Next Article in Journal
A Compound Class of Inverse-Power Muth and Power Series Distributions
Next Article in Special Issue
Quantum Control of a Nonlinear Time-Dependent Interaction of a Damped Three-Level Atom
Previous Article in Journal / Special Issue
Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Mκ,μ(x) Function I
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II

1
Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
2
Department of Mathematics, Universidad de Oviedo, 33007 Oviedo, Spain
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(4), 382; https://doi.org/10.3390/axioms12040382
Submission received: 24 February 2023 / Revised: 13 April 2023 / Accepted: 15 April 2023 / Published: 16 April 2023

Abstract

:
In the first part of this investigation, we considered the parameter differentiation of the Whittaker function M κ , μ x . In this second part, first derivatives with respect to the parameters of the Whittaker function W κ , μ x are calculated. Using the confluent hypergeometric function, these derivatives can be expressed as infinite sums of quotients of the digamma and gamma functions. Furthermore, it is possible to obtain these parameter derivatives in terms of infinite integrals, with integrands containing elementary functions (products of algebraic, exponential, and logarithmic functions), from the integral representation of W κ , μ x . These infinite sums and integrals can be expressed in closed form for particular values of the parameters. Finally, an integral representation of the integral Whittaker function wi κ , μ x and its derivative with respect to κ , as well as some reduction formulas for the integral Whittaker functions Wi κ , μ x and wi κ , μ x , are calculated.

1. Introduction

Two functions, M κ , μ x and W κ , μ x , were introduced to the mathematical literature by Whittaker [1] in 1903, and they are linearly independent solutions of the following second-order differential equation:
d 2 y d x 2 + 1 4 μ x 2 + κ x 1 4 y = 0 , y x = C 1 M κ , μ x + C 2 W κ , μ x , 2 μ 1 , 2 ,
where κ and μ are parameters. For particular values of these parameters, the Whittaker functions M κ , μ x and W κ , μ x can be reduced to a variety of elementary and special functions (such as modified Bessel functions, incomplete gamma functions, parabolic cylinder functions, error functions, logarithmic and cosine integrals, as well as the generalized Hermite and Laguerre polynomials). Recently, Mainardi et al. [2] investigated the special case whereby the Wright function can be expressed in terms of Whittaker functions.
The Whittaker functions can be expressed as [3] (Eqn. 13.14.2):
M κ , μ z = z μ + 1 / 2 e z / 2 1 F 1 1 2 + μ κ 1 + 2 μ z 2 μ 1 , 2 ,
and [3] (Eqn. 13.14.33):
W κ , μ z = Γ 2 μ Γ 1 2 μ κ M κ , μ z + Γ 2 μ Γ 1 2 + μ κ M κ , μ z , 2 μ Z ,
where Γ x denotes the gamma function, and the Kummer function is defined as [4] (Eqn. 47:3:1):
1 F 1 a b z = n = 0 a n b n z n n ! ,
where α n = Γ α + n Γ α denotes the Pochhammer polynomial and
p F q a 1 , , a p b 1 , , b q x = n = 0 a 1 n a p n b 1 n b q n x n n ! ,
is the generalized hypergeometric function.
Also, the Whittaker function W κ , μ x can be expressed as [3] (Eqn. 13.14.3):
W κ , μ z = e z / 2 z μ + 1 / 2 U 1 2 + μ κ , 1 + 2 μ , z ,
where U a , b , z denotes the Tricomi function.
The analytical properties of the Whittaker functions (see [3,4,5,6,7,8,9,10,11]) are of great interest in mathematical physics, because these functions are involved in many applications, such as the solutions of the wave equation in paraboloidal coordinates, the behavior of charged particles in fields with Coulomb potentials, stationary Green’s functions in atomic and molecular calculations in quantum mechanics (i.e., the solution of the Schrödinger equation for a harmonic oscillator), probability density functions, and in many other physical and engineering problems [10,12,13,14].
Mostly, the Whittaker functions are regarded as a function of variable x with fixed values of parameters κ and μ , although there are a few investigations where mathematical operations associated with both parameters are considered, especially for the κ parameter [13,15,16,17]. In this context, it is worthwhile mentioning Laurenzi’s paper [13], where the calculation of the derivative of W κ , 1 / 2 x with respect to κ , when this parameter is an integer, is derived. In [17], Buschman showed that the derivative of W κ , μ x with respect to the parameters can be expressed in terms of finite sums of these W κ , μ x functions. Higher derivatives of the Whittaker functions with respect to parameter κ were discussed by Abad and Sesma [15], and integrals with respect to parameter μ by Becker [16]. Since the Whittaker functions are related to the confluent hypergeometric function, it is worth mentioning the investigation of the derivatives of generalized hypergeometric functions presented by Ancarini and Gasaneo [18] and Sofostasios and Brychkov [19].
The integral Whittaker functions were introduced by us [20] as follows:
Wi κ , μ x = 0 x W κ , μ t t d t ,
wi κ , μ x = x W κ , μ t t d t .
In the first part of this investigation, we calculated some reduction formulas for the first derivatives, with respect to the parameters of the Whittaker function M κ , μ x . In the current paper, the main attention will be devoted to the calculation of reduction formulas for the first parameter derivatives of the Whittaker function W κ , μ x . For this purpose, we analyze the first derivative of this function with respect to the parameters from the corresponding series and integral representations. Direct differentiation of the Whittaker functions, leads to infinite sums of quotients of the digamma and gamma functions. It is possible to calculate these sums in closed form in some cases, with the aid of the MATHEMATICA program. When the integral representations of the Whittaker function W κ , μ x are taken into account, the results of differentiation can be expressed in terms of Laplace transforms of elementary functions. Integrands of the these Laplace-type integrals include products of algebraic, exponential, and logarithmic functions. New groups of infinite integrals, comparable to those investigated by Kölbig [21], Geddes et al. [22], and Apelblat and Kravitzky [23], are calculated in this paper.
Also, we will focus our attention on the integral Whittaker functions Wi κ , μ x and wi κ , μ x , in order to derive some new reduction formulas, as well as an integral representation of wi κ , μ x and its first derivative with respect to parameter κ .

2. Parameter Differentiation of W κ , μ via Kummer Function 1 F 1

Notation 1. 
Unless indicated otherwise, it is assumed throughout the paper that x is a real variable and z is a complex variable.
Definition 1. 
According to the notation introduced by Ancarini and Gasaneo [18,24], define
G 1 a b x = a 1 F 1 a b x ,
and
H 1 a b x = b 1 F 1 a b x .

2.1. Derivative with Respect to the First Parameter W κ , μ x / κ

Taking into account (1) and (8), direct differentiation of (2) yields:
W κ , μ x κ = Γ 2 μ Γ 1 2 μ κ ψ 1 2 μ κ M κ , μ x x 1 / 2 + μ e x / 2 G 1 1 2 + μ κ 1 + 2 μ x + Γ 2 μ Γ 1 2 + μ κ ψ 1 2 + μ κ M κ , μ x x 1 / 2 μ e x / 2 G 1 1 2 μ κ 1 2 μ x .
If we first apply Kummer’s transformation formula [3] (Eqn. 13.2.39):
1 F 1 a b x = e x 1 F 1 b a b x ,
we can rewrite (10) as
W κ , μ x κ = Γ 2 μ Γ 1 2 μ κ ψ 1 2 μ κ M κ , μ x + x 1 / 2 + μ e x / 2 G 1 1 2 + μ + κ 1 + 2 μ x + Γ 2 μ Γ 1 2 + μ κ ψ 1 2 + μ κ M κ , μ x x 1 / 2 μ e x / 2 G 1 1 2 μ κ 1 2 μ x .
Theorem 1. 
For 2 μ Z , the following parameter derivative formula of W κ , μ x holds true:
W κ , ± μ x κ κ = μ + 1 / 2 = x e x / 2 x μ ψ 2 μ x 2 μ + 1 2 F 2 1 , 1 2 μ + 2 , 2 x + Γ 2 μ + 1 x μ x 2 μ γ 2 μ , x ,
where γ ν , z denotes the lower incomplete gamma function (117).
Proof. 
First, note that
W κ , μ x κ = W κ , μ x κ ,
since [3] (Eqn. 13.14.31):
W κ , μ x = W κ , μ x .
Now, let us calculate W κ , μ x / κ κ = μ + 1 / 2 . For this purpose, take κ = μ + 1 / 2 ϵ in (12), to obtain
W κ , μ x κ κ = μ + 1 / 2 ϵ = Γ 2 μ Γ 2 μ + ϵ ψ 2 μ + ϵ M μ + 1 / 2 ϵ , μ x + x 1 / 2 + μ e x / 2 G 1 1 + 2 μ ϵ 1 + 2 μ x + Γ 2 μ Γ ϵ ψ ϵ M μ + 1 / 2 ϵ , μ x x 1 / 2 μ e x / 2 G 1 2 μ + ϵ 1 2 μ x .
Note that, according to [3] (Eqn. 13.18.2)
M μ + 1 / 2 , μ x = e x / 2 x 1 / 2 + μ .
Further, from (1) and (11), we have
M μ + 1 / 2 , μ x = e x / 2 x 1 / 2 μ 1 F 1 1 1 + 2 μ x = e x / 2 x 1 / 2 μ n = 0 x n 1 2 μ n .
Taking into account [4] (Eqn. 45:6:2):
e x γ ν , x = x ν ν n = 0 x n 1 + ν n ,
rewrite (18) as
M μ + 1 / 2 , μ x = 2 μ e x / 2 x 1 / 2 μ x 2 μ γ 2 μ , x .
Consider as well the reduction formula given in Equation (A1) in Appendix A:
G 1 a a x = x e x a 2 F 2 1 , 1 a + 1 , 2 x .
Finally, according to the property [4] (Eqn. 44:5:3):
ψ z + 1 = 1 z + ψ z ,
see that
lim ϵ 0 ψ ϵ Γ ϵ = lim ϵ 0 1 Γ ϵ ψ ϵ + 1 1 ϵ = 1 .
Now, take the limit ϵ 0 in (16), considering the results given in (14), (17), (19)–(21), to obtain (13), as we wanted to prove. □
Table 1 presents some explicit expressions for particular values of (13), obtained with the help of the MATHEMATICA program.
Next, we present another reduction formula of W κ , μ x / κ , from the result found in [13].
Theorem 2. 
The following reduction formula holds true for n = 1 , 2 ,
W κ , ± 1 / 2 x κ κ = n = 1 n n 1 ! e x / 2 = 0 n 1 n n + L 1 x + n L 1 x ln x ,
where L n α x denotes the Laguerre polynomial.
Proof. 
First, note that according to (14), we have
W κ , 1 / 2 x κ = W κ , 1 / 2 x κ .
Therefore, let us calculate W κ , 1 / 2 x / κ . For this purpose, consider the formula [13]:
W κ , 1 / 2 x κ κ = n = 1 n n 1 ! = 0 n 1 1 n ! n + W , 1 / 2 x + W n , 1 / 2 x ln x
Furthermore, from [3] (Eqn. 13.18.17), we have for n = 0 , 1 , 2 ,
W κ + n , κ 1 / 2 x = 1 n n ! e x / 2 x κ L n 2 κ 1 x ,
thus, applying (15) and taking κ = 0 in (25), we have
W n , 1 / 2 x = W n , 1 / 2 x = 1 n n ! e x / 2 L n 1 x .
Finally, insert (26) into (22) and consider (23), to obtain (22), as we wanted to prove. □
In Table 2 we collect some particular cases of (22), obtained with the help of the MATHEMATICA program.
Note that for n = 0 , we obtain an indeterminate expression in (22). We calculate this particular case with a result in the next section.
Theorem 3. 
The following reduction formula holds true:
W κ , ± 1 / 2 x κ κ = 0 = e x / 2 ln x + 1 4 π G 2 , 4 3 , 1 x 2 4 1 2 , 1 0 , 0 , 1 2 , 1 2 e x 1 G 1 , 3 3 , 0 x 2 4 1 1 2 , 0 , 0 ,
where G p , q m , n z a 1 , , a p b 1 , , b q denotes the Meijer G-function.
Proof. 
According to [3] (Eqn. 13.18.2), we have
W κ , κ 1 / 2 x = e x / 2 x κ ,
thus, performing the derivative with respect to κ ,
W κ , μ x κ μ = κ 1 / 2 + W κ , μ x μ μ = κ 1 / 2 = e x / 2 x κ ln x .
Taking κ = 0 and considering (23), we have
W κ , ± 1 / 2 x κ κ = 0 = W 0 , μ x μ μ = 1 / 2 + e x / 2 ln x .
Finally, apply (31) and (33), to arrive at (27), as we wanted to prove. □

2.2. Derivative with Respect to the Second Parameter W κ , μ x / μ

Theorem 4. 
For 2 μ Z , the following parameter derivative formula of W κ , μ x holds true:
W κ , ± μ x μ κ = μ + 1 / 2 = ± x e x / 2 x μ x 2 μ + 1 2 F 2 1 , 1 2 μ + 2 , 2 x ψ 2 μ + ln x Γ 2 μ + 1 x μ x 2 μ γ 2 μ , x .
Proof. 
Differentiate the following reduction formula with respect to parameter μ [3] (Eqn. 13.18.2):
W μ + 1 / 2 , ± μ x = e x / 2 x 1 / 2 + μ ,
to obtain
W κ , ± μ x κ κ = μ + 1 / 2 ± W κ , ± μ x μ κ = μ + 1 / 2 = e x / 2 x 1 / 2 + μ ln x .
Insert (13) into (30) to arrive at (29), as we wanted to prove. □
Table 3 shows the derivative of W κ , μ x with respect to μ for particular values of κ and μ , using (29) and the help of the MATHEMATICA program.
Theorem 5. 
The following parameter derivative formula of W κ , μ x holds true:
W 0 , μ x μ = sgn μ x π K μ x / 2 μ μ ,
where K ν x denotes the modified Bessel of the second kind (Macdonald function).
Proof. 
Differentiate with respect to μ the expression [3] (Eqn. 13.18.9):
W 0 , μ x = x π K μ x 2 ,
to obtain
W 0 , ± μ x μ μ 0 = ± W 0 , μ x μ μ 0 = ± x π K μ x / 2 μ μ 0 ,
as we wanted to prove. □
The order derivative of K μ x is given in terms of Meijer G-functions for Re x > 0 , and μ 0 [25]:
K μ x μ = μ 2 K μ x π G 2 , 4 3 , 1 x 2 1 2 , 1 0 , 0 , μ , μ π I μ x G 2 , 4 4 , 0 x 2 1 2 , 1 0 , 0 , μ , μ ,
where I ν x is the modified Bessel function; or in terms of generalized hypergeometric functions for Re x > 0 , μ > 0 , and 2 μ Z [26]:
K μ x μ = π 2 csc π μ π cot π μ I μ x I μ x + I μ x x 2 4 1 μ 2 3 F 4 1 , 1 , 3 2 2 , 2 , 2 μ , 2 + μ x 2 + ln x 2 ψ μ 1 2 μ + 1 4 I μ x Γ 2 μ x 2 2 μ 2 F 3 μ , 1 2 + μ 1 + μ , 1 + μ , 1 + 2 μ x 2 I μ x Γ 2 μ x 2 2 μ 2 F 3 μ , 1 2 μ 1 μ , 1 μ , 1 2 μ x 2 .
There are different expressions for the order derivatives of the Bessel functions [23,27]. This subject is summarized in [28], where general results are presented in terms of convolution integrals, and order derivatives of Bessel functions are found for particular values of the order.
Using (31), (33) and (34), some derivatives of W κ , μ x with respect to μ have been calculated with the help of the MATHEMATICA program, and they are presented in Table 4.

3. Parameter Differentiation of W κ , μ via Integral Representations

3.1. Derivative with Respect to the First Parameter W κ , μ x / κ

Integral representations of the Whittaker function W κ , μ z are given in the form of a Laplace transform for Re μ κ > 1 2 and arg z < π 2 [8] (Section 7.4.2):
W κ , μ z = z μ + 1 / 2 e z / 2 Γ μ κ + 1 2 0 e z t t μ κ 1 / 2 1 + t μ + κ 1 / 2 d t ,
and as the infinite integral:
W κ , μ z = z μ + 1 / 2 e z / 2 Γ μ κ + 1 2 1 e z t t μ + κ 1 / 2 t 1 μ κ 1 / 2 d t .
In order to calculate the first derivative of W κ , μ x with respect to parameter κ , let us introduce the following finite logarithmic integrals.
Definition 2. 
For Re μ κ > 1 2 and x > 0 , define:
I 1 * κ , μ ; x = 0 e x t t μ κ 1 / 2 1 + t μ + κ 1 / 2 ln 1 + t t d t ,
I 2 * κ , μ ; x = 1 e x t t μ + κ 1 / 2 t 1 μ κ 1 / 2 ln t t 1 d t .
For x > 0 , differentiation of (35) and (36) with respect to parameter κ yields, respectively,
W κ , μ x κ
= ψ μ κ + 1 2 W κ , μ x + x μ + 1 / 2 e x / 2 Γ μ κ + 1 2 I 1 * κ , μ ; x
= ψ μ κ + 1 2 W κ , μ x + x μ + 1 / 2 e x / 2 Γ μ κ + 1 2 I 2 * κ , μ ; x .
Note that, from (39) and (40) we have
I 2 * κ , μ ; x = e x I 1 * κ , μ ; x .
Theorem 6. 
The following integral holds true for 1 2 + μ κ > 0 and x > 0 :
I 1 * κ , μ ; x = B 1 2 + μ κ , 2 μ ψ 1 2 μ κ ψ 1 2 + μ κ 1 F 1 1 2 + μ κ 1 + 2 μ x G 1 1 2 + μ κ 1 + 2 μ x Γ 2 μ x 2 μ G 1 1 2 μ κ 1 2 μ x ,
where B x , y = Γ x Γ y Γ x + y denotes the beta function.
Proof. 
Compare (10) to (39) and take into account (1) to arrive at (42), as we wanted to prove. □
Now, we derive a Lemma that will be applied throughout this section and the next one.
Lemma 1. 
For ν 0 and x > 0 , the following Laplace transform holds true:
I ± ν , x = 0 e x t t ν ln t ± 1 1 + t d t = Γ ν + 1 x ν + 1 x ν + 1 2 F 2 1 , 1 2 , 2 + ν x e i π ν Γ ν , x γ ν + 1 , x + 1 ± 1 ψ ν + 1 ln x ,
where Γ ν , z and γ ν , z denote, respectively, the upper and lower incomplete gamma functions, (117) and (119).
Proof. 
Split the integral into two terms as follows:
I ± ν , x = 0 e x t t ν ln 1 + t d t I a ν , x ± 0 e x t t ν ln t d t I b ν , x ,
and apply the Laplace transform for x > 0 [9] (Eqn. 2.5.2(4)) (it is worth noting that there is an incorrect sign in the reference cited):
0 e x t t ν ln a t + b d t = π ν + 1 sin π ν b a ν + 1 1 F 1 ν + 1 ν + 2 b x a + Γ ν + 1 x ν + 1 ψ ν + 1 ln x a + b x a ν 2 F 2 1 , 1 2 , 1 ν b x a ,
to obtain
I a ν , x = π ν + 1 sin π ν 1 F 1 ν + 1 ν + 2 x + Γ ν + 1 x ν + 1 ψ ν + 1 ln x + x ν 2 F 2 1 , 1 2 , 1 ν x ,
and
I b ν , x = Γ ν + 1 x ν + 1 ψ ν + 1 ln x .
Note that, according to Kummer’s transformation (11), and to the reduction formula [9] (Eqn. 7.11.1(14)):
1 F 1 1 b z = b 1 z 1 b e z γ 1 b , z ,
we have for x > 0
1 F 1 a a + 1 x = e x 1 F 1 1 a + 1 x = a x a γ a , x = a e i π a x a γ a , x ,
thus (44) becomes
I a ν , x = 1 x ν + 1 π sin π ν e i π ν γ ν + 1 , x + Γ ν + 1 ψ ν + 1 ln x + x ν 2 F 2 1 , 1 2 , 1 ν x .
Now, insert (45) and (47) in (78), to arrive at
I ± ν , x = 1 x ν + 1 π sin π ν e i π ν γ ν + 1 , x + x Γ ν 2 F 2 1 , 1 2 , 1 ν x + 1 ± 1 Γ ν + 1 x ν + 1 ψ ν + 1 ln x .
Next, apply the transformation formula [9] (Eqn. 7.12.1(7)):
2 F 2 1 , a a + 1 , b z + b 1 a b + 1 2 F 2 1 , a a + 1 , 2 + a b z = a a b + 1 1 F 1 a b + 1 a b + 2 z 1 F 1 b 1 b z ,
taking a = 1 and b = 1 ν , and applying again (46), to arrive at
2 F 2 1 , 1 2 , 1 ν x = ν 1 ν + 1 2 F 2 1 , 1 2 , 2 + ν x + e i π ν x γ ν , x γ ν + 1 , x .
Insert (49) into (48) to get
I ± ν , x = 1 x ν + 1 e i π ν γ ν + 1 , x π sin π ν + Γ ν + 1 γ ν , x + Γ ν + 1 x ν + 1 2 F 2 1 , 1 2 , 1 ν x + 1 ± 1 ψ ν + 1 ln x .
Applying the properties [4] (Eqn. 45:0:1)
Γ ν = γ ν , z + Γ ν , z ,
and [29] (Eqn. 1.2.2)
Γ z Γ 1 z = π csc π z ,
rewrite (50) as (43), as we wanted to prove. □
Theorem 7. 
The following integral holds true for μ > 0 and x > 0 :
I 1 * 1 2 μ , μ ; x
= I 2 μ 1 , x = Γ 2 μ x 2 μ x 2 μ 2 F 2 1 , 1 2 , 1 + 2 μ x + e 2 π i μ Γ 1 2 μ , x γ 2 μ , x .
Proof. 
From (37) and (43), we obtain the desired result. □
Remark 1. 
If we insert (48) in (53), we obtain the following alternative form:
I 1 * 1 2 μ , μ ; x = 1 x 2 μ π cot 2 π μ i γ 2 μ , x + x Γ 2 μ 1 2 F 2 1 , 1 2 , 2 2 μ x .
Theorem 8. 
The following reduction formula holds true for 2 μ 0 , 1 , and x > 0 :
W κ , μ x κ κ = μ + 1 / 2 = e x / 2 x 1 / 2 μ ψ 2 μ + x 2 μ 2 F 2 1 , 1 2 , 1 + 2 μ x + e 2 π i μ Γ 1 2 μ , x γ 2 μ , x .
Proof. 
Insert into (39) the reduction formula [3] (Eqn. 13.18.2), with κ = μ + 1 / 2 , i.e.,
W 1 / 2 μ , μ x = e x / 2 x 1 / 2 μ ,
and the result given in (52), to arrive at (55). □
Remark 2. 
If we consider (54), we obtain the following alternative form:
W κ , μ x κ κ = μ + 1 / 2 = e x / 2 x 1 / 2 μ ψ 2 μ + π cot 2 π μ i Γ 2 μ γ 2 μ , x + x 2 μ 1 2 F 2 1 , 1 2 , 2 2 μ x .
Table 5 shows the first derivative of W κ , μ x with respect to parameter κ for some particular values of κ and μ , and x > 0 , calculated with the aid of the MATHEMATICA program from (57). Note that the erfi ( x ) function that appears in Table 5 denotes the imaginary error function [29] (Eqn. (2.3.1)).
Notice that for 2 μ = 0 , 1 , , we obtain an indeterminate expression in (55) and (57). For these cases, we present the following result.
Theorem 9. 
The following reduction formula holds true for m = 0 , 1 , 2 , :
W κ , μ x κ κ = 1 + m / 2 , μ = ± m / 2 = e x / 2 x 1 + m / 2 ln x k = 1 m x k e x Γ k + m k γ k , x .
Proof. 
Take ν = 2 μ in (57) and perform the limit ν m = 0 , 1 , 2 ,
W κ , μ x κ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 lim ν m ψ ν + π cot π ν i Γ ν γ ν , x x m + 1 2 F 2 1 , 1 2 , 2 + m x .
On the one hand, let us prove the following asymptotic formulas for ν m = 0 , 1 , 2 ,
ψ ν γ + H m 1 ν + m ,
π cot π ν 1 ν + m ,
Γ ν 1 m m ! 1 ν + m .
In order to prove (60), consider [4] (Eqn. 44:5:4)
ψ ν + m + 1 = ψ ν + j = 0 m 1 ν + j = ψ ν + j = 1 m 1 ν + j 1 + 1 ν + m ,
thus, knowing that [29] (Eqn. 1.3.6)
ψ 1 = γ ,
and performing the substitution k = j m 1 , we have
lim ν m ψ ν = lim ν m γ 1 ν + m j = 1 m 1 j m 1 = lim ν m γ 1 ν + m + H m ,
where H n = k = 1 n 1 k denotes the n-th harmonic number. In order to prove (61), note that cot x = cot x + π and for x π , π we have the expansion [4] (Eqn. 44:6:2)
cot x = 1 x x 3 x 3 45
Finally, notice that (62) follows directly from [29] (Eqn. 1.1.5). Therefore, taking into account (60)–(62), and taking into account (51), we conclude
lim ν m ψ ν + π cot π ν i Γ ν γ ν , x = H m γ i π + 1 m + 1 m ! Γ m , x .
Insert (64) into (59) to arrive at
W κ , μ x κ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 H m γ i π + 1 m + 1 m ! Γ m , x x m + 1 2 F 2 1 , 1 2 , 2 + m x .
On the other hand, consider the reduction Formula (A6), derived in the Appendix B,
2 F 2 1 , 1 2 , 2 + m x = m + 1 x H m Ein x + k = 1 m m k x k γ k , x ,
and the formula [3] (Eqn. 8.4.15)
Γ m , z = 1 m m ! E 1 z e z k = 0 m 1 1 k k ! z k + 1 ,
where E 1 z denotes the exponential integral [3] (Eqn. 6.2.1), which is defined as
E 1 z = z e t t d t , z 0 ,
where the path does not cross the negative real axis or pass through the origin. Furthermore, consider the property [3] (Eqn. 6.2.4)
E 1 z = Ein z ln z γ .
Therefore, substituting (66) and (67) into (65), and taking into account (68), we arrive at (58), as we wanted to prove. □
Remark 3. 
It is worth noting that from [17],
W κ , μ x κ κ = N + 1 / 2 , μ = M / 2 = W N + 1 2 , N 2 x ln x + k = 1 N + M / 2 1 k N + M 2 ! k N + M 2 k ! W N + 1 2 k , M 2 x + k = 1 N M / 2 1 k N M 2 ! k N M 2 k ! W N + 1 2 k , M 2 x ,
where N M N and M , N are integers of like parity, we can derive an equivalent reduction formula to (58). Indeed, taking N = M = m , (69) is reduced to
W κ , μ x κ κ = m + 1 / 2 , μ = m 2 = W m + 1 2 , m 2 x ln x + k = 1 m 1 k m ! k m k ! W m 2 k , m 2 x .
Note that from (28), we have
W m + 1 2 , m 2 x = e x / 2 x 1 + m / 2 .
Further, from (5) and the reduction formula for n = 0 , 1 , . . . given in [3] (Eqn. 13.2.8)
U a , a + n + 1 , z = z a s = 0 n n s a s z s ,
we obtain
W m 2 k , m 2 x = e x / 2 x 1 + m / 2 x k Γ k s = 0 m k m k s Γ k + s x s .
Therefore, substituting (71) and (72) into (70), and simplifying, we arrive at
W κ , μ x κ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 ln x + m ! k = 1 m 1 k k ! x k s = 0 m k k + s 1 ! s ! m k s ! x s .
Perform the index substitution s s + k and exchange the sum order in (73), to arrive at
W κ , μ x κ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 ln x + m ! s = 1 m x s s m s ! k = 1 s s k 1 k .
By virtue of the binomial theorem, the inner sum in (74) is just 1 , thus we finally obtain:
W κ , μ x κ κ = 1 + m / 2 , μ = ± m / 2 = e x / 2 x 1 + m / 2 ln x m ! k = 1 m x k k m k ! .
Theorem 10. 
For n = 0 , 1 , 2 , , and x > 0 , the following integral holds true:
I 1 * n 2 , n + 1 2 ; x = e x Ein x x n + 1 Γ n + 1 , x + n ! k = 0 n x k 1 n k ! 1 k + 1 Γ k , x γ k + 1 , x H k = 1 k k x γ , x .
Proof. 
From (37), we have
I 1 * μ 1 2 , μ ; x = 0 e x t 1 + t 2 μ 1 ln 1 + t t d t ,
thus, taking μ = n + 1 2 with n = 0 , 1 , 2 , and applying the binomial theorem, we get
I 1 * n 2 , n + 1 2 ; x = k = 0 n n k 0 e x t t k ln 1 + t t d t = k = 0 n n k I k , x .
Insert the result obtained in (43) for ν = k into (77) to arrive at
I 1 * n 2 , n + 1 2 ; x = n ! k = 0 n x k 1 n k ! 1 k + 1 Γ k , x γ k + 1 , x + x k + 1 2 F 2 1 , 1 2 , 2 + k x .
Now, take into account (66), to get
I 1 * n 2 , n + 1 2 ; x = n ! k = 0 n x k 1 n k ! 1 k + 1 Γ k , x γ k + 1 , x H k + Ein x = 1 k k x γ , x .
Finally, note that using the exponential polynomial, defined as
e n x = k = 0 n x k k ! ,
and the property for n = 0 , 1 , 2 , [4] (Eqn. 45:4:2):
Γ 1 + n , x = n ! e n x e x ,
we calculate the following finite sum as:
k = 0 n x k n k ! = x n s = 0 n x s s ! = x n e x n ! Γ 1 + n , x .
Apply (79) to (78) in order to obtain (76), as we wanted to prove. □
Theorem 11. 
For n = 0 , 1 , 2 , , the following reduction formula holds true:
W κ , μ x κ κ = n / 2 , μ = ± n + 1 / 2 = x n / 2 e x / 2 Γ 1 + n , x E 1 x + ln x + n ! x n / 2 e x / 2 k = 0 n x k n k ! 1 k + 1 Γ k , x γ k + 1 , x H k = 1 k k x γ , x .
Proof. 
Applying (5) and [3] (Eqn. 13.6.6)
U 1 , 2 a , z = z a 1 e z Γ 1 a , z ,
see that for n = 0 , 1 , 2 ,
W n / 2 , n + 1 / 2 z = z n / 2 e z / 2 Γ 1 + n , z .
Taking into account (63) and (68), insert (76) and (81) into (39) for κ = n 2 and μ = n + 1 2 , to arrive at (80), as we wanted to prove. □
Theorem 12. 
For n = 0 , 1 , 2 , , and x > 0 , the following integral holds true:
I 1 * 0 , n + 1 2 ; x = n ! e x / 2 π x n + 1 / 2 K n + 1 / 2 x 2 Ein x + k = 0 n n k n + k ! x n + k + 1 1 n + k + 1 Γ n k , x γ n + k + 1 , x H n + k = 1 n + k n + k x γ , x .
Proof. 
Applying the binomial theorem to (37) for κ = 0 and μ = n + 1 2 , we have
I 1 * 0 , n + 1 2 ; x = k = 0 n n k 0 e x t t n + k ln 1 + t t d t = k = 0 n n k I n + k , x
Insert the result obtained in (43) for ν = n + k into (83), to get
I 1 * 0 , n + 1 2 ; x = k = 0 n n k n + k ! x n + k + 1 1 n + k + 1 Γ n k , x γ n + k + 1 , x + x n + k + 1 2 F 2 1 , 1 2 , 2 + n + k x .
Now, take into account (66), to obtain
I 1 * 0 , n + 1 2 ; x = k = 0 n n k n + k ! x n + k + 1 1 n + k + 1 Γ n k , x γ n + k + 1 , x + Ein x H n + k = 1 n + k n + k x γ , x .
Finally, consider [3] (Eqns. 10.47.9,12)
z π K n + 1 / 2 z 2 = z π k n z 2 = e z / 2 k = 0 n n + k ! z k k ! n k ! ,
where k n z is the modified spherical Bessel function of the second kind, to arrive at the desired result. □
Theorem 13. 
For n = 0 , 1 , 2 , , the following reduction formula holds true:
W κ , μ x κ κ = 0 , μ = ± n + 1 / 2 = x π K n + 1 / 2 x 2 H n + E 1 x + ln x + e x / 2 k = 0 n n + k ! x k k ! n k ! 1 n + k + 1 Γ n k , x γ n + k + 1 , x H n + k = 1 n + k n + k x γ , x .
Proof. 
Take κ = 0 and μ = n + 1 2 in (39), to obtain
W κ , μ x κ κ = 0 , μ = n + 1 / 2 = ψ n + 1 W 0 , n + 1 / 2 x + x n + 1 e x / 2 n ! I 1 * 0 , n + 1 2 ; x .
Consider [29] (Eqn. 1.3.7)
ψ n + 1 = γ + H n ,
and [3] (Eqn. 13.18.9)
W 0 , n + 1 / 2 z = z π K n + 1 / 2 z 2 .
Substitute (82), (87) and (88) into (86), and take into account (14) and (68), to arrive at (85), as we wanted to prove. □
Table 6 shows the first derivative of W κ , μ x with respect to parameter κ for some particular values of κ and μ , calculated with the aid of the MATHEMATICA program, from (58), (80), and (85). Note that, in Table 6 the Shi ( x ) and the Chi ( x ) functions appear, which denote the sine and cosine integrals [3] (Eqns. 6.2.15–16).

3.2. Application to the Calculation of Infinite Integrals

Additional integral representations of the Whittaker function W κ , μ x in terms of Bessel functions [8] (Section 7.4.2) are known:
W κ , μ x = 2 x e x / 2 Γ 1 2 + μ κ Γ 1 2 μ κ 0 e t t κ 1 / 2 K 2 μ 2 x t d t Re 1 2 ± μ κ > 0 .
Let us introduce the following infinite logarithmic integral.
Definition 3. 
H κ , μ ; x = 0 e t t κ 1 / 2 K 2 μ 2 x t ln t d t .
Theorem 14. 
For κ , μ R with μ < 1 2 κ , the following integral holds true:
H κ , μ ; x = 1 2 Γ 1 2 μ κ Γ 1 2 + μ κ ψ 1 2 μ κ x e x / 2 W κ , μ x + x μ I 1 * κ , μ ; x ,
where I 1 * κ , μ ; x is given by (42).
Proof. 
Differentiation of (89) with respect to parameter κ yields:
W κ , μ x κ = ψ 1 2 μ κ + ψ 1 2 + μ κ W κ , μ x 2 x e x / 2 Γ 1 2 + μ κ Γ 1 2 μ κ H κ , μ ; x
Equate (39) to (92) to arrive at (91), as we wanted to prove. □

3.3. Derivative with Respect to the Second Parameter W κ , μ x / μ

First, note that
W κ , ± μ x μ = ± W κ , μ x μ ,
since (15) is satisfied. Next, let us introduce the following definitions in order to calculate the first derivative of W κ , μ x with respect to parameter μ .
Definition 4. 
Following the notation introduced in (8) and (9), define
G ˜ 1 a , b , z = a U a , b , z ,
and
H ˜ 1 a , b , z = b U a , b , z .
Direct differentiation of (5) yields:
W κ , μ x μ = ln x W κ , μ x + x μ + 1 / 2 e x / 2 G ˜ 1 1 2 κ + μ , 1 + 2 μ , x + 2 H ˜ 1 1 2 κ + μ , 1 + 2 μ , x
Definition 5. 
For Re μ κ > 1 2 and x > 0 , define:
I 3 * κ , μ ; x = 0 e x t t μ κ 1 / 2 1 + t μ + κ 1 / 2 ln t 1 + t d t ,
I 4 * κ , μ ; x = 1 e x t t μ + κ 1 / 2 t 1 μ κ 1 / 2 ln t t 1 d t .
These integrals are interrelated by
I 4 * κ , μ ; x = e x I 3 * κ , μ ; x .
Differentiation of (35) with respect to parameter μ gives
W κ , μ x μ = ln x ψ μ κ + 1 2 W κ , μ x + x μ + 1 / 2 e x / 2 Γ μ κ + 1 2 I 3 * κ , μ ; x .
Theorem 15. 
According to the notation introduced in (94) and (95), the following integral holds true for x > 0 :
I 3 * κ , μ ; x = Γ 1 2 κ + μ U 1 2 κ + μ , 1 + 2 μ , x ψ 1 2 κ + μ + G ˜ 1 1 2 κ + μ , 1 + 2 μ , x + 2 H ˜ 1 1 2 κ + μ , 1 + 2 μ , x .
Proof. 
Comparing (96) to (99), taking into account (5), we arrive at (100), as we wanted to prove. □
Theorem 16. 
For 2 μ 0 , 1 , 2 , and x > 0 , the following reduction formula holds true:
W κ , μ x μ κ = 1 / 2 μ = x 1 / 2 μ e x / 2 x 2 μ 2 F 2 1 , 1 2 , 1 + 2 μ x + e 2 π i μ Γ 1 2 μ , x γ 2 μ , x + ψ 2 μ ln x .
Proof. 
According to (43) and (97), note that
I 3 * 1 2 μ , μ ; x = I + 2 μ 1 , x = Γ 2 μ x 2 μ x 2 μ 2 F 2 1 , 1 2 , 1 + 2 μ x + e 2 π i μ Γ 1 2 μ , x γ 2 μ , x + 2 ψ 2 μ ln x .
Taking κ = 1 / 2 μ in (99), substitute (102) and (56) to arrive at the desired result, given in (101). □
Remark 4. 
If we take into account (48) in (102), we obtain the alternative form:
I 3 * 1 2 μ , μ ; x = 1 x 2 μ π cot 2 π μ i γ 2 μ , x + x Γ 2 μ 1 2 F 2 1 , 1 2 , 2 2 μ x + 2 Γ 2 μ ψ 2 μ ln x ,
thus for 2 μ 0 , 1 , 2 , and x > 0 , we have
W κ , μ x μ κ = 1 / 2 μ = x 1 / 2 μ e x / 2 π cot 2 π μ i Γ 2 μ γ 2 μ , x + x 2 μ 1 2 F 2 1 , 1 2 , 2 2 μ x + ψ 2 μ ln x .
Table 7 shows the first derivative of W κ , μ x with respect to parameter μ for some particular values of κ and μ , with x > 0 , calculated from (103) with the aid of the MATHEMATICA program.
Notice that for 2 μ = 0 , 1 , , we obtain an indeterminate expression in (101) or (103). For these cases, we present the following result.
Theorem 17. 
The following reduction formula holds true for m = 0 , 1 , 2 , :
W κ , μ x μ κ = 1 + m / 2 , μ = ± m / 2 = ± e x / 2 x 1 + m / 2 k = 1 m x k e x Γ k + m k γ k , x .
Proof. 
Take ν = 2 μ in (103) and perform the limit ν m = 0 , 1 , 2 ,
W κ , μ x μ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 lim ν m ψ ν + π cot π ν i Γ ν γ ν , x x m + 1 2 F 2 1 , 1 2 , 2 + m x ln x .
Applying the result given in (64), we get
W κ , μ x μ κ = m + 1 / 2 , μ = m / 2 = e x / 2 x 1 + m / 2 H m γ i π + 1 m + 1 m ! Γ m , x x m + 1 2 F 2 1 , 1 2 , 2 + m x ln x .
Now, compare (58) to (65) to see that
H m γ i π + 1 m + 1 m ! Γ m , x x m + 1 2 F 2 1 , 1 2 , 2 + m x = ln x k = 1 m x k e x Γ k + m k γ k , x
Therefore, inserting (106) into (105), and taking into account (93), we arrive at (104), as we wanted to prove. □
Remark 5. 
It is worth noting that from [17],
W κ , μ x μ κ = N + 1 / 2 , μ = M / 2 = k = 1 N + M / 2 1 k N + M 2 ! k N + M 2 k ! W N + 1 2 k , M 2 x + k = 1 N M / 2 1 k N M 2 ! k N M 2 k ! W N + 1 2 k , M 2 x ,
where N M N and M , N are integers of like parity, we can derive an equivalent reduction formula to (104). Indeed, following similar steps as in Remark 3, we arrive at:
W κ , μ x μ κ = 1 + m / 2 , μ = ± m / 2 = ± m ! e x / 2 x 1 + m / 2 k = 1 m x k k m k ! .
Theorem 18. 
For n = 0 , 1 , 2 , , the following reduction formula holds true:
W κ , μ x μ κ = n / 2 , μ = ± n + 1 / 2 = ± x n / 2 e x / 2 E 1 x Γ 1 + n , x ± n ! x n / 2 e x / 2 k = 0 n x k n k ! H k + 1 k + 1 Γ k , x γ k + 1 , x = 1 k k x γ , x .
Proof. 
According to (97) and (43), using the binomial theorem and taking into account (87), we have
I 3 * n 2 , n + 1 2 ; x = 0 e x t 1 + t n ln t 1 + t d t = k = 0 n n k I + k , x = n ! k = 0 n x k 1 n k ! x k + 1 2 F 2 1 , 1 2 , 2 + k x + 1 k + 1 Γ k , x γ k + 1 , x + 2 H k γ ln x .
Consider (66), (68) and (79) in order to rewrite (110) as
I 3 * n 2 , n + 1 2 ; x = E 1 x ln x γ x n + 1 e x Γ n + 1 , x + n ! k = 0 n x k 1 n k ! H k + 1 k + 1 Γ k , x γ k + 1 , x = 1 k k x γ , x .
Therefore, substituting (81), (63), and (111) into (99), we obtain (109), as we wanted to prove. □
Theorem 19. 
For n = 0 , 1 , 2 , , the following reduction formula holds true:
W κ , μ x μ κ = 0 , μ = ± n + 1 / 2 = ± x π K n + 1 / 2 x 2 E 1 x H n ± e x / 2 k = 0 n n + k ! x k k ! n k ! H n + k + 1 n + k + 1 Γ n k , x γ n + k + 1 , x = 1 k k x γ , x .
Proof. 
Applying the binomial theorem to (97) for κ = 0 and μ = n + 1 2 , and taking into account (43), (66), (68), and (84) for x > 0 , we arrive at
I 3 * 0 , n + 1 2 ; x = 0 e x t t 1 + t n ln t 1 + t d t = k = 0 n n k 0 e x t t n + k ln t 1 + t d t = k = 0 n n k I + n + k , x = n ! e x / 2 K n + 1 / 2 x 2 π x n + 1 / 2 E 1 x γ ln x + n ! x n + 1 k = 0 n n + k ! x k k ! n k ! H n + k + 1 n + k + 1 Γ n k , x γ n + k + 1 , x = 1 k k x γ , x .
Take κ = 0 and μ = n + 1 2 in (99), and substitute (113) and (88) in order to arrive at (112), as we wanted to prove. □
Table 8 shows W κ , μ x with respect to parameter μ for some particular values of κ and μ , which has been calculated from (104), (109), and (112) with the aid of the MATHEMATICA program.

4. Integral Whittaker Functions Wi κ , μ and wi κ , μ

In [20], we found some reduction formulas for the integral Whittaker function Wi κ , μ x . Next, we derive some new reduction formulas for Wi κ , μ x and wi κ , μ x from reduction formulas of the Whittaker function W κ , μ x .
Theorem 20. 
The following reduction formula holds true for n = 0 , 1 , 2 , and κ > 0 :
Wi κ + n , κ 1 / 2 x = 1 n 2 κ n 2 κ m = 0 n n m 2 m 2 κ m γ κ + m , x / 2 .
Proof. 
According to [3] (Eqn. 13.18.17)
W κ + n , κ 1 / 2 x = 1 n n ! e x / 2 x κ L n 2 κ 1 x ,
where [29] (Eqn. 4.17.2)
L n α x = m = 0 n Γ n + α + 1 Γ m + α + 1 x m m ! n m ! ,
denotes the Laguerre polynomials. Insert (116) into (115) and integrate term by term according to the definition of the integral Whittaker function (6), to get
Wi κ + n , κ 1 / 2 x = 1 n 2 κ n m = 0 n n m 1 m 2 κ m 0 x e t / 2 t κ + m 1 d t .
Finally, take into account the definition of the lower incomplete gamma function [3] (Eqn. 8.2.1):
γ ν , z = 0 z t ν 1 e t d t , Re ν > 0 ,
and simplify the result, to arrive at (114), as we wanted to prove. □
Remark 6. 
Taking n = 0 in (114), we recover the formula given in [20].
Theorem 21. 
The following reduction formula holds true for x > 0 , n = 0 , 1 , 2 , and κ R :
wi κ + n , κ 1 / 2 x = 1 n 2 κ n 2 κ m = 0 n n m 2 m 2 κ m Γ κ + m , x / 2 ,
where Γ ν , z denotes the upper incomplete gamma function (119).
Proof. 
Follow similar steps as in the previous theorem, but consider the definition of the upper incomplete gamma function [3] (Eqn. 8.2.2):
Γ ν , z = z t ν 1 e t d t .
Theorem 22. 
The following reduction formula holds true for x > 0 , and n = 0 , 1 , 2 , :
wi 0 , n + 1 / 2 x = m = 0 n n + k ! 2 k k ! n k ! Γ k , x / 2 .
Proof. 
From (84) and (88), we have
W 0 , n + 1 / 2 z = e z / 2 k = 0 n n + k ! z k k ! n k ! ,
thus, integrating term by term, we obtain
wi 0 , n + 1 / 2 x = k = 0 n n + k ! k ! n k ! x e t / 2 t k 1 d t .
Finally, taking into account (119), we arrive at (120), as we wanted to prove. □
Theorem 23. 
For x > 0 and Re 1 2 + μ κ > 0 , the following integral representation holds true:
wi κ , μ x = 1 Γ 1 2 + μ κ 0 t μ κ 1 / 2 1 + t μ + κ 1 / 2 1 2 + t μ + 1 / 2 Γ 1 2 + μ , x t + 1 2 d t .
Proof. 
According to (7) and (35), we have
wi κ , μ x = 1 Γ μ κ + 1 2 x d t t μ 1 / 2 e t / 2 0 e x ξ ξ μ κ 1 / 2 1 + ξ μ + κ 1 / 2 d ξ .
Exchange the integration order and calculate the inner integral using (119), to arrive at (121), as we wanted to prove. □
Remark 7. 
It is worth noting that we cannot follow the above steps to derive the integral representation of Wi κ , μ x , because the corresponding integral does not converge, except for some special cases such as the ones given in (114).
Theorem 24. 
For x > 0 and Re 1 2 + μ κ > 0 , the following integral representation holds true:
wi κ , μ x κ = 1 Γ 1 2 + μ κ 0 ψ 1 2 + μ κ + ln 1 + t t t μ κ 1 / 2 1 + t μ + κ 1 / 2 1 2 + t μ + 1 / 2 Γ 1 2 + μ , x t + 1 2 d t .
Proof. 
Direct differentiation of (121) with respect to κ yields (122), as we wanted to prove. □

5. Conclusions

The Whittaker function W κ , μ x is defined in terms of the Tricomi function, hence its derivative with respect to the parameters κ and μ can be expressed as infinite sums of quotients of the digamma and gamma functions. In addition, the parameter differentiation of some integral representations of W κ , μ x leads to infinite integrals of elementary functions. These sums and integrals have been calculated for some particular cases of the parameters κ and μ , in closed form. As an application of these results, we have calculated an infinite integral containing the Macdonald function. It is worth noting, that all the results presented in this paper have been both numerically and symbolically checked with the MATHEMATICA program.
In Appendix A, we calculate a reduction formula for the first derivative of the Kummer function, i.e., G 1 a ; a ; z , which is necessary for the derivation of Theorem 1.
In Appendix B, we calculate a reduction formula of the hypergeometric function 2 F 2 1 , 1 ; 2 , 2 + m ; x for a non-negative integer m, since it is not found in most common literature, such as [9]. This reduction formula is used throughout Section 3 in order to simplify the results obtained.
Finally, we collect some reduction formulas for the Whittaker function W κ , μ x in Appendix C.

Author Contributions

Conceptualization, A.A. and J.L.G.-S.; methodology, A.A. and J.L.G.-S.; resources, A.A.; writing—original draft, A.A. and J.L.G.-S.; writing—review and editing, A.A. and J.L.G.-S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

We are grateful to Francesco Mainardi from the Department of Physics and Astronomy, University of Bologna, Bologna, Italy, for his kind encouragement and interest in our work.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Calculation of G(1) (a; a; z)

Theorem A1. 
The following reduction formula holds true:
G 1 a a x = x e x a 2 F 2 1 , 1 a + 1 , 2 x .
Proof. 
According to the definition of the Kummer function (3), we have
1 F 1 b a x = 1 + n = 0 b n + 1 a n + 1 x n + 1 n + 1 ! .
Taking into account [4] (Eqn. 18:5:7)
α n + 1 = α α + 1 n ,
and the definition of the generalized hypergeometric function (4), we may recast (A2) as
1 F 1 b a x = 1 + b a x 2 F 2 1 , b + 1 2 , a + 1 x ,
thus, for b 0 , we obtain (it is worth noting that there is an error in (Eqn. 7.12.1(5)) in [9])
2 F 2 1 , b + 1 2 , a + 1 x = a b x 1 F 1 b a x 1 .
Applying L’Hôpital’s rule, calculate the limit b 0 in (A3), considering the notation given in (8),
2 F 2 1 , 1 2 , a + 1 x = a x G 1 0 a x .
Finally, differentiate Kummer’s transformation formula (11) with respect to the first parameter, to obtain:
G 1 b a x = e x G 1 b a b x .
Apply (A5) in order to rewrite (A4) as (A1), as we wanted to prove. □

Appendix B. Calculation of 2F2 (1, 1; 2, 2 + m; x)

Theorem A2. 
For m = 0 , 1 , 2 , , the following reduction formula holds true:
2 F 2 1 , 1 2 , 2 + m x = m + 1 x H m Ein x + k = 1 m m k x k γ k , x ,
where Ein z denotes the complementary exponential integral.
Proof. 
Consider the function
R m x = 1 m ! 2 F 2 1 , 1 2 , 1 + m x = k = 0 x k m + k ! k + 1 ,
thus
d d x x m R m x = x m 1 R m 1 x ,
and by induction
d m d x m x m R m x = R 0 x = 1 x k = 0 x k + 1 k + 1 ! = e x 1 x .
Now, apply the repeated integral formula [3] (Eqn. 1.4.31)
f n x = 1 n 1 ! 0 x x t n 1 f t d t ,
to obtain
R m + 1 x = 1 m + 1 ! 2 F 2 1 , 1 2 , 2 + m x = x m 1 m ! 0 x x t m e t 1 t d t .
Use the binomial theorem to expand (A7) as
2 F 2 1 , 1 2 , 2 + m x = m + 1 x 0 x e t 1 t d t + k = 1 m m k x k 1 k 0 x t k 1 e t 1 d t .
According to [3] (Eqn. 6.2.3), we have
0 x e t 1 t d t = Ein x .
Further, taking into account the definition of the lower incomplete gamma function [4] (Eqn. 45:3:1), we calculate for k = 1 , 2 ,
0 x t k 1 e t 1 d t = 1 k γ k , x x k k .
Therefore, substituting (A9) and (A10) into (A8), we have
2 F 2 1 , 1 2 , 2 + m x = m + 1 x Ein x + k = 1 m m k x k γ k , x + 1 k + 1 k .
Finally, consider the formula [7] (Eqn. 0.155.4)
k = 1 m m k 1 k + 1 k = H m ,
to arrive at (A6), as we wanted to prove □

Appendix C. Reduction Formulas for the Whittaker Function Wκ,μ (x)

For the convenience of the reader, reduction formulas for the Whittaker function W κ , μ x are presented in their explicit form in Table A1.
Table A1. Whittaker function W κ , μ ( x ) for particular values of κ and μ .
Table A1. Whittaker function W κ , μ ( x ) for particular values of κ and μ .
κ   μ   W κ , μ x
1 4 ± 1 4 π e x / 2 x 1 / 4 erfc x
1 2 ± 1 2 x π K 1 x 2 K 0 x 2
1 2 ± 1 6 3 x π K 2 / 3 x 2 K 1 / 3 x 2
1 2 ± 1 x 1 / 2 e x / 2
00 x π K 0 x 2
0 ± 1 2 e x / 2
0 ± 1 x π K 1 x 2
0 ± 3 2 x 1 e x / 2 x + 2
0 ± 5 2 x 2 e x / 2 x 2 + 6 x + 12
1 4 ± 1 4 x 1 / 4 e x / 2
1 2 ± 1 6 x 2 π K 1 / 3 x 2 + K 2 / 3 x 2
1 2 ± 1 4 x 2 π K 1 / 4 x 2 + K 3 / 4 x 2
1 2 ± 1 2 x 2 π K 0 x 2 + K 1 x 2
1 2 ± 1 x 1 / 2 e x / 2 x + 1
1 2 ± 2 x 3 / 2 e x / 2 x 2 + 4 x + 6
1 ± 3 2 x 1 e x / 2 x 2 + 2 x + 2
1 ± 1 1 2 x π x K 0 x 2 + x + 1 K 1 x 2
1 ± 2 1 2 π x x x + 3 K 0 x 2 + x 2 + 4 x + 12 K 1 x 2
2 ± 2 1 4 π x x 2 x 2 + 2 x + 3 K 0 x 2 + 2 x 3 + 2 x 2 + 4 x + 6 K 1 x 2

References

  1. Whittaker, E.T. An expression of certain known functions as generalized hypergeometric functions. Bull. Am. Math. Soc. 1903, 10, 125–134. [Google Scholar] [CrossRef]
  2. Mainardi, F.; Paris, R.B.; Consiglio, A. Wright functions of the second kind and Whittaker functions. Fract. Calc. Appl. Anal. 2022, 25, 858–875. [Google Scholar] [CrossRef]
  3. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
  4. Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
  5. Buchholz, H. The Confluent Hypergeometric Function; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar]
  6. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
  7. Gradstein, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
  8. Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 52. [Google Scholar]
  9. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
  10. Slater, L.J. Confluent Hypergeometric Functions; Cambrigde University Press: Cambrigde, UK, 1960. [Google Scholar]
  11. Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cabrigdge University Press: Cambrigde, UK, 1963. [Google Scholar]
  12. Lagarias, J.C. The Schrödinger operator with morse potential on the right half-line. Commun. Number Theory 2009, 3, 323–361. [Google Scholar] [CrossRef]
  13. Laurenzi, B.J. Derivatives of Whittaker functions wκ,1/2 and mκ,1/2 with respect to order κ. Math. Comput. 1973, 27, 129–132. [Google Scholar]
  14. Omair, M.A.; Tashkandy, Y.A.; Askar, S.; Alzaid, A.A. Family of distributions derived from Whittaker function. Mathematics 2022, 10, 1058. [Google Scholar] [CrossRef]
  15. Abad, J.; Sesma, J. Successive derivatives of Whittaker functions with respect to the first parameter. Comput. Phys. Commun. 2003, 156, 13–21. [Google Scholar] [CrossRef]
  16. Becker, P.A. Infinite integrals of Whittaker and Bessel functions with respect to their indices. J. Math. Phys. 2009, 50, 123515. [Google Scholar] [CrossRef]
  17. Buschman, R.G. Finite sum representations for partial derivatives of special functions with respect to parameters. Math. Comput. 1974, 28, 817–824. [Google Scholar] [CrossRef]
  18. Ancarani, L.U.; Gasaneo, G. Derivatives of any order of the hypergeometric function pFq(a1,…, ap; b1,…, bq; z) with respect to the parameters ai and bi. J. Phys. A-Math. Theor. 2010, 43, 085210. [Google Scholar] [CrossRef]
  19. Sofotasios, P.C.; Brychkov, Y.A. On derivatives of hypergeometric functions and classical polynomials with respect to parameters. Integr. Transf. Spec. Funct. 2018, 29, 852–865. [Google Scholar] [CrossRef]
  20. Apelblat, A.; González-Santander, J.L. The Integral Mittag-Leffler, Whittaker and Wright functions. Mathematics 2021, 9, 3255. [Google Scholar] [CrossRef]
  21. Kölbig, K.S. On the integral 0 1 xν−1(1 − x)λ(lnx)mdx. J. Comput. Appl. Math. 1987, 18, 369–394. [Google Scholar] [CrossRef]
  22. Geddes, K.O.; Glasser, M.L.; Moore, R.A.; Scott, T.C. Evaluation of classes of definite integrals involving elementary functions via differentiation of special functions. Appl. Algebra Eng. Commun. 1990, 1, 149–165. [Google Scholar] [CrossRef]
  23. Apelblat, A.; Kravitsky, N. Integral representations of derivatives and integrals with respect to the order of the Bessel functions Jν(t), Iν(t), the Anger function Jν(t) and the integral Bessel function Jiν(t). IMA J. Appl. Math. 1985, 34, 187–210. [Google Scholar] [CrossRef]
  24. Ancarani, L.; Gasaneo, G. Derivatives of any order of the confluent hypergeometric function 1F1(a, b, z) with respect to the parameter a or b. J. Math. Phys. 2008, 49, 063508. [Google Scholar] [CrossRef]
  25. González-Santander, J.L. Closed-form expressions for derivatives of Bessel functions with respect to the order. J. Math. Anal. Appl. 2018, 466, 1060–1081. [Google Scholar] [CrossRef]
  26. Brychkov, Y.A. Higher derivatives of the Bessel functions with respect to the order. Integr. Transf. Spec. Funct. 2016, 27, 566–577. [Google Scholar] [CrossRef]
  27. Brychkov, Y.A.; Geddes, K.O. On the derivatives of the Bessel and Struve functions with respect to the order. Integr. Transf. Spec. Funct. 2005, 16, 187–198. [Google Scholar] [CrossRef]
  28. Apelblat, A. Bessel and Related Functions: Mathematical Operations with Respect to the Order; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
  29. Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
Table 1. Derivative of W κ , μ with respect to κ , by using (13).
Table 1. Derivative of W κ , μ with respect to κ , by using (13).
κ μ W κ , μ x κ
3 4 ± 5 4 1 3 x 3 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x + 3 π erfi x + 2 π x e x 2 x 3 3 γ + 8 3 ln 4
1 4 ± 3 4 x 1 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x + π erfi x 2 π x e x γ + 2 ln 4
1 6 ± 2 3 1 6 x 5 / 6 e x / 2 3 x 2 / 3 6 x 2 F 2 1 , 1 ; 2 3 , 2 ; x 2 γ + 6 3 ln 3 6 x 2 Γ 1 3 E 1 / 3 x 3 π x 2 / 3 + 4 x 2 / 3
1 6 ± 1 3 1 6 x 1 / 6 e x / 2 3 x 1 / 3 6 x 2 F 2 1 , 1 ; 4 3 , 2 ; x + 2 γ + 3 ln 3 6 x Γ 1 3 E 1 / 3 x + 3 π x 1 / 3 4 x 1 / 3
1 4 ± 1 4 x 1 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 3 2 , 2 ; x π erfi x + γ + ln 4
3 4 ± 1 4 1 3 e x / 2 x 3 / 4 2 x 2 F 2 1 , 1 ; 5 2 , 2 ; x + 3 π erfi x γ + 2 ln 4 3 π x 1 / 4 e x
5 6 ± 1 3 1 30 x 1 / 6 e x / 2 18 x 5 / 3 2 F 2 1 , 1 ; 8 3 , 2 ; x + 15 x 2 / 3 3 2 γ 3 ln 3 30 Γ 5 3 E 5 / 3 x 5 3 π x 2 / 3 + 4 x 1 / 3
5 4 ± 3 4 1 30 x 1 / 4 e x / 2 2 x 3 / 2 6 x 2 F 2 1 , 1 ; 7 2 , 2 ; x 5 π erfi x 3 γ + 8 3 ln 4 15 π e x 2 x + 1
Table 2. Derivative of W κ , μ with respect to κ , by using (22).
Table 2. Derivative of W κ , μ with respect to κ , by using (22).
κ   μ   W κ , μ x κ
1 ± 1 2 e x / 2 x ln x 1
2 ± 1 2 e x / 2 x x 2 ln x 3 x + 1
3 ± 1 2 e x / 2 x x 2 6 x + 6 ln x 5 x 2 + 14 x 2
Table 3. Derivative of W κ , μ with respect to μ , by using (29).
Table 3. Derivative of W κ , μ with respect to μ , by using (29).
κ μ W κ , μ x μ
3 4 ± 5 4 ± 1 3 x 3 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x + 3 π erfi x + 2 π x e x 2 x 3 3 γ + 8 3 ln 4 x
1 4 ± 3 4 ± x 1 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x + π erfi x 2 π x e x γ + 2 ln 4 x
1 6 ± 2 3 ± 1 6 x 5 / 6 e x / 2 3 x 2 / 3 6 x 2 F 2 1 , 1 ; 2 3 , 2 ; x 2 γ + 6 3 ln 3 2 ln x 6 x 2 Γ 1 3 E 1 / 3 x 3 π x 2 / 3 + 4 x 2 / 3
1 6 ± 1 3 ± 1 6 x 1 / 6 e x / 2 3 x 1 / 3 6 x 2 F 2 1 , 1 ; 4 3 , 2 ; x + 2 γ + 3 ln 3 + 2 ln x 6 x Γ 1 3 E 1 / 3 x + 3 π x 1 / 3 4 x 1 / 3
1 4 ± 1 4 ± x 1 / 4 e x / 2 2 x 2 F 2 1 , 1 ; 3 2 , 2 ; x + π erfi x γ ln 4 x
3 4 ± 1 4 ± 1 3 x 1 / 4 e x / 2 x 2 x 2 F 2 1 , 1 ; 5 2 , 2 ; x 3 π erfi x γ + 2 ln 4 x + 3 π e x
5 6 ± 1 3 ± 1 30 x 1 / 6 e x / 2 18 x 5 / 3 2 F 2 1 , 1 ; 8 3 , 2 ; x + 15 x 2 / 3 2 γ + 3 ln 3 + 2 ln x 3 + 30 Γ 5 3 E 5 / 3 x + 5 3 π x 2 / 3 + 4 x 1 / 3
5 4 ± 3 4 ± 1 30 x 1 / 4 e x / 2 2 x 3 / 2 6 x 2 F 2 1 , 1 ; 7 2 , 2 ; x 5 π erfi x 3 γ + 8 3 ln 4 x + 15 π e x 2 x + 1
Table 4. Derivative of W κ , μ with respect to μ , by using (31).
Table 4. Derivative of W κ , μ with respect to μ , by using (31).
κ μ W κ , μ x μ
000
0 ± 1 4 ± 1 8 π 4 π 2 x π I 1 / 4 x 2 I 1 / 4 x 2 + I 1 / 4 x 2 x 2 15 3 F 4 1 , 1 , 3 2 2 , 2 , 7 4 , 9 4 x 2 4 + ln x 4 ψ 1 4 2 4 Γ 2 1 4 I 1 / 4 x 2 2 F 3 1 4 , 1 4 3 4 , 3 4 , 1 2 x 2 4 + x Γ 2 1 4 I 1 / 4 x 2 2 F 3 1 4 , 3 4 5 4 , 5 4 , 3 2 x 2 4
0 ± 1 3 ± x 1 / 6 384 π π x 2 / 3 128 π I 1 / 3 x 2 3 I 1 / 4 x 2 + I 1 / 4 x 2 9 x 2 3 F 4 1 , 1 , 3 2 2 , 2 , 5 3 , 7 3 x 2 4 + 64 2 ln x 4 2 ψ 1 3 3 48 2 3 3 x Γ 1 3 0 F 1 2 3 x 2 16 2 F 3 1 3 , 5 6 4 3 , 4 3 , 5 3 x 2 4 + Γ 2 1 3 I 1 / 3 x 2 2 F 3 1 3 , 1 6 1 3 , 2 3 , 2 3 x 2 4
0 ± 1 2 ± 1 4 π e x / 2 G 2 , 4 3 , 1 x 2 4 1 2 , 1 0 , 0 , 1 2 , 1 2 e x 1 G 1 , 3 3 , 0 x 2 4 1 1 2 , 0 , 0
0 ± 2 3 ± 1 π x 1 3 π 2 I 2 / 3 x 2 π 3 I 2 / 3 x 2 + I 2 / 3 x 2 9 80 x 2 3 F 4 1 , 1 , 3 2 2 , 2 , 4 3 , 8 3 x 2 4 + ln x 4 ψ 2 3 3 4 + 2 14 / 3 x 4 / 3 Γ 2 2 3 I 2 / 3 x 2 2 F 3 2 3 , 7 6 5 3 , 5 3 , 7 3 x 2 4 2 2 / 3 x 4 / 3 Γ 2 2 3 I 2 / 3 x 2 2 F 3 2 3 , 1 6 1 3 , 1 3 , 1 3 x 2 4
0 ± 3 4 ± 1 672 π x x 3 / 2 8 2 π I 3 / 4 x 2 + I 3 / 4 x 2 6 x 2 3 F 4 1 , 1 , 3 2 2 , 2 , 5 4 , 11 4 x 2 4 + 42 ln 2 x + γ 28 + 21 x 3 / 2 Γ 2 3 4 I 3 / 4 x 2 2 F 3 3 4 , 5 4 7 4 , 7 4 , 5 2 x 2 4 + 336 π K 3 / 4 x 2 1344 Γ 2 3 4 I 3 / 4 x 2 2 F 3 3 4 , 1 4 1 2 , 1 4 , 1 4 x 2 4
0 ± 1 ± 1 2 π x K 1 x 2 G 1 , 3 2 , 1 x 2 4 1 2 0 , 0 , 1 π I 1 x 2 G 1 , 3 3 , 0 x 2 4 1 2 1 , 0 , 0
0 ± 3 2 ± 1 4 π x e x / 2 3 x + 2 G 2 , 4 3 , 1 x 2 4 1 2 , 1 0 , 0 , 3 2 , 3 2 3 e x x 2 + x + 2 G 2 , 4 4 , 0 x 2 4 1 2 , 1 3 2 , 0 , 0 , 3 2
0 ± 2 ± 1 π x K 2 x 2 G 2 , 4 3 , 1 x 2 4 1 2 , 1 0 , 0 , 2 , 2 π I 2 x 2 G 2 , 4 4 , 0 x 2 4 1 2 , 1 2 , 0 , 0 , 2
Table 5. Derivative of W κ , μ with respect to κ , by using (57).
Table 5. Derivative of W κ , μ with respect to κ , by using (57).
κ   μ   W κ , μ x κ x > 0
1 4 ± 3 4 x 1 / 4 e x / 2 2 γ ln 4 2 e x π x + π erfi x + 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x
1 4 ± 1 4 x 1 / 4 e x / 2 π erfi x 2 x 2 F 2 1 , 1 ; 3 2 , 2 ; x γ ln 4
3 4 ± 1 4 e x / 2 x 3 / 4 2 γ ln 4 + π erfi x 2 3 x 2 F 2 1 , 1 ; 5 2 , 2 ; x π x 1 / 4 e x
5 4 ± 3 4 1 30 x 1 / 4 e x / 2 2 x 3 / 2 40 15 γ 30 ln 2 + 15 π erfi x 12 x 2 F 2 1 , 1 ; 7 2 , 2 ; x 15 π e x 2 x + 1
Table 6. First derivative of W κ , μ ( x ) with respect to parameter κ for particular values of κ and μ .
Table 6. First derivative of W κ , μ ( x ) with respect to parameter κ for particular values of κ and μ .
κ   μ   W κ , μ x κ
0 ± 1 2 e x / 2 ln x + e x Γ 0 , x
0 ± 3 2 x 1 e x / 2 x 2 e x Chi x Shi x + x + 2 ln x + 2
0 ± 5 2 x 2 e x / 2 x 2 + 6 x + 12 ln x + 18 x 2 6 x + 12 e x Chi x Shi x
1 2 0 x e x / 2 ln x
1 2 ± 1 x 1 / 2 e x / 2 x + 1 ln x + e x Γ 0 , x
1 ± 1 2 e x / 2 x ln x 1
1 ± 3 2 x 1 e x / 2 x 2 + 2 x + 2 ln x 2 e x Chi x Shi x x
3 2 ± 1 x 1 / 2 e x / 2 x 2 ln x 2 x 1
3 2 ± 2 x 3 / 2 e x / 2 x 3 + 3 x 2 + 6 x + 6 ln x 2 x 2 4 6 e x Chi x Shi x
2 ± 3 2 e x / 2 x 2 ln x 3 x 3 2 x
Table 7. Derivative of W κ , μ with respect to μ , by using (103).
Table 7. Derivative of W κ , μ with respect to μ , by using (103).
κ   μ   W κ , μ x μ x > 0
1 4 ± 3 4 ± x 1 / 4 e x / 2 2 γ ln 4 x 2 e x π x + π erfi x + 2 x 2 F 2 1 , 1 ; 1 2 , 2 ; x
1 4 ± 1 4 ± x 1 / 4 e x / 2 π erfi x 2 x 2 F 2 1 , 1 ; 3 2 , 2 ; x γ ln 4 x
3 4 ± 1 4 ± e x / 2 x 3 / 4 2 3 x 2 F 2 1 , 1 ; 5 2 , 2 ; x 2 + γ + ln 4 x π erfi x + π x 1 / 4 e x
5 4 ± 3 4 ± 1 30 x 1 / 4 e x / 2 15 π e x 2 x + 1 2 x 3 / 2 40 15 γ 30 ln 2 x + 15 π erfi x 12 x 2 F 2 1 , 1 ; 7 2 , 2 ; x
Table 8. Derivative of W κ , μ with respect to μ , by using (109) and (112).
Table 8. Derivative of W κ , μ with respect to μ , by using (109) and (112).
κ   μ   W κ , μ x μ
0 ± 1 2 ± e x / 2 Shi x Chi x
0 ± 3 2 ± x 1 e x / 2 e x x 2 Shi x Chi x + 4
0 ± 5 2 ± x 2 e x / 2 4 x + 8 e x x 2 6 x + 12 Shi x Chi x
1 2 ± 1 ± x 1 / 2 e x / 2 e x Shi x Chi x + 2
1 2 00
1 ± 1 2 ± e x / 2
1 ± 3 2 ± x 1 e x / 2 2 e x Shi x Chi x + 3 x + 2
3 2 ± 1 ± x 1 / 2 e x / 2 2 x + 1
3 2 ± 2 ± x 3 / 2 e x / 2 2 2 x 2 + 7 x + 11 6 e x Shi x Chi x
2 ± 3 2 ± e x / 2 3 x + 3 + 2 x
2 ± 5 2 ± x 2 e x / 2 5 x 3 + 5 x 2 + 14 x + 20 24 e x Shi x Chi x
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Apelblat, A.; González-Santander, J.L. Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II. Axioms 2023, 12, 382. https://doi.org/10.3390/axioms12040382

AMA Style

Apelblat A, González-Santander JL. Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II. Axioms. 2023; 12(4):382. https://doi.org/10.3390/axioms12040382

Chicago/Turabian Style

Apelblat, Alexander, and Juan Luis González-Santander. 2023. "Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II" Axioms 12, no. 4: 382. https://doi.org/10.3390/axioms12040382

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop