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Abstract: In the present investigation, we introduce a new class of meromorphic functions defined
in the punctured unit disk ∆∗ := {ϑ ∈ C : 0 < |ϑ| < 1} by making use of the Erdély–Kober
operator Iτ,κ

ς,$ which unifies well-known classes of the meromorphic uniformly convex function with
positive coefficients. Coefficient inequalities, growth and distortion inequalities, in addition to closure
properties are acquired. We also set up a few outcomes concerning convolution and the partial
sums of meromorphic functions in this new class. We additionally state some new subclasses and
its characteristic houses through specializing the parameters that are new and no longer studied in
association with the Erdély–Kober operator thus far.

Keywords: meromorphic functions; starlike function; convolution; positive coefficients; coefficient
inequalities; integral operator; Erdély–Kober operator
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1. Introduction and Definitions

Let Σ represent the class of functions f being of the forms given by

f (ϑ) =
1
ϑ
+

∞

∑
n=1

anϑn, (1)

defined on the punctured unit disk ∆∗ := {ϑ ∈ C : 0 < |ϑ| < 1} with a simple pole at the
origin with one residue there. Denote by means of ΣP ⊂ Σ consisting of the functions of
the form

f (ϑ) =
1
ϑ
+

∞

∑
n=1

anϑn, an ≥ 0. (2)

The class of meromorphic starlike and meromorphic convex of order ℘ (0 ≤ ℘ < 1)
(see Ref. [1]) are defined as below:

Σ∗P(℘) =
{

f ∈ ΣP : −<
(

ϑ f ′(ϑ)
f (ϑ)

)
> ℘, ϑ ∈ ∆ := ∆∗ ∪ {0}

}
(3)

and

ΣK
P(℘) =

{
f ∈ ΣP : −<

(
(ϑ f ′(ϑ))′

f ′(ϑ)

)
> ℘, ϑ ∈ ∆ := ∆∗ ∪ {0}

}
respectively. Since, to a certain extent, the work in the meromorphic univalent case has
paralleled that of a regular univalent case, it is natural to search for a subclass of ΣP that
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has properties analogous to those of class of analytic univalent functions with negative
coefficients [2]. Juneja and Reddy [3] introduced the class ΣP of functions of the form (2)
that are meromorphic and univalent in ∆. They showed that the class possesses properties
analogous to those of analytic univalent functions with negative coefficients, and also
pointed out the subtle differences between the two classes.

For subclasses of analytic and univalent functions given by

A =

{
f ∈ A : f (ϑ) = ϑ +

∞

∑
n=2

anϑn ϑ ∈ U = {ϑ : |ϑ| < 1}
}

.

Goodman [4,5], defined two new functions’ classes, namely, uniformly starlike and uni-
formly convex functions. Inspired by this study, in Refs. [6,7], Rønning introduced and
studied the following subclasses of A called h̄-starlike functions of order −1 < ℘ ≤ 1 if

Sp(℘, h̄) =
{

f ∈ A : <
(

ϑ f ′(ϑ)
f (ϑ)

− ℘

)
> h̄

∣∣∣∣ϑ f ′(ϑ)
f (ϑ)

− 1
∣∣∣∣, (h̄ ≥ 0; ϑ ∈ U)

}
(4)

and uniformly h̄-convex functions −1 < ℘ ≤ 1 if if

UCV(℘, h̄) =
{

f ∈ A : <
(
(ϑ f ′(ϑ))′

f ′(ϑ)
− ℘

)
> h̄

∣∣∣∣ϑ f ′′(ϑ)
f ′(ϑ)

∣∣∣∣, (h̄ ≥ 0; ϑ ∈ U)

}
. (5)

Indeed, it follows from (12) and (5) that

f ∈ UCV(℘, h̄)⇔ z f ′ ∈ Sp(℘, h̄). (6)

The interesting geometric properties of these function classes were extensively studied by
Kanas et al. in Refs. [8–11], and Murugusundaramoorthy et al. [12] and references cited
therein studied and investigated interesting properties for the subclass of Rønning-type
h̄-starlike functions associated with certain fractional calculus operators, and discussed its
coefficient estimate, characteristic properties, partial sums and neighbourhood results. In
this article, we made an attempt to discuss the class of Pascu–Ronning-type meromorphic
functions based on the Sălăgean-Erdély–Kober operator (SEK).

Erdély–Kober Operator (EK)

The fractional calculus plan has currently acquired filled-intensity attention by way of
the applications of fractional derivative operators (FD) in analytical functions [13–17]. In
the literature, many studies on fractional derivative operators and fractional differential
equations, involving different operators such as Riemann–Liouville, Hadamard, Caputo,
the Erdély–Kober fractional operator (EKF), Weyl–Riesz operators, Caputo operators, and
Grünwald–Letnikov operators, were designed and implemented during the past three
decades with applications in other fields. The Riemann–Liouville fractional operator (RLF)
has been most frequently used and intentional for information (see Refs. [13–18]). Some
requirements and features of EKF operators and FD in the study of analytic functions
(Geometric Function Theory) can be found at Refs. [13–22].

Now, we recall the Erdély–Kober-type [23] (also see Ref. [24], Ch. 5) integral operator
definition, which will be used throughout the paper as below:

Definition 1. (Erdély–Kober operator-EK): Let for ζ > 0, τ, κ ∈ C, be such that <(κ − τ) ≥ 0,
an Erdély–Kober-type integral operator by

Vτ,κ
ζ : ΣP → ΣP

is defined for <(κ − τ) > 0 and <(τ) > −ζ by

Vτ,κ
ζ f (ϑ) =

Γ(κ − ζ)

Γ(τ − ζ)

1
Γ(κ − τ)

1∫
0

(1− t)κ−τ−1tτ−1 f (ϑtζ)dt, ζ > 0. (7)
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For ζ > 0,<(κ − τ) ≥ 0, <(τ) > −ζ and f ∈ ΣP of the form (2), we have

Vτ,κ
ζ f (ϑ) =

1
ϑ
+

∞

∑
n=1

Γ(κ − ζ)Γ(τ + nζ)

Γ(τ − ζ)Γ(κ + nζ)
anϑn (ϑ ∈ ∆)

=
1
ϑ
+

∞

∑
n=2

Υτ,κ
ζ (n)anϑn (ϑ ∈ ∆), (8)

where

Υτ,κ
ζ (n) =

Γ(κ − ζ)Γ(τ + nζ)

Γ(τ − ζ)Γ(κ + nζ)
. (9)

Note that by fixing κ = τ, we obtain

Vτ,τ
ζ f (ϑ) = f (ϑ). (10)

Due to El-Ashwah (see Refs. [25,26] with p = 1) and [23], we recall the following
operators:
For m ∈ Z = {0,±1,±2,±3, · · · }; ` > 0; $ > 0, let

Dm
`,$ : ΣP → ΣP

by

Dm
`,$ f (ϑ) =


`
$ ϑ
−1− `

$
ϑ∫
0

t
`
$Dm+1

`,$ f (t)dt; $ 6= 0, m ∈ Z−;

$
` ϑ
− `

$ d
dϑ

(
ϑ

1+ `
$Dm−1

`,$ f (ϑ)
)

m ∈ Z+;

f (ϑ), m = 0.

Now we define a new linear operator

Iτ,κ
ς,$ : ΣP → ΣP

by
Iτ,κ

ς,$ f (ϑ) = Dm
`,$V

τ,κ
ζ f (ϑ) = Vτ,κ

ζ D
m
`,$ f (ϑ)

named as the Sălăgean-Erdély–Kober operator (SEK) and is given by the following definition.

Definition 2. (Sălăgean-Erdély–Kober operator -SEK): For ζ > 0,<(κ − τ) ≥ 0, <(τ) > ζ;
m ∈ Z; ς > 0; $ > 0 and f ∈ ΣP of the form (2), we have

Iτ,κ
ς,$ f (ϑ) =

1
ϑ
+

∞

∑
n=2

[
1 +

$(n + 1)
ς

]m Γ(κ − ζ)Γ(τ + nζ)

Γ(τ − ζ)Γ(κ + nζ)
anϑn, (ϑ ∈ ∆)

=
1
ϑ
+

∞

∑
n=2

Ξτ,κ
ς,$ (n)anϑn, (ϑ ∈ ∆) (11)

where

Ξn = Ξτ,κ
ς,$ (n) =

[
1 +

$(n + 1)
ς

]m Γ(κ − ζ)Γ(τ + nζ)

Γ(τ − ζ)Γ(κ + nζ)
. (12)

Particularly,

Ξ1 = Ξτ,κ
ς,$ (1) =

[
1 +

2$

ς

]m Γ(κ − ζ)Γ(τ + ζ)

Γ(τ − ζ)Γ(κ + ζ)
. (13)

Stimulated by means of earlier works on ΣP by means of Kumar et al. [27] and
function theorists (see Refs. [1,27–34]), in this paper, we tried to define a new subclass
Mτ,κ

ς,$ (µ, h̄,℘) given in Definition 3, by utilising the generalized operator Iτ,κ
ς,$ unifying

well-known classes of meromorphic uniformly convex functions with positive coefficients,
and discuss its notable function properties.
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Throughout this paper, we shall confine our attention to the case of real-valued parameters
τ and κ, and we will consider that ϑ ∈ ∆.

Definition 3. For 0 ≤ ℘ < 1; 0 ≤ µ < 1/2, and f ∈ ΣP as assumed in (2), we let f ∈
Mτ,κ

ς,$ (µ, h̄,℘) if it holds

− <
(

ϑ(Iτ,κ
ς,$ f (ϑ))′ + µϑ2(Iτ,κ

ς,$ f (ϑ))′′

(1− µ)Iτ,κ
ς,$ f (ϑ) + µϑ(Iτ,κ

ς,$ f (ϑ))′

)
(14)

> h̄

∣∣∣∣∣ ϑ(Iτ,κ
ς,$ f (ϑ))′ + µϑ2(Iτ,κ

ς,$ f (ϑ))′′

(1− µ)Iτ,κ
ς,$ f (ϑ) + µϑ(Iτ,κ

ς,$ f (ϑ))′
+ 1

∣∣∣∣∣+ ℘

where Iτ,κ
ς,$ is given by (11).

Further, shortly, we were able to state this condition through

−<
(

ϑG′(ϑ)
G(ϑ)

)
> h̄

∣∣∣∣ϑG′(ϑ)
G(ϑ)

+ 1
∣∣∣∣+ ℘, (15)

where

G(ϑ) = (1− µ)F(ϑ) + µϑF′(ϑ) =
1− 2µ

ϑ
+

∞

∑
n=1

(nµ− µ + 1)Ξnanϑn, an ≥ 0. (16)

and F(ϑ) = Iτ,κ
ς,$ f (ϑ).

It is of importance to note that, on specializing the parameters µ, h̄, we can define or
deduce Ronning-type meromorphic function classes of ΣP based on the Sălăgean-Erdély–
Kober operator. We pointed these out as examples, and they will also play important
roles for investigations. For this reason, those (more) special classes will be taken into
consideration as revealing various applications of our basic result which have not been
studied so far, associating with the Sălăgean-Erdély–Kober operator.

Example 1. For µ = 0, we let
Mτ,κ

ς,$ (0, h̄,℘) ≡ PSτ,κ
ς,$ (h̄,℘)

=
{

f ∈ ΣP : −<
(

ϑ(Iτ,κ
ς,$ f (ϑ))′

Iτ,κ
ς,$ f (ϑ)

)
> h̄

∣∣∣∣∣ϑ(I
τ,κ
ς,$ f (ϑ))′

Iτ,κ
ς,$ f (ϑ)

+ 1

∣∣∣∣∣+ ℘
}

(17)

where Iτ,κ
ς,$ is given by (11).

Example 2. For µ = 0, h̄ = 0 we let

Mτ,κ
ς,$ (0, 0,℘) ≡ MSτ,κ

ς,$ (℘) =
{

f ∈ ΣP : −<
(

ϑ(Iτ,κ
ς,$ f (ϑ))′

Iτ,κ
ς,$ f (ϑ)

)
> ℘

}
(18)

where Iτ,κ
ς,$ is given by (11).

Example 3. For µ = 1, we let
Mτ,κ

ς,$ (1, h̄,℘) ≡ MKτ,κ
ς,$ (h̄,℘)

=
{

f ∈ ΣP : −<
(

1 +
ϑ(Iτ,κ

ς,$ f (ϑ))′′

(Iτ,κ
ς,$ f (ϑ))′

)
> h̄

∣∣∣∣∣ϑ(I
τ,κ
ς,$ f (ϑ))′′

(Iτ,κ
ς,$ f (ϑ))′

∣∣∣∣∣+ ℘
}

(19)

where Iτ,κ
ς,$ is given by (11).
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Example 4. For µ = 1, h̄ = 0 we let

Mτ,κ
ς,$ (1, 0,℘) ≡ Kτ,κ

ς,$ (℘) =
{

f ∈ ΣP : −<
(

1 +
ϑ(Iτ,κ

ς,$ f (ϑ))′′

(Iτ,κ
ς,$ f (ϑ))′

)
> ℘

}
(20)

where Iτ,κ
ς,$ is given by (11).

Remark 1. Suitably fixing the parameter in the operator Iτ,κ
ς,$ , we can deduce the following

1. For m = α; $ = 1; ς = β, and τ = κ we obtain the operator Iτ,τ
β,1 f (ϑ) = Pα

β f (ϑ) studied by
Lashin [35];

2. For $ = 1 and τ = κ, we obtain the operator I(m, ς) f (ϑ) studied by Cho et al. [36,37];
3. $ = 1, ς = 1 and τ = κ we obtain the operator Iτ,τ

1,1 f (ϑ) = I(m) f (ϑ) studied by Uralegaddi
and Somanatha [38];

4. For m = 0, it gives Iτ,κ
ς,$ f (ϑ) = Iζ(τ, κ) f (ϑ), which was studied by El-Ashwah [23].

In this study, we achieve the coefficient bounds, distortion bounds, in addition to clo-
sure results for the class Mτ,κ

ς,$ (µ, h̄,℘). We additionally discussed a few results regarding
the integral operator, convolution, and the partial sums of f ∈ Mτ,κ

ς,$ (µ, h̄,℘). It is note-
worthy that the SEK operator defined on meromorphic functions in turn includes various
operators illustrated in the Remark 1; thus, our study on the characteristic properties of
the function class ΣP unifies the known (or new) results for the meromorphic functions
defined in the parabolic region.

2. Coefficient Inequalities

In the light of the conditions created by Dziok et al. [39], we state the following result
without providing any proof.

Lemma 1. Suppose that ℘ ∈ [0, 1), r ∈ (0, 1] and H ∈ ΣP(℘) is of the form H(ϑ) = 1
ϑ +

∑∞
n=1 bnϑn, 0 < |ϑ| < r, with bn ≥ 0; then

∞

∑
n=1

(n + ℘)bnrn+1 ≤ 1− ℘. (21)

In our first theorem, we compose our comprehensive result that is a necessary and
sufficient condition for f ∈ Mτ,κ

ς,$ (µ, h̄,℘).

Theorem 1. Let f ∈ ΣP be given by (2). Then f ∈ Mτ,κ
ς,$ (µ, h̄,℘) if, and only if

∞

∑
n=1

[n(1 + h̄) + (℘+ h̄)](nµ− µ + 1) Ξnan ≤ (1− 2µ)(1− ℘). (22)

Equivalently,
∞

∑
n=1

[n(1 + h̄) + (℘+ h̄)]ℵ(n, µ) an ≤ (1− ℘),

where

ℵ(n, µ) =
(nµ− µ + 1)
(1− 2µ)

Ξn. (23)
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Proof. If f ∈ Mτ,κ
ς,$ (µ, h̄,℘), then by (17), we have

− <
(

ϑ(Iτ,κ
ς,$ f (ϑ))′ + µϑ2(Iτ,κ

ς,$ f (ϑ))′′

(1− µ)Iτ,κ
ς,$ f (ϑ) + µϑ(Iτ,κ

ς,$ f (ϑ))′

)
(24)

> h̄

∣∣∣∣∣ ϑ(Iτ,κ
ς,$ f (ϑ))′ + µϑ2(Iτ,κ

ς,$ f (ϑ))′′

(1− µ)Iτ,κ
ς,$ f (ϑ) + µϑ(Iτ,κ

ς,$ f (ϑ))′
+ 1

∣∣∣∣∣+ ℘

That is,

− <
(
(1 + h̄eiθ)ϑG′(ϑ) + h̄eiθ G(ϑ)

G(ϑ)

)
> ℘,

where G(ϑ) is given by (16). When we replace with G(ϑ), G′(ϑ) and we allow ϑ → 1−,
we obtain{

(1− 2µ)(1− ℘)−∑∞
n=1[n(1 + h̄) + (℘+ h̄)](nµ− µ + 1)Ξnan

(1− 2µ)−∑∞
n=1 n(nµ− µ + 1)Ξnan

}
> 0.

This shows that (22) holds.
On the other hand, suppose that (22) is true. Since −<(w) > ℘ ⇔ |w + 1| < |w−

(1− 2℘)|, it is sufficient to prove that∣∣∣∣ w + 1
w− (1− 2℘)

∣∣∣∣ < 1 and |w− (1− 2℘)| 6= 0 for |ϑ| < r ≤ 1, ϑ ∈ ∆.

Using (22), and taking w(ϑ) = (1+h̄eiθ)ϑG′(ϑ)+h̄eiθ G(ϑ)
G(ϑ)

, we obtain∣∣∣∣ w + 1
w− (1− 2℘)

∣∣∣∣ ≤ ∑∞
n=1(nµ− µ + 1)[(n + 1)(1 + h̄)]Ξnan

2(1− ℘)(1− 2µ)−∑∞
n=1(nµ− µ + 1)[n(1 + h̄) + (h̄ + 2℘− 1)]Ξnan

≤ 1.

Thus, we have f ∈ Mτ,κ
ς,$ (µ, h̄,℘).

Firstly, throughout this paper, for brevity, we let the notations

Υn(µ,℘, h̄) := [n(1 + h̄) + (℘+ h̄)](nµ− µ + 1) (25)

Υ1(µ,℘, h̄) = (1 + ℘+ 2h̄)

unless specified differently.

Theorem 2 (Coefficient estimate). If f ∈ Mτ,κ
ς,$ (µ, h̄,℘), then

an ≤
(1− ℘)(1− 2µ)

Υn(µ,℘, h̄)Ξn
, n = 1, 2, 3, . . . .

The outcome is precise for

fn(ϑ) =
1
ϑ
+

(1− ℘)(1− 2µ)

Υn(µ,℘, h̄)Ξn
ϑn, n = 1, 2, 3, . . . .

Theorem 3. Let us say a positive number

Λ = inf
n∈N
{Υn(µ, α, h̄)Ξn} (26)
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exists. If f ∈ Mτ,κ
ς,$ (µ, h̄,℘), then∣∣∣∣1r − (1− ℘)(1− 2µ)

Λ
r
∣∣∣∣ ≤ | f (ϑ)| ≤ 1

r
+

(1− ℘)(1− 2µ)

Λ
r, (|ϑ| = r)

and ∣∣∣∣ 1
r2 −

(1− ℘)(1− 2µ)

Λ

∣∣∣∣ ≤ | f ′(ϑ)| ≤ 1
r2 +

(1− ℘)(1− 2µ)

Λ
, (|ϑ| = r).

If Λ = Υ1(µ,℘, h̄)Ξ1 = (1 + 2℘+ h̄)Ξ1, then the result is sharp for

f (ϑ) =
1
ϑ
+

(1− ℘)(1− 2µ)

(1 + ℘+ 2h̄)Ξ1
ϑ (27)

where Ξ1 is given in (13).

Proof. Since f (ϑ) = 1
ϑ + ∑∞

n=1 anϑn, we have

| f (ϑ)| ≤ 1
r
+

∞

∑
n=1

anrn ≤ 1
r
+ r

∞

∑
n=1

an.

Since
∞

∑
n=1

an ≤
(1− ℘)(1− 2µ)

Λ
.

Using this, we have

| f (ϑ)| ≤ 1
r
+

(1− ℘)(1− 2µ)

Λ
r.

Similarly,

| f (ϑ)| ≥ 1
r
− (1− ℘)(1− 2µ)

Λ
r.

Correspondingly, we can prove the other inequality | f ′(ϑ)|. Since

| f (ϑ)| ≤ 1
r2 +

∞

∑
n=1

nanrn−1 ≤ 1
r2 +

∞

∑
n=1

an

again by using ∑∞
n=1 an ≤ (1−℘)(1−2µ)

Λ , we obtain the desired inequality. Similarly,

| f (ϑ)| ≥ 1
r2 −

(1− ℘)(1− 2µ)

Λ
.

The result is sharp for function (27) with Λ = Υ1(µ,℘, h̄)Ξ1 = (1 + ℘+ 2h̄)Ξ1.

3. Radius of Starlikeness

The radius of starlikeness for f ∈ Mτ,κ
ς,$ (µ, h̄,℘) where f , as provided by (2), meets the

condition (3) in |ϑ| < r, we say that it is meromorphically starlike of order ρ, (0 ≤ ρ < 1),
in |ϑ| < r.

Theorem 4. Let f given by (2) be in the class Mτ,κ
ς,$ (µ, h̄,℘). Then, if there exists

r1(℘, µ, ρ) = inf
n≥1

[
(1− ρ)Υn(µ,℘, h̄)Ξn

(n + ρ)(1− ℘)(1− 2µ)

] 1
n+1

(28)

and it is sharp, then f is meromorphically starlike of order ρ in |ϑ| < r ≤ r1(℘, µ, ρ).
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Proof. Let f ∈ Mτ,κ
ς,$ (µ, h̄,℘) as in (2). If 0 < r ≤ r1(℘, µ, ρ), then by (28)

rn+1 ≤ (1− ρ)Υn(µ,℘, h̄)Ξn

(n + ρ)(1− ℘)(1− 2µ)
, ∀ n ∈ N. (29)

From (29), we obtain

n + ρ

1− ρ
rn+1 ≤ Υn(µ,℘, h̄)Ξn

(1− ℘)(1− 2µ)
∀ n ∈ N.

Thus,
∞

∑
n=1

n + ρ

1− ρ
anrn+1 ≤

∞

∑
n=1

Υn(µ,℘, h̄)Ξn

(1− ℘)(1− 2µ)
an ≤ 1. (30)

because of (22). Hence, from (30) and (21), f is meromorphically starlike of order ρ in
|ϑ| < r ≤ r1(℘, µ, ρ).

Suppose that there exists a number r̃, r̃ > r1(℘, µ, ρ) such that each f ∈ Mτ,κ
ς,$ (µ, h̄,℘)

is meromorphically starlike of order ρ in |ϑ| < r̃ ≤ 1. The function

f (ϑ) =
1
ϑ
+

(1− ℘)(1− 2µ)

Υn(µ,℘, h̄)Ξn
ϑn

is Mτ,κ
ς,$ (µ, h̄,℘); thus, it should satisfy (21) with r̃:

∞

∑
n=1

(n + ρ)an r̃n+1 ≤ 1− ρ, (31)

while the left-hand side of (31) becomes

(n + ρ)
(1− ℘)(1− 2µ)

Υn(µ,℘, h̄)Ξn
r̃n+1 > (n + ρ)

(1− ℘)(1− 2µ)

Υn(µ,℘, h̄)Ξn

(1− ρ)Υn(µ,℘, h̄)Ξn

(n + ρ)(1− ℘)(1− 2µ)
= 1− ρ

which contradicts with (31). Thus, the number r1(℘, µ, ρ) in Theorem 4 cannot be substi-
tuted with a greater number. This means that r1(℘, µ, ρ) is the so-called radius of meromor-
phical starlikeness of order ρ for the class Mτ,κ

ς,$ (µ, h̄,℘).

4. Integral Operators

In this section, we consider integral transforms of functions in the class Mτ,κ
ς,$ (µ, h̄,℘).

Theorem 5. Let in f ∈ Mτ,κ
ς,$ (µ, h̄,℘) be given by (2). Then the integral operator

F(ϑ) = 
∫ 1

0
u f (uϑ)du (0 <  < ∞) (32)

is in Mτ,κ
ς,$ (µ, h̄, δ), where

δ ≤ n2(1 + h̄) + n[(℘+ h̄) + (1 + h̄)(1 + ℘)] + ( + 1)(℘+ h̄) + h̄(1− ℘)

n2(1 + h̄) + n[(℘+ h̄) + (1 + )(1 + h̄)] + (1 + )(℘+ h̄) + (1− ℘)
.

The result is sharp for the function f (ϑ) = 1
ϑ + (1−℘)(1−2µ)

(1+℘+2h̄)Ξ1
ϑ.

Proof. Let f ∈ Mτ,κ
ς,$ (µ, h̄,℘). Then

F(ϑ) = 
∫ 1

0
u f (uϑ)du =

1
ϑ
+

∞

∑
n=1



 + n + 1
anϑn.
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It is sufficient to show that

∞

∑
n=1

 Υn(µ, δ, h̄)Ξn

( + n + 1)(1− δ)(1− 2µ)
an ≤ 1. (33)

Since f ∈ Mτ,κ
ς,$ (µ, h̄,℘), we have

∞

∑
n=1

Υn(µ,℘, h̄)Ξn

(1− ℘)(1− 2µ)
an ≤ 1.

Note that (33) is satisfied if

 Υn(µ, δ, h̄)Ξn

( + n + 1)(1− δ)
≤ Υn(µ,℘, h̄)Ξn

(1− ℘)
.

Solving for δ, we have

δ ≤ n2(1 + h̄) + n[(℘+ h̄) + (1 + h̄)(1 + ℘)] + ( + 1)(℘+ h̄) + h̄(1− ℘)

n2(1 + h̄) + n[(℘+ h̄) + (1 + )(1 + h̄)] + (1 + )(℘+ h̄) + (1− ℘)
= Φ(n).

A simple computation will show that Φ(n) is increasing and

Φ(1) =
(1 + h̄) + [(℘+ h̄) + (1 + h̄)(1 + ℘)] + ( + 1)(℘+ h̄) + h̄(1− ℘)

(1 + h̄) + [(℘+ h̄) + (1 + )(1 + h̄)] + (1 + )(℘+ h̄) + (1− ℘)

=
1 + h̄(2 + ) + ℘( + 1)

1 + h̄(2 + ) + ℘+ 
≤ Φ(n) < 1.

Using this, the results follow.

It is easy to see that if 0 ≤ δ ≤ δ1 < 1, then Mτ,κ
ς,$ (µ, h̄, δ1) ⊂ Mτ,κ

ς,$ (µ, h̄, δ).

Corollary 1. For the integral (32), we have

F(Mτ,κ
ς,$ (µ, h̄,℘)) (34)

with

δ ≤ 1 + h̄(2 + ) + ℘( + 1)
1 + h̄(2 + ) + ℘+ 

< 1.

If we replace the class Mτ,κ
ς,$ (µ, h̄, δ) in (34) with a smaller class Mτ,κ

ς,$ (µ, h̄, δ1) such that

δ1 >
1 + h̄(2 + ) + ℘( + 1)

1 + h̄(2 + ) + ℘+ 
, (35)

then (34) becomes false.

Proof. The inclusion relation (34) follows directly from Theorem 5. For the proof of sharp-
ness (34), notice that for the function f (ϑ) = 1

ϑ + (1−℘)(1−2µ)
(1+℘+2h̄)Ξ1

ϑ. satisfies (22) so it is in the
class Mτ,κ

ς,$ (µ, h̄,℘); moreover, we have

F(z) =
1
ϑ
+

(1− ℘)(1− 2µ)

( + 2)(1 + ℘+ 2h̄)Ξ1
ϑ.

By the condition (22), the above function F is in the class Mτ,κ
ς,$ (µ, h̄, δ1) if and only if

Υ1(µ, δ1, h̄)Ξ1

(1− δ1)(1− 2µ)

(1− ℘)(1− 2µ)

( + 2)(1 + ℘+ 2h̄)Ξ1
≤ 1
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or equivalently,
(1 + δ1 + 2h̄)

(1− δ1)

(1− ℘)

( + 2)(1 + ℘+ 2h̄)
≤ 1.

Solving the above inequality with respect to δ1, we obtain

δ1 ≤
(1 + ℘+ 2h̄) + ℘(1 + h̄)

(1 + h̄)( + 1) + ℘
,

which contradicts with (35).

5. Results Involving Modified Hadamard Products

The convolution or Hadamard product of f1 and f2 when fi(ϑ) = 1
ϑ + ∑∞

n=1 an,iϑ
n,

(an,i ≥ 0), i = 1, 2 then

( f1 ∗ f2)(ϑ) :=
1
ϑ
+

∞

∑
n=1

an,1an,2ϑn. (36)

Theorem 6. For functions f j(ϑ)(j = 1, 2) defined by (36), let f1(ϑ) ∈ Mτ,κ
ς,$ (µ, h̄,℘) and

f2(ϑ) ∈ Mτ,κ
ς,$ (µ, h̄, δ). Then f1 ∗ f2 ∈ Mτ,κ

ς,$ (µ, h̄, η) where

η = 1− (1− ℘)(1− δ)(3 + h̄)
(1 + 2℘+ h̄)(1 + 2δ + h̄)ℵ(1, µ)− 2(1− ℘)(1− δ)

(37)

where

ℵ(1, µ) =
Ξ1

1− 2µ
=

1
1− 2µ

[
1 +

2$

ς

]m Γ(κ − ζ)Γ(τ + ζ)

Γ(τ − ζ)Γ(κ + ζ)
. (38)

The results are the best possible for

f1(ϑ) =
1
ϑ
+

1− ℘

(1 + ℘+ 2h̄)ℵ(1, µ)
ϑ,

f2(ϑ) =
1
ϑ
+

1− δ

(1 + δ + 2h̄)ℵ(1, µ)
ϑ

where ℵ(1, µ) as given by (38).

Proof. According to Theorem 1, it suits to show that

∞

∑
n=1

[n(1 + h̄) + (η + h̄)]
1− η

ℵ(n, µ)an,1an,2 ≤ 1

where η is defined by (37) under the hypothesis. The Cauchy’s–Schwarz inequality and (22)
one leads to the conclusion that

∞

∑
n=1
ℵ(n, µ)

√
[n(1 + h̄) + (℘+ h̄)][n(1 + h̄) + (δ + h̄)]

(1− ℘)(1− δ)

√
an,1an,2 ≤ 1. (39)

Hence, we must identify the greatest η such that

∞

∑
n=1

[n(1 + h̄) + (η + h̄)]
(1− η)

ℵ(n, µ)an,1an,2

≤
∞

∑
n=1
ℵ(n, µ)

√
[n(1 + h̄) + (℘+ h̄)][n(1 + h̄) + (δ + h̄)]

(1− ℘)(1− δ)

√
an,1an,2

= 1.

By asset of (39), it is appropriate to find the largest η such that
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1
ℵ(n, µ)

(
(1− ℘)(1− δ)

[n(1 + h̄) + (℘+ h̄)][n(1 + h̄) + (δ + h̄)]

) 1
2

≤ 1− η

[n(1 + h̄) + (η + h̄)]

(
[n(1 + h̄) + (℘+ h̄)][n(1 + h̄) + (δ + h̄)]

(1− ℘)(1− δ)

) 1
2

for n ≥ 1

where ℵ(n, µ) is given by (23), and since ℵ(n, µ) is a decreasing function of n (n ≥ 1),
we have

η = 1− (1− ℘)(1− δ)(3 + h̄)
(1 + ℘+ 2h̄)(1 + δ + 2h̄)ℵ(1, µ)− 2(1− ℘)(1− δ)

and ℵ(1, µ) as given by (38). Thus concludes the proof.

Theorem 7. Let f j(ϑ) (j = 1, 2) be defined by (36) and f j ∈ Mτ,κ
ς,$ (µ, h̄,℘). Then, ( f1 ∗ f2)(ϑ) ∈

Mτ,κ
ς,$ (µ, h̄, η) where

η = 1− (1− ℘)2(3 + h̄)
(1 + ℘+ 2h̄)2ℵ(1, µ)− (1− ℘)2

with ℵ(1, µ) as given in (38).

Proof. By fixing δ = ℘ in Theorem 6, the results follow.

Theorem 8. (Inclusion property) Let f j(ϑ)(j = 1, 2) be defined by (36) and f j ∈ Mτ,κ
ς,$ (µ, h̄,℘).

Then, h defined by

h(ϑ) =
1
ϑ
+

∞

∑
n=1

(a2
n,1 + a2

n,2)ϑ
n

is in the class Mτ,κ
ς,$ (µ, h̄, δ) where

δ ≤ 1− 4(1− ℘)2(1 + h̄)
[1 + ℘+ 2h̄)]2ℵ(1, µ) + 2(1− ℘)2 , (40)

and ℵ(1, µ), as given in (38).

Proof. In light of Theorem 1, it is adequate to show that

∞

∑
n=2
ℵ(n, µ)

[n(1 + h̄) + (δ + h̄)]
(1− δ)

(a2
n,1 + a2

n,2) ≤ 1 (41)

where f j ∈ Mτ,κ
ς,$ (µ, h̄,℘) (j = 1, 2), from (36) and Theorem 1, we find that

∞
∑

n=1

[
ℵ(n, µ) [n(1+h̄)+(℘+h̄)]

1−℘

]2
a2

n,j ≤
∞
∑

n=1

[
ℵ(n, µ) [n(1+h̄)+(℘+h̄)]

1−℘ an,j

]2
= 1 (42)

which would yields

∞

∑
n=2

1
2

[
ℵ(n, µ)

[n(1 + h̄) + (℘+ h̄)]
1− ℘

]2

(a2
n,1 + a2

n,2) ≤ 1. (43)

On comparing (41) and (43), it can be perceived that inequity (40) will be satisfied if

ℵ(n, µ)
[n(1 + h̄) + (δ + h̄)]

1− δ
(a2

n,1 + a2
n,2) ≤

1
2

[
ℵ(n, µ)

[n(1 + h̄) + (℘+ h̄)]
1− ℘

]2
(a2

n,1 + a2
n,2).
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That is, if

δ ≤ 1− 2(1− ℘)2[(n + 1)(1 + h̄)]
[n(1 + h̄) + (℘+ h̄)]2ℵ(n, µ) + 2(1− ℘)2 (44)

where ℵ(n, µ) is a decreasing function of n, (n ≥ 1) and is given by (23), we have (40),
which concludes the proof.

6. Closure Theorems

Let fk(ϑ) be expressed by

fk(ϑ) =
1
ϑ
+

∞

∑
n=1

an,kϑn, k = 1, 2, . . . , m. (45)

One can easily prove the following closure theorems for the class Mτ,κ
ς,$ (µ, h̄,℘) on lines

similar to the proofs given in [27,30,31]; hence, we state them without proof.

Theorem 9. Let the function fk(ϑ) defined by (45) be in the class Mτ,κ
ς,$ (µ, h̄,℘) for every

k = 1, 2, . . . , m. Then the function f (ϑ) defined by f (ϑ) = 1
ϑ + ∑∞

n=1 anϑn, (an ≥ 0) belongs to
the class Mτ,κ

ς,$ (µ, h̄,℘), where an = 1
m ∑m

k=1 an,k (n = 1, 2, ..).

Theorem 10. Let f0(ϑ) =
1
ϑ and fn(ϑ) =

1
ϑ + (1−℘)(1−2µ)

Υn(µ,℘,h̄)Ξn
ϑn for n = 1, 2, . . .. Then, f (ϑ) ∈

Mτ,κ
ς,$ (µ, h̄,℘) if, and only if f (ϑ) expressed as f (ϑ) = ∑∞

n=0 ηn fn(ϑ) where ηn ≥ 0 and
∑∞

n=0 ηn = 1.

Theorem 11. The class Mτ,κ
ς,$ (µ, h̄,℘) is closed under a convex linear combination.

7. Partial Sums

For the real part of the proportions between the normalised starlike or convex functions
and their sequences of partial sums, Silverman [40] came up with resolutely sharp lower
bounds. One is drawn to search results for meromorphic univalent functions that are
similar to those of Silverman as a logical extension. In this section, we will examine the
relationship between a function of the type (ref-e1.2) and its series of partial sums, primarily
motivated by Silverman [40] and Cho and Owa [41] (also see Refs. [27,42]).

fk(ϑ) =
1
ϑ
+

k

∑
n=1

anϑn (46)

when the coefficients are appropriately small to fulfil the condition comparable to

∞

∑
n=1

Υn(µ,℘, h̄)Ξnan ≤ (1− ℘)(1− 2µ).

More precisely, we will determine sharp lower bounds for<{ f (ϑ)/ fk(ϑ)} and<{ fk(ϑ)/ f (ϑ)}.
In this connection, we make use of the well-known results that <

{
1+w(ϑ)
1−w(ϑ)

}
> 0 (ϑ ∈ ∆) if

and only if w(ϑ) =
∞
∑

n=1
cnϑn with |w(ϑ)| ≤ |ϑ| = 1.

Theorem 12. Let f ∈ Mτ,κ
ς,$ (µ, h̄,℘) be given by (2), which satisfies condition (22), and suppose

that all of its partial sums (46) do not vanish in ∆. Moreover, suppose that

2− 2
k

∑
n=1

an −
Υk+1(µ,℘, h̄)Ξk+1
(1− ℘)(1− 2µ)

∞

∑
n=k+1

an > 0, f or all k ∈ N. (47)
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Then,

Re
{

f (ϑ)
fk(ϑ)

}
≥ (1 + ℘)Υk+1(µ, h̄,℘)Ξk+1 − (1− ℘)(1− 2µ)

(1 + ℘)Υk+1(µ,℘, h̄)Ξk+1
(ϑ ∈ ∆) (48)

where

Υn(µ, h̄,℘) ≥
{

(1− ℘)(1− 2µ), i f n = 1, 2, 3, . . . , k
Υk+1(µ, h̄.℘)Ξk+1, i f n = k + 1, k + 2, . . . .

(49)

The result (48) is sharp with the function given by

f (ϑ) =
1
ϑ
+

(1− ℘)(1− 2µ)

Υk+1(µ,℘, h̄)Ξk+1
ϑk+1. (50)

Proof. Define the function w(ϑ) by

1 + w(ϑ)

1− w(ϑ)
=

Υk+1(µ,℘, h̄)Ξk+1
(1− ℘)(1− 2µ)

[
f (ϑ)
fk(ϑ)

− Υk+1(µ,℘, h̄)Ξk+1 − (1− ℘)(1− 2µ)

Υk+1(µ,℘, h̄)Ξk+1

]

=

1 +
k
∑

n=1
anϑn+1 +

Υk+1(µ,℘,h̄)Ξk+1
(1−℘)(1−2µ)

∞
∑

n=k+1
anϑn+1

1 +
k
∑

n=1
anϑn+1

. (51)

It suffices to show that |w(ϑ)| ≤ 1. Now, from (55), we can write

w(ϑ) =

Υk+1(µ,℘,h̄)Ξk+1
(1−℘)(1−2µ)

∞
∑

n=k+1
anϑn+1

2 + 2
k
∑

n=1
anϑn+1 +

Υk+1(µ,℘,h̄)Ξk+1
(1−℘)(1−2µ)

∞
∑

k=n+1
anϑn+1

.

Hence we obtain

|w(ϑ)| ≤

Υk+1(µ,℘,h̄)Ξk+1
(1−℘)(1−2µ)

∞
∑

k=n+1
an

2− 2
k
∑

n=1
an − Υk+1(µ,℘,h̄)Ξk+1

(1−℘)(1−2µ)

∞
∑

n=k+1
an

.

Now |w(ϑ)| ≤ 1 if

2Υk+1(µ,℘, h̄)Ξk+1
(1− ℘)(1− 2µ)

∞

∑
n=k+1

an ≤ 2− 2
k

∑
n=1

an.

From (22), it is enough to show that

k

∑
n=1
|an|+

Υk+1(µ,℘, h̄)Ξk+1
(1− ℘)(1− 2µ)

∞

∑
n=k+1

|an| ≤
∞

∑
n=1

Υn(µ,℘, h̄)Ξn

(1− ℘)(1− 2µ)
|an|

which is equivalent to

k

∑
n=1

Υn(µ,℘, h̄)Ξn − (1− ℘)(1− 2µ)

(1− ℘)(1− 2µ)
|an|

+
∞

∑
n=k+1

Υn(µ,℘, h̄)Ξn − Υk+1(µ,℘, h̄)Ξk+1
(1− ℘)(1− 2µ)

|an| (52)

≥ 0
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To perceive that f specified by (50) gives a sharp result, we see that for ϑ = reiπ/(k+2)

f (ϑ)
fk(ϑ)

= 1 +
(1− ℘)(1− 2µ)

Υk+1(µ,℘, h̄)Ξk+1
ϑn → 1− (1− ℘)(1− 2µ)

Υk+1(µ,℘, h̄)Ξk+1

=
Υk+1(µ,℘, h̄)Ξk+1 − (1− ℘)(1− 2µ)

Υk+1(µ,℘, h̄)Ξk+1
when r → 1−

which shows the bound (48) is the best possible for each k ∈ N.

We next determine bounds for fk(ϑ)/ f (ϑ).

Theorem 13. If f of the form (2) holds the condition (22), then

Re
{

fk(ϑ)

f (ϑ)

}
≥ Υk+1(µ,℘, h̄)Ξk+1

Υk+1(µ,℘, h̄)Ξk+1 + (1− ℘)(1− 2µ)
(ϑ ∈ ∆), (53)

where Υn(µ, h̄,℘) is given by (49). The result (53) is sharp with f , assumed by (50).

Proof. As in the previous proof,
1 + w(ϑ)

1− w(ϑ)
=

Υk+1(µ,℘, h̄)Ξk+1 + (1− ℘)(1− 2µ)

(1− ℘)(1− 2µ)

×
[

fk(ϑ)

f (ϑ)
− Υk+1(µ,℘, h̄)Ξk+1

Υk+1(µ,℘, h̄)Ξk+1 + (1− ℘)(1− 2µ)

]
(54)

=

1 +
k
∑

n=1
anϑn+1 − Υk+1(µ,℘,h̄)Ξk+1

(1−℘)(1−2µ)

∞
∑

n=k+1
anϑn+1

1 +
k
∑

n=1
anϑn+1

.

Simple computation yields,

|w(ϑ)| ≤

(
Υk+1(µ,℘,h̄)Ξk+1+(1−℘)(1−2µ)

(1−℘)(1−2µ)

) ∞
∑

n=k+1
an

2− 2
k
∑

n=1
an − Υk+1(µ,℘,h̄)Ξk+1+(1−℘)(1−2µ)

(1−℘)(1−2µ)

∞
∑

n=k+1
an

≤ 1.

This last inequality is equivalent to

k

∑
n=1

an +
Υk+1(µ,℘, h̄)Ξk+1 + (1− ℘)(1− 2µ)

(1− ℘)(1− 2µ)

∞

∑
n=k+1

an ≤ 1,

which immediately leads to the assertion of Theorem 13.

8. Conclusions

The interaction of geometry and analysis is a crucial component in the study of com-
plex function theory. This rapid expansion is strongly related to the relationship between
geometric behaviour and analytical structure. In the current study, we have familiarized
a new meromorphic function class which is related to the Sălăgean-Erdély–Kober (SEK)
operator. We have also discovered sufficient and necessary criteria for this subclass. We
further investigated linear combinations, distortion theory, and other features. One can
simply express the conclusions mentioned in this article for the function classes provided
in Examples 1 to 4 associated with the SEK operator by suitably specialising the parameter
(as in Remark 1). It is worthy to note that they are new and have not been considered so
far. For additional research, we may look at specific classes of functions that correspond
to fixed second coefficients connected to the SEK operator, and also certain majorization
results, neighborhood results, and differential subordination for meromorphic functions.
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