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Abstract: This work focuses on solving and analyzing two-point fuzzy boundary value problems
in the form of fractional ordinary differential equations (FFOBVPs) using a new version of the
approximation analytical approach. FFOBVPs are useful in describing complex scientific phenomena
that include heritable characteristics and uncertainty, and obtaining exact or close analytical solutions
for these equations can be challenging, especially in the case of nonlinear problems. To address
these difficulties, the optimal homotopy asymptotic method (OHAM) was studied and extended in a
new form to solve FFOBVPs. The OHAM is known for its ability to solve both linear and nonlinear
fractional models and provides a straightforward methodology that uses multiple convergence
control parameters to optimally manage the convergence of approximate series solutions. The new
form of the OHAM presented in this work incorporates the concepts of fuzzy sets theory and some
fractional calculus principles to include fuzzy analysis in the method. The steps of fuzzification and
defuzzification are used to transform the fuzzy problem into a crisp problem that can be solved using
the OHAM. The method is demonstrated by solving and analyzing linear and nonlinear FFOBVPs
at different values of fractional derivatives. The results obtained using the new form of the fuzzy
OHAM are analyzed and compared to those found in the literature to demonstrate the method’s
efficiency and high accuracy in the fuzzy domain. Overall, this work presents a feasible and efficient
approach for solving FFOBVPs using a new form of the OHAM with fuzzy analysis.

Keywords: fuzzy sets theory; fuzzy fractional derivative; caputo derivative; fuzzy boundary value
problems; fuzzy fractional differential equations; optimal homotopy asymptotic method

1. Introduction

Fractional-order models are more accurate than integer-order models since there are
more degrees of freedom in the fractional-order models. Fractional calculus apparently
captures some of the hereditary properties of the system [1]. Fractional calculus is not
modern; it is a generalization of traditional calculus theory, which deals with the integer
order [2]. In fractional calculus, the derivative and integral found in classical calculus
are generalized to the arbitrary real or complex order, that is, to non-integer order [3].
Fractional calculus is seen as an essential tool for managing such complicated problems that
are reliant on long-term memory terms, even though classical calculus is a great tool for
modeling many complex real-world phenomena [4]. Memory is the term used to describe
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the output or results that depend on the history of the variables from a previous period.
Classical calculus cannot solve issues that depend on the memory of the variables [5].

During the past decade, fractional differential equations under the effect of uncertainty
(FFDEs) have appeared more and more practically in different research areas, such as
physics and engineering [6,7], in addition to many other fields [8]. FFDEs are characterized
by a nonlocal derivative operator. This, in turn, contributes to modeling the complicated
real-world problems that are based on the long memory term. Unfortunately, the stemming
uncertainty caused by a lack of data or the difficulty of exactly determining the supple-
mentary conditions will lead to errors in measurement, so using the nonlocal fractional
derivative operators in the fuzzy environment will ensure a more accurate mathematical
model that simulates human thinking.

Accurate modeling of complex real-world problems helps us provide a clear and
explicit concept of complex dynamics by employing the definitions and theories of the
fractional calculus theory and the fuzzy calculus theory. However, these models remain
impractical until they are solved because the solutions provide a comprehensive view, in
addition to the fact that the solutions aid in studying and understanding the physical and
engineering properties of real-world problems [8]

In solving some of the FFODEs, the analytical approach aims to present a closed-form
solution [9,10]. A closed-form solution is considered the exact solution to the problem [11].
The solution may be expressed as the sum of a finite number of elementary functions, such
as polynomial, exponential, trigonometric, and hyperbolic functions. The advantage of
a closed-form solution is that it provides an overall view of the solution to the problem.
Moreover, in the analysis of results, using closed-form solutions generally does not require
a huge amount of computation [12]. In many instances, analytical solutions cannot be
found [13–16]. Nevertheless, the solutions to such equations are always in demand due
to practical interests. Therefore, to deal with such instances in a more realistic manner,
FFODEs are commonly solved using the approximation approach, which includes the
numerical and approximate analytical methods.

Numerous methods were proposed for solving FFOBVPs; for instance, we refer the
reader to explore [16–19]. These numerical methods demonstrated their ability to solve only
linear cases of FFODEs. In the numerical approach, the aim is to obtain an approximate
solution, where an open-form solution is sought instead of a closed-form. However, the
numerical class of methods directly solves FFODEs of high orders; instead, they require
a transformation into a system of the first order. Further, most studies employ numerical
methods for linear first-order problems [20,21]. Unfortunately, most of the complicated
real-world problems were modeled using nonlinear differential equations, which makes
these methods inappropriate to deal with them—especially the problems governed by
strong nonlinearity.

In addition to the optimal homotopy asymptotic method (OHAM) presented in this
work, several other approximate analytical methods have been used to solve different types
of FFOBVPs. These include the variational iteration method (VIM) [22,23], the reproducing
kernel Hilbert space method (RKHSM) [24], the spectral collocation method (SCM) [7], the
Adomian decomposition method (ADM) [25], the differential transform method [26], the
residual power series method (RPSM) [27], and the fractional residual power series method
(FRPSM) [28].

Hashim et al. [29] solved fuzzy IVPs with fractional derivative orders between 0 and 1
using the optimal homotopy asymptotic method (OHAM), and the paper presented the
defuzzification of fuzzy fractional IVPs. The authors then introduced a framework for
solving the considered problem using the OHAM. Upper and lower solutions were investi-
gated in terms of the accuracy and convergence of the method by finding optimal values of
the convergent parameters using a few terms of the series solution with higher accuracy
than the fractional residual power method. The paper did not discuss the fuzzification
of the boundary value problem or its solution. As one more section of this work, we will
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investigate the fuzzy theory and the OHAM to solve the fuzzy boundary value problem
with a fractional derivative order between 1 and 2.

While these methods have shown promise in solving FFOBVPs, they often fail to
provide a simple way to control and adjust the convergence area. This can be a significant
obstacle in obtaining accurate solutions, especially for nonlinear problems. Therefore,
the development of new approximate analytical methods is necessary to overcome these
challenges and improve the accuracy of solutions.

The OHAM presented in this work addresses this issue by using multiple convergence
control parameters to optimally manage the convergence of approximate series solutions.
This allows for greater flexibility in controlling and adjusting the convergence area, re-
sulting in more accurate solutions for FFOBVPs. This is due to the proposed methods’
inability to control the convergence region. Nowadays, homotopy methods are the most
promising approaches for solving nonlinear real-world problems [30] due to their ability to
simplify complicated problems, provide the freedom to choose the auxiliary functions, and
provide a simple way to control the convergence, which helps us optimize the convergence
series solutions for the strong nonlinearity problems. The OHAM has been used to solve
various types of differential equations, including classical differential equations [31], fuzzy
differential equations [32], and fractional differential equations [33]. The method’s effec-
tiveness in controlling the convergence area has been demonstrated through numerical
results for both linear and nonlinear problems. The OHAM provides multiple convergence
control parameters that allow for greater flexibility in adjusting the convergence area and
obtaining accurate solutions. This makes OHAM a promising method for solving complex
differential equations encountered in science and engineering applications.

In order to solve FFOBVPs, this study intended to create novel approximative analyti-
cal techniques with convergence-control capabilities. The fundamental idea of the OHAM
will be applied to the development of the new approach, which will be able to manage
the significant challenge of managing the convergence of the approximative analytical
solutions. This work also focuses on the development of the fuzzy OHAM’s fractional form,
represented by the abbreviation FF-OHAM, on two different types of application problems
that fall under the Caputo definitions of differentiability and involve linear and nonlinear
application problems. This starts with the introduction of the basic tools of fuzzy fractional
calculus in the second section, followed by providing the defuzzification procedure for the
FFOBVPs in Section 3. Section 4 provides the new version of the FF-OHAM for solving
FFOBVPs; then, the numerical simulation of the physical applications of the FF-OHAM will
be provided in Section 5. Then, we will end with the conclusions regarding the effectiveness
of the proposed method and the gained results.

2. Mathematical Background

In this section, we will present the basic concepts and definitions linked with fractional
calculus theory in the fuzzy domain, which will help us comprehend the work in the next
sections, such as the fuzzy fractional integral [34], which is a generalization of the classical
fractional integral concept to the fuzzy-valued functions. It is a fuzzy operator that takes
a fuzzy-valued function [35] as an input and produces another fuzzy-valued function
as an output. The fuzzy fractional integral can be interpreted as a generalization of the
fuzzy integral and the classical Riemann–Liouville integral of fractional order [36]. The
Caputo derivative of fractional order is used to define the fuzzy fractional integral in the
sense of Caputo [37]. It is worth noting that the concept of α-cut is also used in the fuzzy
fractional integral theory to define the α-cut of a fuzzy fractional integral. The α-cut of a
fuzzy fractional integral is a fuzzy number that corresponds to the fuzzy α-cut [38]. The
fuzzy-valued function is obtained by taking the fuzzy fractional integral and the Riemann–
Liouville integral of fractional order [24]. On the other hand, the following fundamental
definition of the fuzzy fractional integral needs to be recalled:
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Definition 1 ([7]). For any continuous fuzzy valued function,
∼
g ∈ CF [a, b] ∩ LF [a, b], the fuzzy

fractional Riemann–Liouville integration of
∼
g(x) will be defined by the following form:

∼
J

ω∼
g(x) =

1
Γ(ω)

∫ x

0

∼
g(y)(x− y)ω−1dy, for ω, x ∈ R and ω, x > 0 (1)

∀α ∈ [0, 1], α-cuts for fuzzy-valued function,
∼
g, can be represented by

∼
g(x; α) =

[
g(x; α), g(x; α)

]
(2)

where
∼
J

ω

is the Riemann–Liouville integral operator of order ω; Γ(ω) is the famous Gamma
function; CF [a, b] is the set of all fuzzy-valued measurable functions,

∼
g, on [a, b]; and LF [a, b] is

the space of fuzzy-valued functions, which are continuous on [a, b].

Definition 2 ([24]). Let ω ∈ (1, 2], and
∼
g : [a, b]→

∼
U , such that

∼
g and

∼
g
′
∈ CF [0, b]∩ LF [0, b].

Then, F can define the fuzzy fractional derivative in the sense of the Caputo of the fuzzy function
∼
g

at x ∈ (a, b), as follows:(∼
D

ω∼
g
)
(x) =

1
Γ(2−ω)

∫ x

0

∼
g
′′
(x)

(y− x)ω−1 dx, x > 0 (3)

where D is the Housdorff metric of the fuzzy set
∼
U. Note that the fuzzy fractional Riemann–Liouville

integration represents the left inverse operator of the fuzzy fractional Caputo derivative sense, such
that ∀∼g(x) ∈ CF [a, b] ∩ LF [a, b]. We have

∼
J

ω
(∼

D
ω∼

g
)
(x) =

∼
g(x)− xg′(0)− g(0),x ∈ R, and x > 0. (4)

3. Fuzzification and Defuzzification of FFODEs

The first step of the development of the proposed FF-OHAM for solving second-order
FFOBVPs is the defuzzification step. This is a general step that applies to the general form
of second-order FFOBVPs, as shown below.

Consider the second-order FFOBVP as follows:
∼
y
(ω)

(x) =
∼
g
(

x,
∼
y(x),

∼
y
(1)

(x)
)

, x ∈ [x0, X],

1 < ω ≤ 2,
(5)

subject to the following boundary conditions:
∼
y(x0) =

∼
a0,
∼
y
(1)

(x0) =
∼
a1,

∼
y(X) =

∼
b0,
∼
y
(1)

(X) =
∼
b1,

(6)

where
∼
g is the fuzzy function, while

∼
y
(ω)

(x) is the fractional Caputo derivative of the fuzzy
function

∼
y(x); and the boundary conditions at the points x0 and X are fuzzy numbers.
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For x ∈ [x0, X] and ∀α ∈ [0, 1], the fuzzy function will be defined by
[∼

y
]

α
=
[
y, y
]

α
∀x ∈ [x0, X] as follows: 

[∼
y(x0)

]
α
=
[
y(x0; α), y(x0; α)

]
,[

∼
y
(1)

(x0)

]
α

=

[
y(1)(x0; α),

−
y
(1)

(x0; α)

]
,[∼

y(X)
]

α
=
[
y(X; α), y(X; α)

]
,[

∼
y
(1)

(X)

]
α

=

[
y(1)(X; α),

−
y
(1)

(X; α)

]
.

(7)

Now, by assuming
∼
Ŷ(x) =

{
∼
y(x),

∼
y
(1)

(x)
}

, for defuzzification we have:

∼
Ŷ(x, α) =

[
Ŷ(x, α),

−
Ŷ(x, α)

]
=
[
y(x, α), y(1)(x, α), y(x; α),

−
y
(1)

(x; α)

]
. (8)

In addition, by utilizing the concepts of the extension principle theory, we can write
the α-cut of the fuzzy function, as shown below:[

∼
g
(

x,
∼
Ŷ
)]

α

=
∼
g
(

x,
∼
Ŷ(x; α)

)
=

[
g
(

x,
∼
Ŷ; α

)
, g
(

x,
∼
Ŷ; α

)]
, (9)

where 
g
(

x,
∼
Ŷ(x; α)

)
= gl

(
x, Ŷ(t; α),Υ(x; α)

)
= gl

(
x, Ŷ(x; α)

)
,

g
(

x,
∼
Ŷ(x; α)

)
= gu

(
x, Ŷ(x; α),Υ(x; α)

)
= gu

(
x, Ŷ(x; α)

)
.

(10)

which means that ∀α ∈ [0, 1]. We have
y(ω)(x; α) = gl

(
x,
∼
Ŷ(x; α)

)
,

y(ω)(x; α) = gu

(
x,
∼
Ŷ(x; α)

)
.

(11)

where 
gl

(
x,
∼
Ŷ(x; α)

)
= min

{
∼
y
(ω)(

x,
∼
µ(α)

)∣∣∣∣∼µ(α) ∈ [∼Ŷ(x; α)

]
α

}
,

gu

(
x,
∼
Ŷ(x; α)

)
= max

{
∼
y
(ω)(

x,
∼
µ(α)

)∣∣∣∣∼µ(α) ∈ [∼Ŷ(x; α)

]
α

}
.

(12)

4. FF-OHAM for FFTBVPs

In this section, the F-OHAM presented by [21] for solving the integer order of ODEs is
fuzzified and then defuzzified using some concepts of the fuzzy set theory in Section 2 to
create a new form of the method denoted by the FF-OHAM for solving linear and nonlinear
second-order FFOBVPs approximately.

∼
y
(ω)

(x) =
∼
g
(

x,
∼
y(x),

∼
y
(1)

(x)
)
+
∼
G(x) x ∈ [x0, X],

∼
y(x0) =

∼
a0,

∼
y
′
(x0) =

∼
a1,

∼
y(X) =

∼
b0,

∼
y
′
(X) =

∼
b1,

ω ∈ (1, 2],

(13)
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Followed by the defuzzification of Equation (5), such that for all α ∈ [0, 1], we have
the following lower bound:

Lβ1

(∼
y(x; α)

)
− gl

(
x,
∼
Ŷ(x)

)
−G(x) = 0, x ∈ [x0, X],

ß
(

y(x; α),
∂[y]

α
∂x

)
= 0.

(14)

and the following upper bound:
Lβ1

(∼
y(x; α)

)
− gu

(
x,
∼
Ŷ(x)

)
−G(x) = 0, x ∈ [x0, X],

ß
(

y(x; α),
∂[y]

α
∂x

)
= 0.

(15)

According to [3], Equations (14) and (15) can be written as the following lower and
upper zeroth order deformation homotopy equation:

(1− q)
[
Lω

([
y(x; q)

]
α

)
−G(x; α)

]
= H(q; α)

[
Lω

([
y(x; q)

]
α

)]
−H(q; α)[G(x; α)]−H(q; α)

[
gl

([∼
y(x; q)

]
α

)]
,

(1− q)
[
Lω([y(x; q)]α)−G(x; α)

]
= H(q; α)

[
Lω([y(x; q)]α)

]
−H(q; α)

[
G(x; α)

]
−H(q; α)

[
gl

([∼
y(x; q)

]
α

)]
,

(16)

subject to the following fuzzy boundary conditions

ß

[∼y(x; q)
]

α
,

∂
[∼

y(x; q)
]

α

∂x

 = 0, (17)

where
∼
Lω =

[
Lω,Lω

]
=

[
∂(ω)[y(x;q)]

α

∂x(ω) , ∂(ω) [y(x;q)]α
∂x(ω)

]
are the linear operators and q ∈ [0, 1]

is an embedding parameter. Here,
∼
H(q; α) =

[
H(q),H(q)

]
α

is a nonzero auxiliary fuzzy

function for q 6= 0, and
[∼

y(x; q)
]

α
is an unknown fuzzy function.

Obviously, for q = 0 and q = 1, we obtain the initial approximation, and the exact
solution, respectively, as follows:{[

y(x; 0)
]

α
= y

0
(x; α),

[
y(x; 1)

]
α
= Y(x; α),

[y(x; 0)]α = y0(t; α).[y(x; 1)]α = Y(x; α).
(18)

Thus, as q increases from 0 to 1, the series solution,
[∼

y(x; q)
]

α
, changes from

∼
y0(x; α) to

the solution of Equations (14) and (15),
∼
Y(x; α), where

∼
y0(x; α) is obtained from Equation (16)

for q = 0 as follows: y
0
(x; α) =

∼
J

(β1)

G(x; α),

y0(x; α) =
∼
J

(β1)

G(x; α),
(19)

subject to the following fuzzy boundary condition

ß

∼y0(x; α),
∂
[∼

y0

]
α

∂x

 = 0 (20)
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We choose the auxiliary function
∼
H(q; α) for Equation (16) in the following form:

H(q; α) = S1(α)q + S2(α)q2 + . . . =
k
∑

j=1
Sj(α)q

j,

H(q; α) = S1(α)q + S2(α)q
2 + . . . =

k
∑

j=1
Sj(α)qj,

(21)

where
∼
S1(α) =

[
S1(α), S1(α)

]
,
∼
S2(α) =

[
S2(α), S2(α)

]
, . . . are the constants to be found for

all α ∈ [0, 1]. Now, by expanding
[∼

y
(

x; q, Sj(α)
)]

α
into Taylor’s series about q, we obtain

the following approximate series solution:
[
y
(

x; q, Sj(α)
)]

α
= y

0
(x; α) +

k
∑

j=1

[
y

j

(
x, Sj(α)

)]
α
qj,

[
y
(
x; q, Sj(α)

)]
α
= y0(x; α) +

k
∑

j=1

[
yj
(
x, Sj(α)

)]
α
qj.

(22)

According to [3], by substituting Equation (22) into Equation (16) and then collecting
the coefficient of like powers of q, we will obtain the following system of linear equations—
where the zeroth-order problem is given by Equation (19), while the first to kth -order
problems are given as in the general kth-order formula with respect to

∼
yk(x; α), for k ≥ 1:

y
k
(x; α) = y

k−1
(x; α) +

k−1
∑

j=1
Sj(α)

(
y

k−j
(x; α)

)
J (ω)

(
Sk(α)gl0

(∼
y0(x; α)

)
+ ∑k−1

j=1 Sj(α)gl k−j

(
k−1
∑

i=0

∼
y i(x; α)

))
yk(x; α) = yk−1(x; α) +

k−1
∑

j=1
Sj(α)

(
yk−j(x; α)

)
J (ω)

(
Sk(α)gl0

(∼
y0(x; α)

)
+ ∑k−1

j=1 Sj(α)guk−j

(
k−1
∑

i=0

∼
y i(x; α)

))
(23)

ß

∼yk(x; α),
∂
[∼

yk

]
α

∂x

 = 0 (24)

where gl k−j

(
∑k−1

i=0
∼
y i(x; α)

)
and guk−j

(
∑k−1

i=0
∼
y i(x; α)

)
are the coefficients of qj in the expan-

sion of gl

[∼
y(x; q)

]
α

and gu

[∼
y(x; q)

]
α

about the embedding parameter q. We have the lower
and upper bounds as follows:

gl

([
∼
y

(
x; q,

k
∑

j=1

∼
S j(α)

)]
α

)
= gl0(

∼
y0(x; α)) +

k
∑

j=1
gl j

(
k
∑

j=0

[∼
y j

]
α

)
qj,

gu

([
∼
y

(
x; q,

k
∑

j=1

∼
S j(α)

)]
α

)
= gu0(

∼
y0(x; α)) +

k
∑

j=1
gu j

(
k
∑

j=0

[∼
y j

]
α

)
qj.

(25)

It has been observed that the convergence of the series in Equation (22) depends upon

the auxiliary constants
∼
S1(α),

∼
S2(α), . . .

∼
Sk(α), then, at q = 1, we obtain the exact solution

shown below: 

[
Y

(
x,

∞
∑

j=1
Sj(α)

)]
α

= y
0
(x; α) +

∞
∑

j=1

[
y

j

(
x;

∞
∑

j=1
Sj(α)

)]
α

,

[
Y

(
x,

∞
∑

j=1
Sj(α)

)]
α

= y0(x; α) +
∞
∑

j=1

[
yj

(
x;

∞
∑

j=1
Sj(α)

)]
α

.

(26)
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5. Convergence Dynamic of the FF-OHAM

Substituting Equation (22) into Equations (14) and (15) yields the following residual:

RE

(
x,

k
∑

j=1
Sj(α); α

)
= Lω

(
y

(
x,

k
∑

j=1
Sj(α); α

))
−G(x; α)

−gl

(
∼
y

(
x,

k
∑

j=1

∼
S j(α); α

))
,

RE

(
x,

k
∑

j=1
Sj(α); α

)
=
−
Lω

(
y

(
x,

k
∑

j=1
Sj(α); α

))
−G(x; α)

−gu

(
∼
y

(
x,

k
∑

j=1

∼
S j(α); α

))
.

(27)

As mentioned in [22], if
∼

RE = 0, then
∼
y yields the exact solution

∼
Y, although, generally,

it does not happen, especially in nonlinear FFOBVPs. To identify the auxiliary constants

of
∼
S j(α), j = 1, 2, . . . k, we choose x0 and X, such that the optimum values of

∼
S j(α) for the

convergent solution of the desired problem is obtained. To find the optimal values of
∼
S j(α)

here, we apply the method of least squares as follows:

∼
SRE

(
x,

k

∑
j=1

∼
S j(α); α

)
=

X∫
x0

∼
RE

2
(

x,
k

∑
j=1

∼
S j(α); α

)
dx, (28)

where
∼

RE is the residual,
[RE]α = Lω

([
y
]

α

)
−G(x; α)− gl

([∼
y
]

α

)
[
RE
]

α
=
−
Lω([y]α)−G(x; α)− gu

([∼
y
]

α

) (29)

and
∂
∼

SRE

∂
∼
S1(α)

=
∂
∼

SRE

∂
∼
S2(α)

= . . .
∂
∼

SRE

∂
∼
Sk(α)

= 0. (30)

It should be noted that our process included the fuzzy level set α, so the best values of
∼
Sk(α) are determined from Equation (30) for each α ∈ [0, 1], which provides us with an easy
way to set and optimally control the convergent area and the rate of the solution series.

6. Numerical Simulation of the Physical Applications via FF-OHAM

This section reflects the use of the FF-OHAM from Sections 3 and 4 for some fuzzy
models in physics. The method’s performance is tested in two linear and nonlinear FFOB-
VPs applications.

• Mechanical Application: Fuzzy Fractional Bagley–Torvik Equation

Consider the fuzzy fractional Bagley–Torvik equation [7]:

D(1.5)∼y(x) +
∼
y(x) =

∼
F(x; α), x ∈ [0, 1], (31)

such that
∼
F(x; α) =

{
F(x; α)
F(x; α)

=

 α
(
x2 − x

)
+ 4α

√
x√
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,

(2− α)
(
x2 − x

)
+ 4(2− α)

√
x√
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subject to the following fuzzy boundary condition{
y(0; α) = y(1; α) = (α− 1),

y(0; α) = y(1; α) = (1− α).
(33)

with the following fuzzy exact solution{
Y(x; α) = α

(
x2 − x

)
,

Y(x; α) = (2− α)
(
x2 − x

)
.

(34)

we can contract the FF-OHAM series solution for all α ∈ [0, 1] of Equation (31) as follows:
(1− q)

[
∼
D

(1.5)(∼
y(x; α)

)
−
∼
F(x; α)

]
=

5
∑

j=1

∼
S j(α)q

j

∼
S j(α)q

j

[
∼
D

(1.5)(∼
y(x; α)

)
+
∼
y(x; α)−

(∼
F(x; α)

)] (35)

such that
∼
y(x; α) =

∼
y0(x; α) +

k

∑
j=1

∼
y j
(

x, S1, . . . , Sj; α
)
qj (36)

Zeroth-order problem:
∼
y0(x, α) =

∼
J

(1.5)[
α
((

x2 − x
)
+ 4

√
x√
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)
, (2− α)

((
x2 − x

)
+ 4

√
x√
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)]
ß

(
∼
y0(x; α),

∂
[∼

y0

]
α

∂x

)
= 0

(37)

First-order problem:

∼
y1

(
x,
∼
S1(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

0
(x; α) +

∼
S1(α)

∼
J

(1.5)∼
y0(x; α)

−
(

1 +
∼
S1(α)

)∼
J

(1.5)(∼
F(x; α)

)
,

ß

(
∼
y1(x; α),

∂
[∼

y1

]
α

∂x

)
= 0.

(38)

Second-order problem:

∼
y2

(
x,
∼
S1(α),

∼
S2(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

1

(
x,
∼
S1(α); α

)
+
∼
S2(α)

∼
y0(x; α)+

∼
S1(α)

∼
J

(1.5)∼
y1

(
x,
∼
S1(α); α

)
+
∼
S2(α)

∼
J

(1.5)∼
y0(x; α)−

∼
S2(α)

∼
J

(1.5)(∼
F(x; α)

)

ß

(
∼
y2(x; α),

∂
[∼

y2

]
α

∂x

)
= 0.

(39)
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Third-order problem:

∼
y3

(
x,
∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

2

(
x,
∼
S1(α),

∼
S2(α); α

)
+

∼
S2(α)

∼
y1

(
x,
∼
S1(α); α

)
+
∼
J

(1.5) 3
∑

j=1

∼
S j(α)

∼
y3−j

(
x,
∼
S1(α), . . . ,

∼
S3−j(α); α

)

−
∼
S3(α)

∼
J

(1.5)(∼
F(x; α)

)
+
∼
S3(α)

∼
y0(x; α)

ß

(
∼
y3(x; α),

∂
[∼

y3

]
α

∂x

)
= 0.

(40)

Fourth-order problem:

∼
y4

(
x,
∼
S1(α), . . . ,

∼
S4(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

3

(
x,
∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
+

∼
S2(α)

∼
y2

(
x,
∼
S1(α),

∼
S2(α); α

)
+
∼
S3(α)

∼
y1

(
x,
∼
S1(α); α

)
+
∼
S4(α)

∼
y0(x; α)+

∼
J

(1.5) 4
∑

j=1

∼
S j(α)

∼
y4−j

(
x,
∼
S1(α), . . . ,

∼
S4−i(α); α

)
−
∼
S4(α)

∼
J

(1.5)(∼
F(x; α)

)

ß

(
∼
y4(x; α),

∂
[∼

y4

]
α

∂x

)
= 0

(41)

Fifth-order problem:

∼
y5

(
x,
∼
S1(α), . . . ,

∼
S5(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

4

(
x,
∼
S1(α), . . . ,

∼
S4(α); α

)
+

∼
S2(α)

∼
y3

(
x,
∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
+
∼
S3(α)

∼
y2

(
x,
∼
S1(α),

∼
S2(α); α

)
+

∼
S4(α)

∼
y1

(
x,
∼
S1(α); α

)
+
∼
S5(α)

∼
y0(x; α)−

∼
S5(α)

∼
J

(1.5)(∼
F(x; α)

)
+

∼
J

(1.5) 5
∑

j=1

∼
S j(α)

∼
y5−j

(
x,
∼
S1(α), . . . ,

∼
S5−i(α); α

)
ß

(
∼
y5(x; α),

∂
[∼

y5

]
α

∂x

)
= 0.

(42)

Next, we will solve Equation (31) with a third-order series FF-OHAM using the
Mathematica 13 Dsolve package

∼
y(x; α) =

∼
y0(x; α) + ∑3

j=1
∼
y j

(
x,
∼
S1(0.5), . . . ,

∼
S j(0.5); 0.5.

)
(43)

For this linear application, we found that the fuzzy convergence parameters at
α = 0.5 provide an appropriate and accurate series solution at each α ∈ [0, 1], such

that
∼
S1(0.5) = −1.065291064957493,

∼
S2(0.5) = −0.00004338985509905724, and

∼
S3(0.5) =

−0.0020739269082325523.
Next, we will employ the fuzzy convergence parameters

∼
S1(0.5),

∼
S2(0.5), and

∼
S3(0.5)

in Equation (43) to find the third-order FF-OHAM approximate series solution for
Equation (31), as shown in Table 1, as follows.
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Table 1. The approximate solutions and errors for Equation (31) using the third-order FF-OHAM at
x = 0.5 for all α ∈ [0, 1].

α

[
ER
¯

]
α

,
~
Sj

[
¯

ER
]

α

,
~
Sj

[
y
¯

]
α

,
~
Sj

[
¯
y
]

α

,
~
Sj

0 −1.36061× 10−5 0 −0.49998 0
0.2 −1.22455× 10−5 −1.36061× 10−6 −0.44998 −0.04999
0.4 −1.08849× 10−5 −2.72123× 10−6 −0.39999 −0.09999
0.6 −9.52429× 10−6 −4.08184× 10−6 −0.34999 −0.14999
0.8 −8.16368× 10−6 −5.44245× 10−6 −0.29999 −0.19999
1 −6.80306× 10−6 −6.80306× 10−6 −0.24999 −0.24999

Using a three-dimensional graph, we summarize the solutions using the third-order FF-
OHAM over all x ∈ [0, 0.5] and α ∈ [0, 1] corresponding with the best optimal convergence

control values—
∼
S1(0.5),

∼
S2(0.5), and

∼
S3(0.5)—of Equation (31) in Figure 1.
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Figure 1. The three-dimensional approximate solution of Equation (31) given by the third-order
FF-OHAM over all x ∈ [0, 0.5], and for all α ∈ [0, 1].

To analyze the behavior of FF-OHAM for solving second-order FFOBVPs, we shall
proceed to solve Equation (31) using the same data, x ∈ [0, 0.5] and ω = 1.5, and the
fifth-order FF-OHAM instead of the third-order FF-OHAM to illustrate the convergence
dynamic of FF-OHAM for different terms of the approximate series solution; therefore, the
series solution will take the following form:

∼
y(x; α) =

∼
y0(x; α) + ∑5

j=1
∼
y j

(
x,
∼
S1(0.5), . . . ,

∼
S j(0.5); 0.5.

)
(44)

such that the optimal convergence control parameters calculated using the Mathematica 13
Dsolve package are

∼
S1(0.5) = −1.0270653590282228

∼
S2(0.5) = 6.734609572815013× 10−7

∼
S3(0.5) = −0.000025083072228706767

∼
S4(0.5) = 0.000131089732250741

∼
S5(0.5) = 0.0001858737255737089

The above convergence parameters will be employed in Equation (44) to find the
fifth-order FF-OHAM approximate series solution for Equation (31), as shown in Table 2,
as follows.
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Table 2. The approximate solutions and errors for Equation (31) using the fifth-order FF-OHAM at
x = 0.5 for all α ∈ [0, 1].

α

[
ER
¯

]
α

,
~
Sj(0.5)

[
¯

ER
]

α

,
~
Sj(0.5)

[
y
¯

]
α

,
~
Sj(0.5)

[
¯
y
]

α

,
~
Sj(0.5)

0 −2.79607× 10−8 0 −0.50000 0
0.2 −2.51647× 10−8 −2.79607× 10−9 −0.45000 −0.05000
0.4 −2.23686× 10−8 −5.59214× 10−9 −0.40000 −0.10000
0.6 −1.95725× 10−8 −8.38822× 10−9 −0.35000 −0.15000
0.8 −1.67764× 10−8 −1.11843× 10−8 −0.30000 −0.20000
1 −1.39804× 10−8 −1.39804× 10−8 −0.25000 −0.25000

Figure 2 illustrates the summary of the solutions using the fifth-order FF-OHAM
over all x ∈ [0, 0.5] and α ∈ [0, 1] corresponding with the best optimal convergence

control values—
∼
S1(0.5),

∼
S2(0.5),

∼
S3(0.5),

∼
S4(0.5), and

∼
S5(0.5)—of Equation (43) in a three-

dimensional figure.
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Tables 1 and 2 and Figures 1 and 2 illustrate that the third- and fifth-order FF-OHAMs
satisfy the triangular solution of the fuzzy differential equations for Equation (31) [2]. On
the other hand, we can conclude that the series solution of the linear physical application
involving FFOBVP using the FF-OHAM will approach the exact solutions whenever the
order of the FF-OHAM increases. The developed FF-OHAM is compared with the spectral
collection method (SCM) for solving the mechanical application described in Equation (31).
Figures 3 and 4 illustrate the lower and upper accuracy of the fifth-order FF-OHAM in
comparison to the fifth-order SCM for solving the mechanical pplication ∀x ∈ [0, 1] at
α = 0.5 based on the absolute error defined below in Equation (45).{

ERR =
∣∣∣Y(x; α)− y(x; α)

∣∣∣
ERR =

∣∣Y(x; α)− y(x; α)
∣∣, ∀x ∈ [0, 1] ,and ∀α ∈ [0, 1] (45)
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We can conclude from Figures 3 and 4 that the accuracy of the approximate solution
solved for using the fifth-order FF-OHAM series provides better accuracy compared to
SCM for all x ∈ [0, 1].

• Thermal Conductivity of a Material: Nonlinear Fractional Temperature Distribution
Equation



Axioms 2023, 12, 387 14 of 18

Consider the mathematical model, a nonlinear fractional temperature distribution
equation of order ω ∈ (1, 2], which explains the distribution of the temperature in the
lumped convection system in a layer comprised of materials with varying thermal conduc-
tivity [39]: {

D(ω)y(x)− η(y(x))4 = 0, x ∈ [0, 1]
y′(0) = 0, y(1) = 1.

(46)

where x is the time-independent variable, and y(x) is the dimensionless temperature.
The following is the fuzzy version of Equation (46):

∼
D

(ω)∼
y(x; α)− η(y(x; α))4 = 0, x ∈ [0, 1]

y′(0; α) = (0.1α− 0.1), y(1; α) = (0.1α + 0.9),

y′(0; α) = (0.1− 0.1α), y(1; α) = (1.1− 0.1α).

(47)

To solve the fuzzy fractional model of the thermal conductivity using the FF-OHAM,
sccording to Section 3, we can build the approximate series solution for Equation (47) of
order ω ∈ (1, 2] for all α ∈ [0, 1] as follows:

For k ≥ 0, we can construct the following FF-OHAM form

(1− q)

[
∼
D

(ω)(∼
y(x; α)

)]
=

k

∑
j=1

Sj(α)q
j

[
∼
D

(ω)(∼
y(x; α)

)
− η

(∼
y(x; α)

)4
]

, (48)

Then, the approximate series solution is introduced in Equation (49) below:

∼
y(x; α) =

∼
y0(x; α) +

k

∑
j=1

∼
y j
(
x, S1, . . . , Sj; α

)
qj (49)

For a zeroth-order problem:

∼
y0(x; α) =

[∼
0
]

. (50)

For first- to tenth-order problems:

(1− q)

[
∼
D

(ω)(∼
y(x; α)

)]
=

9
∑

j=0

∼
S j(α)q

j

[
∼
D

(ω)(∼
y(x; α)

)
−

η

(
9
∑

i=0

∼
y9−i(x; α)

i
∑

j=0

∼
y i−j(x; α)

j
∑

s=0

∼
ys(x; α)

∼
y j−s(x; α)

)]
,

∼
yk
′
(0; α) =

∼
yk(1; α) =

∼
0.

(51)

Next, using the Mathematica 13 Dsolve package to find the series solutions for the
lower and the upper bounds of Equation (47), for j = 1, 2, . . . , 10, we obtain

∼
y(x; α) =

∼
y0(x; α) + ∑10

j=1
∼
y j
(
x, S1, . . . , Sj; α

)
qj (52)

such that the optimal lower and upper convergence control parameters calculated and
coded using Mathematica 13 to find the most accurate solution for Equation (47) via the
tenth-order FF-OHAM are listed in Tables 3 and 4 below.
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Table 3. Lower auxiliary convergence parameters of the tenth-order FF-OHAM for solving
Equation (47) atω = 1.9, x = 0.1, for all α ∈ [0, 1].

α S
¯j

0

S1 = −0.42754243116098856 S2 = 0.10029988098228566 S3 = −0.13497958972180282
S4 = 0.057027658640051423 S5 = −0.026736473824494192 S6 = −0.09334881995323582
S7 = 0.14476539458261192 S8 = 2.6782513149178886 S9 = −3.1547021023298236

S10 = 0

0.5

S1 = −0.4275424758687012 S2 = 0.10581949295995502 S3 = −0.1375566084081214
S4 = 0.07545735284696302 S5 = −0.049825680474098175 S6 = −0.21083114235974942
S7 = 0.33623100353843177 S8 = −1.780319356305217 S9 = 1.8279961729200187

S10 = 0

1

S1 = −0.4275424759052609 S2 = 0.10838719398757574 S3 = −0.1393691078519383
S4 = 0.0819534530845722 S5 = −0.05404354434171497< S6 = −0.06431130239382181
S7 = 0.12107016205095011 S8 = −0.9412597479377718 S9 = 1.0018880129871244

S10 = 0

Table 4. Upper auxiliary convergence parameters of the tenth-order FF-OHAM for solving
Equation (47) atω = 1.9, x = 0.1, for all α ∈ [0, 1].

α
¯
Sj

0

S1 = −0.4499999715464292 S2 = 0.07033774093204971 S3 = −0.08588077852784994
S4 = 0.02200367504397761 S5 = −0.013738000249538687 S6 = −0.13177749373901043
S7 = 0.20247748961630552 S8 = −1.167757698543094 S9 = 1.1715997608744646

S10 = 0

0.5

S1 = −0.4500000000118868 S2 = 0.11085869384502318 S3 = −0.1322901831399701
S4 = 0.053720614964490584 S5 = −0.019748829952898384 S6 = −0.12141795332965101
S7 = 0.1700603758070842 S8 = −0.7863871032395353 S9 = 0.7686499426055967

S10 = 0

1

S1 = −0.4499999999893346 S2 = 0.1095056263140715 S3 = −0.1302513333365527
S4 = 0.0473415579627094 S5 = −0.0185338348210904 S6 = −0.14589007991813402
S7 = 0.2076338115632854 S8 = −1.0720018208884141 S9 = 1.0605759385659808

S10 = 0

The above lower and upper convergence parameters in Tables 3 and 4 bare em-
ployed in Equation (52) to find the tenth-order FF-OHAM approximate series solution for
Equation (47), as shown in Table 5 and summarized Figure 5 below.

Table 5. The approximate solutions and errors for Equation (47) using the tenth-order FF-OHAM
whenω = 1.9 at x = 0.1 for all α ∈ [0, 1].

α
[

ER
¯

]
α

,S
¯j

[
¯

ER
]

α

,
¯
Sj

[
y
¯

]
α

,S
¯j

[
¯
y
]

α

,
¯
Sj

0 −7.73663× 10−5 −1.78658× 10−5 0.81730 0.83216
0.5 −6.65123× 10−6 1.68215× 10−6 0.82167 0.82909
1 6.42966× 10−5 −2.62733× 10−5 0.82560 0.82560

Figure 5 illustrates the summary of the solutions using the tenth-order FF-OHAM
over all x ∈ [0, 0.1] and α ∈ [0, 1] corresponding with the best optimal convergence control

values,
∼
S j, of Equation (47) in the three-dimensional graph.

Morever, the fuzzy solutions, shown in Table 5 and Figure 5, clarify that the new
construction of the FF-OHAM satisfies the fuzzy solution of the new fuzzy version of the
distribution of the model of the temperature in the lumped convection system in a layer
comprised of materials with varying thermal conductivity. Furthermore, the FF-OHAM
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provides an appropriate approximate series solution for the strong nonlinearity fractional
differential equation with the presence of the uncertainty, which makes this approach
applicable and suitable for solving the most complicated, nonlinear real-world problems.
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7. Conclusions

The present study focused on developing an approximate analytical method, called
FF-OHAM, for solving linear and nonlinear fractional order boundary value problems
(FFOBVPs). The FF-OHAM method has the ability to control the convergence of the series
solution by selecting the optimal convergence parameter for each method. The Bagley–
Torvik equation, which is an inhomogeneous linear FFOBVP, was used as a case study to
demonstrate the accuracy of the FF-OHAM method in solving linear cases. The method was
found to provide an accurate series solution as the series order increases and the obtained
solution converges to the exact solution. The solutions obtained using the FF-OHAM were
found to be more accurate than those obtained using the SCM. Furthermore, the study
also introduced a new fuzzy version of the fractional temperature distribution equation
and utilized the FF-OHAM to find the series solution for this nonlinear problem. The
FF-OHAM method was found to provide an accurate series solution for solving nonlinear
cases without needing an exact solution. The convergence dynamic of the FF-OHAM
was also used to obtain optimal convergence parameters for this problem. Finally, it is
noted that all the fuzzy fractional solutions obtained using the FF-HAM and the FF-OHAM
satisfy the triangular fuzzy solution, which is a desirable property for fuzzy systems. It is a
good idea to explore techniques to improve the computational efficiency of the developed
FF-OHAM method, as this can lead to faster and more efficient solutions for FFOBVPs, such
as parallelization. The FF-OHAM method can be parallelized to run on multiple processors
or cores simultaneously. This can help to reduce the computational time required to obtain
a solution, especially for large and complex problems.
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