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Abstract: In this paper, we solve an optimal reinsurance problem in the mathematical finance area.
We assume that the surplus process of the insurance company follows a controlled diffusion process
and the constant interest rate is involved in the financial model. During the whole optimization
period, the company has a choice to buy reinsurance contract and decide the reinsurance retention
level. Meanwhile, the bankruptcy at the terminal time is not allowed. The aim of the optimization
problem is to minimize the distance between the terminal wealth and a given goal by controlling the
reinsurance proportion. Using the stochastic control theory, we derive the Hamilton-Jacobi-Bellman
equation for the optimization problem. Via adopting the technique of changing variable as well as
the dual transformation, an explicit solution of the value function and the optimal policy are shown.
Finally, several numerical examples are shown, from which we find several main factors that affect
the optimal reinsurance policy.

Keywords: Hamilton-Jacobi-Bellman equation; stochastic optimal control; dynamic programming
principle; dual transformation
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1. Introduction

The optimal reinsurance problem has a long history in the actuarial science. An
insurance company has the option of transferring parts of premiums to a reinsurance
company to reduce the payment of large claims. In the academic field, regarding the
reinsurance problem, Ref. [1] studied the optimal dividend payout problem of the insurer
by controlling the dividend as well as the risk exposure. Ref. [2] explored the optimal
controlled reinsurance proportion and investment to maximize the expected utility at the
terminal time in which the surplus is modelled by a perturbed classical risk process. Ref. [3]
dealt with the non-proportional reinsurance schemes to minimize the ruin probability when
the surplus follows a continuous diffusion model. For more past developments about
reinsurance optimization, we refer interested readers to the excellent books [4,5].

In our model, we consider an insurance company that aims to reach a given goal at
the terminal time. During the whole time period, the company has the choice to buy the
reinsurance contract and decide the reinsurance retention level. Ref. [6] explored the optimal
reinsurance problem while aiming to minimize the distance between the terminal wealth
and a given goal. Unlike [6], besides a given goal, we also set up a bankruptcy prohibition for
the insurance company, which means that the terminal wealth is not allowed to drop below
0. There are several works that concerns the ruin prohibition and control optimizations in
the financial modelling area. As an example, Ref. [7] studied a mean-variance portfolio
selection optimization problem where the surplus process is not allowed to drop below 0
at any time. Ref. [8] studied the optimal reinsurance and investment optimization with

Axioms 2023, 12, 378. https://doi.org/10.3390/axioms12040378 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12040378
https://doi.org/10.3390/axioms12040378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-1836-2873
https://doi.org/10.3390/axioms12040378
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12040378?type=check_update&version=1


Axioms 2023, 12, 378 2 of 13

bankruptcy prohibition under the mean-variance criterion. Ref. [9] solved the optimal
mean-risk portfolio problem aiming to minimize the expected payoff in a complete market.

There is an important element, that is, the interest rate, in the financial market. The
government uses the interest rate as an instrument to control the geometry of the economy.
In general, the interest rate will usually decrease if the central bank discovers that the
current economic situation is weak. The capital market is very sensitive about the interest
rate, which means that the money will gradually flow out of the bank to product with high
investment returns or consumption, houses, cars, restaurants, and so on. Vice versa, when
there is too much money in the market, which causes inflation, the central bank will raise
the interest rate and the money from the stock market, funds, or real estate will slowly flow
to banks. In our model, we assume that the interest rate is a constant, in other words, during
the whole optimization phase the economy is steady. There is fruitful research about the
constant interest rate in the area of actuarial science. As an example, Ref. [10] studied the
ruin probability of the compound Poisson model in the finite time horizon under constant
interest force. Ref. [11] studied the optimal dividend problem of an insurance company
under constant interest force. One can also see [12–15] for more studies about the effect
of interest rate in actuarial science. In our paper, although the interest rate is a constant,
mathematical difficulty is still an issue. Affected by the interest rate, the target and the ruin
prohibition are mathematically expressed as two curved boundaries, which cause the main
difficulties in mathematical calculation.

We usually use stochastic optimal control theory to solve some optimization problems.
By applying the stochastic control theory, the Hamilton-Jacobi-Bellman (for short, HJB) can
be derived. By solving an explicit classical solution for the HJB equation, the corresponding
optimal strategy and the optimal value function of the optimization problem can also be
solved. As the mentioned above, in our model, due to the bankruptcy prohibition and
the target of the terminal time, there are three boundary conditions (including two curved
boundaries) in the HJB equation, which cause the main difficulty to solve the equation. We
adopt the changing of the variable technique to simplify the curved boundary conditions.
After the change of variable, the new HJB equation is a fully nonlinear partial differential
equation (for short, PDE). To solve such a PDE, the dual transformation technique is used to
convert the fully nonlinear PDE to a semilinear PDE. After calculating an explicit solution
to the semilinear PDE, we can derive an explicit solution to the optimal policy.

The rest of the paper is constructed as follows. Section 2 introduces the surplus
model and the optimization problem of the insurance company and then shows the HJB
equation of the optimization problem. Section 3 presents the changing of the variable
technique to simplify the original problem. We derive a new optimization problem and the
corresponding HJB equation. In Section 4, the dual transformation is used and an explicit
solution of the HJB equation is shown. A verification theorem is presented to prove that
the solution to the HJB equation is indeed the value function of the optimization problem.
Section 5 presents several numerical examples to depict the impacts of different parameters
on the optimal strategy.

2. The Model

Denote (Ω, F ,P) as a complete probability space with filtration {Ft}t≥0. In the reality,
the insurance company will receive premiums from individuals and then undertake possible
loss for the insurant. Following the financial mathematical model of [16], we assume that
the aggregate cumulative claims up to time t are written as follows:

Ct = mt− nBt,

where m > 0 represents the expected loss in a unit time; n > 0 is the diffusion volatility rate;
and Bt is a standard Brownian motion, which is adapted to the filtration {Ft}. We assume
that the insurance company sets the premium rate as (1 + ξ)m, where ξ > 0 is a constant
representing the safety loading of the insurance contract. Denote i as the interest rate of the
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financial market, where i > 0 is a positive constant. Then, the dynamics of the surplus of
the insurance company can be mathematically expressed as follows:

dYt = iYtdt + (1 + ξ)mdt− (mdt− ndBt).

Now, we add the feature of reinsurance in our model. We assume that the insurance
company will transfer a proportion of claims to the reinsurance company. At the same time,
parts of the premium will also be transferred to the reinsurance company. Mathematically
speaking, at the time t, the retention level of the insurance company is denoted by qt,
where qt ≥ 0; the other proportion 1− qt of claims will be paid by the reinsurance company.
Meanwhile, the parts of the premium rate (1 + %)(1 − qt)m will be transferred to the
reinsurance company from the insurance company, where % > 0 is the safety loading of
the reinsurance company. We assume that % > ξ, which means that the reinsurance is
non-cheap. Denote Y(s; t, y, q(·)) as the surplus process of the insurance company with the
initial data (t, y) and strategy q(·).

In what follows, denote Yq
t := Y(s; t, y, q(·)) for simplicity when there is no confusion.

Then, the surplus process of the insurance company can be rewritten as

dYq
t = iYq

t dt + (ξ− %+ %qt)mdt + qtndBt. (1)

Let T > 0 be a finite time horizon. We assume that there is a non-bankruptcy constraint
at the terminal time T for the insurance company. In other words, for any reinsurance
strategy q, Yq

T should be non-negative. To satisfy such a condition, at the time t ∈ [0, T], if
the surplus is

Yq
t =

ξ− %

i
m(ei(t−T)

− 1),

then for any time s ∈ [t, T], the null strategy qs = 0 should be invoked to make sure that
Yq

T = 0. Actually, when Yq
t =

ξ−%
i m(ei(t−T)

− 1), if there exists a time s ∈ [t, T] such that
qs , 0, then there is always a positive probability that Yq

T < 0 due to the Brownian motion
in Equation (1).

On the other hand, if there exists a time t ∈ [0, T] such that the wealth

Yq
t <

ξ− %

i
m(ei(t−T)

− 1),

then no matter which strategy is chosen, there is always a positive probability that the
terminal wealth Yq

T < 0. Eventually, the restriction of non-bankruptcy means that for any
time t ∈ [0, T], the surplus should satisfy

Yq
t ≥

(ξ− %)m
i

(
ei(t−T)

− 1
)
. (2)

Now, we show a formal definition of the set of admissible strategies. For the initial time

t ∈ [0, T) and the initial wealth y ∈
[
(ξ−%)m

i

(
ei(t−T)

− 1
)
,+∞

)
, the set of admissible strategies

is denoted by

D̂t,y :=
{

q(·) ∈ L2(Ω × [t, T])|q(·) is progressively measurable, q(·) ≥ 0,

∀s ∈ [t, T], Y(s; t, y, q(·)) ≥
ξ− %

i
m
(
ei(s−T)

− 1
)}

.
(3)

In the model presented in this paper, we assume that the insurance company with a certain
scale aims to achieve a given goal G for the surplus at the terminal time T, where G > 0 is a
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constant. We define the loss function to measure the expected discounted distance between
the final wealth and the goal:

L̃(t, y; q(·)) = E
(
e−εT(Yq

T −G)2
)
, (4)

where ε > 0 represents a discount factor to reflect the time value.

For any initial time t ∈ [0, T] and initial wealth y ≥ (ξ−%)m
i (ei(t−T)

− 1), the insurance
company aims to minimize the loss function by choosing the optimal reinsurance policy.
Now, we analyze more details about the constraints of surplus. If the initial wealth is

y = Gei(t−T) +
(ξ− %)m

i
(ei(t−T)

− 1),

where t is the initial time, then the null strategy qt ≡ 0 will be invoked so that yq
T = G and

the loss function is minimized with value 0. If the initial wealth

yt > Gei(t−T) +
(ξ− %)m

i
(ei(t−T)

− 1),

this kind of situation is not in consideration since it is meaningless to reach the goal G when
the initial value is large enough. Eventually, combining with Equation (2), we can narrow
down the domain of the surplus to[

(ξ− %)m
i

(ei(t−T)
− 1), Gei(t−T) +

(ξ− %)m
i

(ei(t−T)
− 1)

]
.

Until now, the set of all admissible strategies D̂t,y in (3) can be replaced by

D̃t,y :=
{

q(·) ∈ L2(Ω × [t, T])|q(·) is progressively measurable, q(·) ≥ 0,

∀s ∈ [t, T],
ξ− %

i
m
(
ei(s−T)

− 1
)
≤ Y(s; t, y, q(·)) ≤ Gei(s−T) +

(ξ− %)m
i

(ei(s−T)
− 1)

}
.

Now, we define the value function as follows:

S̃(t, y) = inf
q∈D̃t,y

L̃(t, y; q(·)). (5)

In what follows, for simplicity, denote

g0(t) :=
(ξ− %)m

i
(ei(t−T)

− 1), g1(t) := Gei(t−T) +
(ξ− %)m

i
(ei(t−T)

− 1), t ∈ [0, T].

By using the dynamic programming principle, the HJB equation of the optimization
problem (5) is

inf
q≥0

{
s̃t + s̃y(iy + ξ− %+ %q) +

1
2

s̃yyn2q2
}
= 0, (6)

with the following boundary conditions:
s̃(T, y) = e−εT(G− y)2, y ∈ [0, G],
s̃(t, g1(t)) = 0, t ∈ [0, T],
s̃(t, g0(t)) = e−εTG2, t ∈ [0, T].

(7)

From the theory of dynamic programming principle, as long as we find a continuously
differentiable solution for (6) and (7), then such a solution s̃ equals the value function S̃,
which is defined in (5). One can refer to [17] for the standard proof of such a conclusion.
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Unfortunately, there are several complex boundaries in (7). Solving such an equation can
be quite difficult. Thus, we seek the help of the changing variable that was used in [18] to
simplify the boundary conditions in the next section.

3. Changing of Variable

Define the diffeomorphism Q : [0, T] × [0, G] → Ψ, where Ψ := {(t, y)|t ∈ [0, T],
g0(t) ≤ y ≤ g1(t)} and

(t, z)→ (t, y) = Q(t, z) = (t, Q1(t, z)) =:
(
t, ze−i(T−t) +

(ξ− %)m
i

(e−i(T−t)
− 1)

)
. (8)

For any strategy q(·) ∈ D̃t,y, Z(·; t, z, q(·)) := [Q1(s, ·)]−1(Y(·; t, y, q(·))), in which
z = Q−1

1 (t, y). We also denote Zq
s := Z(s; t, z, q(·)) for simplicity when there is no confusion.

We can obtain that

Zq
t := [Q1(t, ·)]−1(Yq

t ), t ∈ [0, T],

which leads to

Zq
t = ei(T−t)Yq

t +
(ξ− %)m

i
(ei(T−t)

− 1).

By some simple calculations, we see that

dZq
t = ei(T−t)(%qtmdt + qtndBt).

Moreover, for any given s ∈ [0, T], if Yq
s = g0(t), then Zq

s = 0; if Yq
s = g1(t), then Zq

s = G.
Regarding the new dynamics of Zq

s , the set of all admissible strategies can be written as

Dt,z :=
{

q(·) ∈ L2(Ω × [t, T])
∣∣∣q(·) is progressively measurable, q(·) ≥ 0,

∀s ∈ [t, T], 0 ≤ Z(s; t, z, q(·)) ≤ G
}

.

For any (t, z) ∈ [0, T] × [0, G], in terms of Z(·; t, z, q(·)), the original loss function (4) can be
transformed to

L(t, z; q(·)) = E
(
e−εT(Zq

T −G)2
)
.

The new value function is defined as

S(t, z) := inf
q(·)∈Dt,z

L(t, z; q(·)). (9)

Now, we pay attention to solving the optimization problem (9). Again, by using the
dynamic programming principle, the new version of the HJB equation is written by

inf
q≥0

{
st + ei(T−t)%qmsz +

1
2

e2i(T−t)q2n2szz

}
= 0, for all (t, z) ∈ [0, T) × (0, G), (10)

with the boundary conditions:
s(T, z) = e−εT(G− z)2, z ∈ [0, G],
s(t, G) = 0, t ∈ [0, F],
s(t, 0) = e−εTG2, t ∈ [0, T].

(11)
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As stated in Section 2, a continuously differentiable solution for (10) and (11) equals
the value function defined in (9). Before solving Equations (10) and (11), we explore some
properties of the value function.

Proposition 1. The value function S defined in (9) is a decreasing function with regard to the
variable z.

We omit the proof since the conclusion is obvious.

Proposition 2. The value function defined in (9) is convex on the variable z.

Proof. For any β > 0, let qβ,z1 , qβ,z2 be the β-optimal policies with initial data (t, z1), (t, z2),
respectively, i.e.,

L(t, z1; qβ,z1(·)) ≤ S(t, z1) + β,

L(t, z2; qβ,z2(·)) ≤ S(t, z2) + β.

Notice that
dZq

t = ei(T−t)(%qtmdt + qtndBt).

Denote Z(s; t, z1, qβ,z1) =: Z1s, Z(s; t, z2, qβ,z2) =: Z2s for simplicity. For any fixed λ ∈ (0, 1),
let Rs := λZ1s + (1− λ)Z2s and the corresponding reinsurance strategy of the surplus RS
be qβ,r := λqβ,z1 + (1− λ)qβ,z2 , where r = λz1 + (1− λ)z2. Then, we can obtain that

λS(t, z1) + (1− λ)S(t, z2) ≥λL(t, z1; qβ,z1) + (1− λ)L(t, z2; qβ,z2) − β

=λE
(
e−εT(Z1T −G)2

)
+ (1− λ)E

(
e−εT(Z2T −G)2

)
− β

≥E
(
e−εT(RT −G)2

)
− β,

(12)

where the last inequality is due to the convexity of the function x 7→ (x−G)2. Combining (12)
with the fact that

E
(
e−εT(RT −G)2

)
≥ S(t, r),

we obtain that
S(t, z1) + (1− λ)S(t, z2) ≥ S(t,λz1 + (1− λ)z2) − β.

Since β > 0 is arbitrary, the convexity of the value function on the variable z is proved. �

Remark 1. By the definition of S̃ and S, i.e., Equations (5) and (9), for any (t, y) ∈ [0, T] × [0, G],
it satisfies S(t, z) = S̃(t, Q1(t, z)), where Q1 is defined in (8). For any fixed time t ∈ [0, T], the
mapping y 7→ Q1(t, y) is linear. Due to linearity, the convexity of S(t, z) on z is equivalent to the
convexity of S̃(t, y) on the variable y. Proposition 2 implies that the value function S̃(t, y) is also
convex on y.

In what follows, we attempt to solve a continuously differentiable convex solution for
the HJB Equations (10) and (11).

4. Solving the HJB Equation

If there exists a continuously differentiable solution s for (10), then the minimizer
of (10) is

q∗ = −
%msz

ei(T−t)n2szz
. (13)
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Substitute (13) into (10) it gives

st =
%2m2s2

z

2n2szz
. (14)

Differentiate (14) with respect to z it leads to

stz =
2%2m2szs2

zz − %
2m2s2

zszzz

2n2s2
zz

. (15)

In this section, the dual transformation is used to transfer the above fully nonlinear PDE to
a semilinear PDE. For each (t, l) ∈ [0, T) × (0,+∞), define the mapping by

[0, G]→ R+, z 7→ s(t, z) + zl,

where R+ denotes the set of positive real numbers. Assume that for any given (t, l),
τ(t, l) ∈ (0, G) is the unique minimizer of s(t, z) + zl. If the function s is smooth enough,
then the minimizer satisfies

sz(t, τ(t, l)) = −l. (16)

Differentiate (16) with respect to t, l it gives

stz(t, τ(t, l)) + szz(t, τ(t, l))τt = 0, (17)

szz(t, τ(t, l))τl(t, l) = −1, (18)

szzz(t, τ(t, l))τ2
l (t, l) + szz(t, τ(t, l))τll(t, l) = 0. (19)

Substituting (16)–(19) into (15), we have

τt(t, l) + hlτl(t, l) +
h
2

l2τll(t, l) = 0, (20)

where h := %2m2

n2 is a positive constant. Combining with the boundary condition s(T, z) =
e−εT(G− z)2 of (11), we have

τ(T, l) = (−
l
2

eεT + G)∨ 0. (21)

Following the similar analysis of [19], we can obtain the other two boundary conditions
as follows:

τ(t, 0) = G, lim
l→+∞

τ(t, l) = 0.

Apparently, (20) admits a Kolmogorov probabilistic representation of

τ(t, l) = E[τ(T, Λ(T; t, l))], (22)

where Λ(·; t, l) satisfies the following stochastic differential equation:

{
dΛ(s) = hΛ(s)ds +

√
hΛ(s)dB̃s, s ∈ (t, T],

Λ(t) = l,

in which B̃s is a standard Brownian motion. Obviously, it is easy to see that

Λ(s; t, y) = Λ(t) exp
{

h
2
(s− t) +

√

h(Bs − Bt)

}
, s ≥ t. (23)
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Combining (22), (23) with (21) it leads to

τ(t, l) = E


G−

l exp
{

h
2 (T − t) +

√
h(B̃T − B̃t) + εT

}
2

∨ 0

.
Using the fact that B̃T − B̃t follows a normal distribution, we can directly calculate that

τ(t, l) = GΦ
(

ln( 2G
l )−

h(T−t)
2 −εT

√
h(T−t)

)
−

l exp{εT+h(T−t)}
2 Φ

(
ln( 2G

l )−
h(T−t)

2 −εT
√

h(T−t)
−

√
h(T − t)

)
, t ∈ [0, T),

τ(T, l) = (G− l exp{εT}
2 )∨ 0,

(24)

where Φ is the distribution function of standard normal distribution. Now, we are ready to
show an expression of the solution to the HJB Equations (10) and (11).

Proposition 3. Let τ be the function defined in (24), and define{
s(t, z) = e−εTG2

−

∫ z
0 [τ(t, ·)]

−1(ν)dν, (t, z) ∈ [0, T) × [0, G],
s(T, z) = e−εT(G− z)2,

(25)

where [τ(t, ·)]−1 denotes the inverse function of τ. Then, s(t, z) is a classical solution of (10) and (11).

This conclusion follows the direct calculations. Now, we show that the solution defined
in Proposition 3 equals to the value function of the optimization problem (9), which is also
called the verification theorem.

Theorem 1. For any (t, z) ∈ [0, T) × [0, G], s(t, z) = S(t, z), where s(t, z) is defined in (25).
Furthermore, the optimal strategy of optimization problem (9) is as follows:

q∗(t, z) =
 − %msz

ei(T−t)n2szz
, (t, z) ∈ [0, T) × (0, G),

0, (t, z) ∈ [0, T) × {0, G}.
(26)

Proof. We only prove the case of (t, z) ∈ [0, T) × (0, G) since the case of [0, T) × {0, G} is
trivial.

For any admissible strategy q ∈ Dt,z and initial state (t, z), denote Zq
s as the correspond-

ing surplus process under the strategy q. Define the stopping time

γ := T ∧ γ0 ∧ γG,

where γ0 := inf{s|Zq
s = 0, s ∈ [t, T]} and γG := inf{s|Zq

s = G, s ∈ [s, T]}. Applying the Itô
formula to s(γ, Zq

γ) and taking expectation on both sides of the Itô formula, we arrive at

E
(
s(γ, Zq

γ)
)

=s(t, z) +E
[∫ γ

t

(
∂s
∂t
(s, Zq

s) + ei(T−t)%qsm
∂s
∂z

(s, Zq
s) +

1
2

ei(T−s)q2
s n2 ∂

2s
∂z2 (s, Zq

s)

)
ds

]
.

(27)

Since the function s solves (10), we obtain that

E
[∫ γ

t

(
∂s
∂t
(s, Zq

s) + ei(T−t)%qsm
∂s
∂z

(s, Zq
s) +

1
2

ei(T−s)q2
s n2 ∂

2s
∂z2 (s, Zq

s)

)
ds

]
≥ 0. (28)

Substitute (28) into (27) it gives

E
(
s(γ, Zq

γ)
)
≥ s(t, z). (29)
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Combining (29) with the boundary conditions (11), we obtain that

s(t, z) ≤ E
(
e−εT(Zq

T −G)2
)
= L(t, z; q(·)).

Take the infimum over the set, Dt,z, s(s, z) ≤ S(t, z) is proved.
On the other hand, using the standard verification arguments and combining the

admissibility of q∗ and the fact that s solves the HJB Equations (10) and (11), we can show
that L(t, z; q∗(·)) = s(t, z), which implies that q∗ is optimal. For more arguments about
verification, one can refer to [17]. �

We have completely solved the optimal value function and the optimal policy for the
optimization problem (9). In the following remark, we show the optimal policy for the
original optimization problem (5) via Equation (8).

Remark 2. For each (t, y) ∈ [0, T) × [g0(t), g1(t)], the policy defined by q∗ = −
%msz(t,Q−1

1 (t,y))

ei(T−t)n2szz(t,Q−1
1 (t,y))

, (t, y) ∈ [0, T) × (g0(t), g1(t)),

0, (t, y) ∈ [0, T) × {g0(t), g1(t)},

is the optimal policy of the initial optimization problem (5).

5. Numerical Example

Now we present several examples to vividly show the optimal policy and the
value function.

Example 1. We assume that the parameters are as follows. The goal of the terminal time G = 10;
the interest rate i = 0.15; the discount factor ε = 0.2; and the safety loading parameters % = 0.4,
ξ = 0.2. The expected loss in unit time m = 1, and the diffusion volatility rate n = 0.5. The
terminal time T is assumed to be 5.

Figure 1 presents the value function of s(1, z). Apparently, Figure 1 shows that the value
function is decreasing and convex on the variable z, which verifies Propositions 1 and 2. Figure 2
shows the optimal policy of the different initial value z at time 1. As we can see, the reinsurance
retention proportion will first increase and then decrease with respect to the wealth. This can explain
that when the wealth is close to 0 or close to the target, the insurance company will prefer to transfer
all of the risky claims to the reinsurance company and invest money on the risk-less asset.

2 4 6 8 10
z

5

10

15

s(1,z)

Figure 1. The optimal value function s with respect to z at time t = 1.
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2 4 6 8 10
z

0.5

1.0

1.5

2.0

q
* (z)

Figure 2. The optimal reinsurance policy with respect to z at time t = 1.

Example 2. In this example, we use the same parameters as in Example 1, except that we change
the time t = 1, 2, 3, respectively, and see the effect of the time variable on the optimal policy. Figure 3
shows the optimal reinsurance policy with respect to variable z at different times t = 1, 2, 3. As
we can see, as time passes, the reinsurance retention proportion increases, which means that the
insurance company would like to undertake more risks when the time is close to the deadline.

t=1

t=2

t=3

2 4 6 8 10
z

0.5

1.0

1.5

2.0

2.5

3.0

3.5

q
*(z)

Figure 3. The optimal reinsurance policy with respect to z at time t = 1, 2, 3.

Example 3. In this example, we use the same parameters as in Example 1, except that we change
the interest rate i = 0.5, 0.1, 0.15, respectively. Figure 4 shows the effect of different interest rates on
the optimal policy. As we can see, as the interest rate increases, the reinsurance retention proportion
decreases, which means that the insurance company will prefer to invest more on the risk-less asset
when the interest rate increases. This phenomenon is consistent with common sense because when
the interest rates rise, investors are more inclined to keep their money in the bank.

i=0.05

i=0.1

i=0.15

2 4 6 8 10
z

0.5

1.0

1.5

2.0

2.5

3.0
q
*(z)

Figure 4. The optimal reinsurance policy with respect to z under different interest rates
i = 0.05, 0.1, 0.15.

Example 4. In this example, we use the same parameters as in Example 1 except that we change
the diffusion volatility rate n. As n increases, the risk of large claims also increases. As shown in
Figure 5, as n increases, the reinsurance retention level decreases. In other words, if the claim risk is
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too high, the insurance company will prefer to transfer risks to the reinsurance company instead of
keeping premiums.

n=0.5

n=1

n=1.5

2 4 6 8 10
z

0.5

1.0

1.5

2.0

q
*(z)

Figure 5. The optimal reinsurance policy with respect to z under different volatility rates n = 0.5, 1, 1.5.

Example 5. In this example, we still use the same parameters as in Example 1 except the reinsurance
safety loading %. Figure 6 shows the optimal reinsurance retention level with different reinsurance
safety loadings. The increasing of safety loading means that the reinsurance contract is more
expensive. Thus, the optimal choice is to increase the reinsurance retention level so that the insurer
can keep more premiums in the insurance company.

ϱ=0.4

ϱ=0.5

ϱ=0.6

2 4 6 8 10
z

0.5

1.0

1.5

2.0

q
*(z)

Figure 6. The optimal reinsurance policy with respect to z with different reinsurance safety loading
% = 0.4, 0.5, 0.6.

Example 6. In this example, we still use the same parameters as in Example 1, except we change
the expected loss in each unit time m = 1, 1.5, 2, respectively. Figure 7 shows that when m increases,
the reinsurance retention level will also increase. This can be explained by the fact that when the
parameter m increases, the insurance company obtains more premiums so that the optimal choice for
the insurance company is to pull up the insurance retention level.

m=1

m=1.5

m=2

2 4 6 8 10
z

0.5

1.0

1.5

2.0

2.5

q
*(z)

Figure 7. The optimal reinsurance policy under different expected losses in unit time m = 1, 1.5, 2.
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6. Conclusions

As an application of probability, this paper explores a reinsurance optimization problem
that has multiple curved boundaries. To simplify the optimization problem, the technique
of changing variables is used. After changing variables, we adopt the dual transformation
to solve the new HJB equation. Eventually, an explicit expression of the value function as
well as the optimal policy is shown. With some numerical experiments, we list several
important influential factors that affect the reinsurance retention level in Table 1. For
simplicity, the notation ↑means “increases” and ↓means “decreases”. Table 1 shows that
the current time, the interest rate, the diffusion volatility rate, the reinsurance safety loading,
and the expected loss in unit time will simultaneously affect the optimal reinsurance policy.

Table 1. Factors that affect reinsurance policy.

The Influence Factor Insurance Retention Level

Time t ↑ ↑

Interest rate i ↑ ↓

Diffusion volatility rate n ↑ ↓

Reinsurance safety loading % ↑ ↑

Expected loss in unit time m ↑ ↑
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