h
(

X
2
10 (ti)

)
+

2h3αt2−2α
i

Γ(3α + 1)Γ(3− 2α)
×
{(

X
2
10 (ti−1)

)
− 2
(

X
2
10 (ti)

)
+
(

X
2

10 (ti+1)
)}

,

(31)

for i = 1, 2, 3, . . . , 10.
In this regard, the numerical solution (31) according to different values of α can be seen in

Figure 5. Moreover, we plot once again our numerical solution (31) in Figure 6 and compare it
with the exact solution and with another numerical solution generated by Euler–Maruyama method.
Furthermore, we also plot the absolute error gained from such a comparison in Figure 7.
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Figure 5. The numerical solution (31) of the FSDE (30) according to different fractional-order values.
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Figure 6. Comparison between the numerical solution (31), Euler–Maruyama’s solution and exact
solution of problem (30).
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We can see here that our proposed approximate solution (31) generated by our numerical
method is closer to the exact solution of the FSDE (30) than that of Euler–Maruyama’s solution.

Example 3. Assume here f (X(t)) = 2
5 X

3
5 (t) + 5X

4
5 (t) and g(X(t)) = X

4
5 (t) with the initial

condition X(0) = 10, i.e., we have the following nonlinear FSDE [26]:

Dα
∗X(t) =

(
2
5

X
3
5 (t) + 5X

4
5 (t)

)
dt + X

4
5 (t)dW(t), 0 ≤ t ≤ 1, (32)

subject to the initial condition X(0) = 10. Applying the approximate numerical solution given in
(27) yields:

X(ti) ≈ 10 + 2h
(

2
5

X
3
5 (ti) + 5X

4
5 (ti)

)
+

2h3αt2−2α
i

Γ(3α + 1)Γ(3− 2α)

×
{(

2
5

X
3
5 (ti−1) + 5X

4
5 (ti−1)

)
− 2
(

2
5

X
3
5 (ti) + 5X

4
5 (ti)

)
+

(
2
5

X
3
5 (ti+1) + 5X

4
5 (ti+1)

)}

+ 2h
(

X
4
5 (ti)

)
+

2h3αt2−2α
i

Γ(3α + 1)Γ(3− 2α)
×
{(

X
4
5 (ti−1)

)
− 2
(

X
4
5 (ti)

)
+
(

X
4
5 (ti+1)

)}
,

(33)

for i = 1, 2, 3, . . . , 10.
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Herein, Figure 8 depicts the numerical solution (33) according to different values of α. More-
over, Figure 9 demonstrates the validity of our proposed numerical scheme by making a numeri-
cal comparison between our numerical solution (33) and the exact solution coupled with Euler–
Maruyama’s solution. In the same regard, we also plot the absolute error gained from such a
comparison in Figure 10 for completeness.

Obviously, one might undoubtedly observe that our proposed approximate solution (33)
generated by our numerical method is closer to the exact solution of the FSDE (32) than that
of Euler–Maruyama’s solution.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
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8

9

10
x 10

5

t

X
(t

)

Numerical solution according to different fractional−order values

 

 

α=1

α=0.9

α=0.8

Figure 8. The numerical solution (33) of the FSDE (32) according to different fractional-order values.

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

t

X
(t

)

Exact vs Numerical Solutions

 

 

Euler−Maruyama Method

Three point fractional formula

Exact

Figure 9. Comparison between the numerical solution (33), Euler–Maruyama’s solution and exact
solution of problem (32).

It should be noted that because the stochastic differential equation consists of a deter-
ministic differential equation coupled with a random term, then the approximate solution
for such an equation will be slightly changed from time to time. This is because the random
term in that equation is usually programmed by using a built-in Matlab function (called
randn) for representing the N(0, 1) stochastic variable. This would generate the Brownian
motion with a step size of h = 0.1, which would affect the approximate solution each time
the prepared code is run. So, the approximate solution generated by both methods (our
method and the Euler–Maruyama method) are not consistent. Despite these changes, our
proposed scheme stills presents better results than that of the Euler–Maruyama scheme.
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Figure 10. Absolute error generated by the numerical solution (33) and Euler–Maruyama’s solution.

6. Conclusions

In this paper, a numerical solution of the FSDE has been proposed by using a new
modification of the classical three-point formula called the modified three-point fractional
formula for approximating Riemann–Liouville integrator. The generalized Taylor theorem
with the recent definition where the definite fractional integral have been used to derive
this formula. Based on several numerical experiments, one can clearly observe that the
numerical solution generated by our scheme is closer to the exact solution of the FSDE than
that of Euler–Maruyama’s solution.

Author Contributions: Conceptualization, I.M.B. and I.H.J.; methodology, A.A.A.; software, S.B.A.-
S.; validation, K.M.; formal analysis, I.M.B.; investigation, A.A.A.; resources, S.B.A.-S.; data curation,
I.H.J.; writing—original draft preparation, K.M.; writing—review and editing, I.M.B.; visualization,
A.A.A.; supervision, I.H.J.; project administration, S.B.A.-S.; funding acquisition, K.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Arab Open University for Funding this work
through AOU research fund No. (AOURG-2023-008).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Arab Open University and Al-Zaytoonah
University for providing the necessary scientific research supplies to implement the research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benramdane, A.; Mezouar, N.; Alqawba, M.; Boulaaras, S.; Cherif, B. Blow-up for a stochastic viscoelastic lamé equation with

logarithmic nonlinearity. J. Funct. Spaces 2021, 2021, 9943969. [CrossRef]
2. Alnafisah, Y.; Ahmed, H.M. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evol.

Equations Control Theory 2022, 11, 925–937. [CrossRef]
3. Ahmed, H.M. Noninstantaneous Impulsive Conformable Fractional Stochastic Delay Integro-Differential System with Rosenblatt

Process and Control Function. Qual. Theory Dyn. Syst. 2022, 21, 15. [CrossRef]
4. Alnafisah, Y. Multilevel MC method for weak approximation of stochastic differential equation with the exact coupling scheme.

Open Math. 2022, 20, 305–312. [CrossRef]
5. Liu, Q.; Peng, H.; Wang, Z. Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling

vasculogenesis. J. Differ. Equ. 2022, 314, 251–286. [CrossRef]
6. Xie, X.; Wang, T.; Zhang, W. Existence of solutions for the (p,q)-Laplacian equation with nonlocal Choquard reaction. Appl. Math.

Lett. 2023, 135, 108418. [CrossRef]
7. Batiha, I.M.; Alshorm, S.; Jebril, I.; Zraiqat, A.; Momani, Z.; Momani, S. Modified 5-point fractional formula with Richardson

extrapolation. AIMS Math. 2023, 8, 9520–9534. [CrossRef]
8. Albadarneh, R.B.; Batiha, I.M.; Adwai, A.; Tahat, N.; Alomari, A.K. Numerical approach of riemann-liouville fractional derivative

operator. Int. J. Electr. Comput. Eng. 2021, 11, 5367–5378. [CrossRef]

http://doi.org/10.1155/2021/9943969
http://dx.doi.org/10.3934/eect.2021031
http://dx.doi.org/10.1007/s12346-021-00544-z
http://dx.doi.org/10.1515/math-2022-0019
http://dx.doi.org/10.1016/j.jde.2022.01.021
http://dx.doi.org/10.1016/j.aml.2022.108418
http://dx.doi.org/10.3934/math.2023480
http://dx.doi.org/10.11591/ijece.v11i6.pp5367-5378


Axioms 2023, 12, 388 12 of 12

9. Albadarneh, R.B.; Batiha, I.; Alomari, A.K.; Tahat, N. Numerical approach for approximating the Caputo fractional-order
derivative operator. AIMS Math. 2021, 6, 12743–12756. [CrossRef]

10. Ye, R.; Liu, P.; Shi, K.; Yan, B. State Damping Control: A Novel Simple Method of Rotor UAV With High Performance. IEEE Access
2020, 8, 214346–214357. [CrossRef]

11. Liu, L.; Wang, J.; Zhang, L.; Zhang, S. Multi-AUV Dynamic Maneuver Countermeasure Algorithm Based on Interval Information
Game and Fractional-Order DE. Fractal Fract. 2022, 6, 235. [CrossRef]

12. Song, M.; Yu, H. Convergence and stability of implicit compensated Euler method for stochastic differential equations with
Poisson random measure. Adv. Differ. Equ. 2012, 2012, 214. [CrossRef]

13. Kloeden, P.E.; Platen, E. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992.
14. Farnoosh, R.; Rezazadeh, H.; Sobhani, A.; Behboudi, M. Analytical solutions for stochastic differential equations via martingale

processes. Math. Sci. 2015, 9, 87–92. [CrossRef]
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