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Abstract: Three-dimensional printing is a layer-by-layer stacking process. It can realize complex
models that cannot be manufactured by traditional manufacturing technology. The most common
model currently used for 3D printing is the STL model. It uses planar triangles to simplify the CAD
model. This approach makes it difficult to fit complex surface shapes with high accuracy. The fitting
result usually suffers from loss of local features of the model, poor fitting accuracy, or redundant data
due to face piece subdivision, which will cause problems such as poor manufacturing accuracy or
difficult data processing. To this end, this paper proposes a method for constructing Hermite surface
models considering high-precision fitting of 3D printing models. The mapping relationship between
different surface triangles and the same base triangle is established by analyzing the characteristics of
Hermite surface triangles in AMF format files and using the radial variation property. By constructing
a cubic surface model with general parameters and combining the vertex and tangent vector infor-
mation, a cubic Hermite curve and surface triangle model are obtained. A sampling mapping point
solution method is proposed, which transforms the volume integration problem between models
into the summation problem of sampling point height difference. Considering the mean deviation
and variance in multiple directions of the sampling points, a method for calculating and evaluating
the model fitting error is constructed. Finally, the effectiveness of the proposed method is verified by
rabbit and turbine.
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1. Introduction

Three-dimensional printing is an advanced manufacturing technology that enables the
“free fabrication” of complex structures quickly and efficiently with a simple device [1,2]. Com-
pared with traditional manufacturing processes, it overcomes the limitations of complex
configurations that are difficult to machine and reduces processing procedures, manufac-
turing cycle time, and manufacturing costs [3]. In recent years, 3D printing technology has
been successfully applied in aerospace, automotive, and other areas [4–8]. Although 3D
printing technology has made breakthroughs, due to its unique manufacturing process, the
manufactured products usually have errors problems, which greatly restrict the widespread
use of the technology [9].

There are three main sources of errors that exist in the 3D printing manufacturing
process. The first error comes from the conversion between model formats, i.e., the pro-
cess of converting a computer-aided design (CAD) model to a model in the format re-
quired for 3D printing; the second error comes from the layered slicing and path planning
algorithm [10]; and the third error comes from the manufacturing accuracy of the device
itself [11]. All of the above errors directly affect the molding accuracy of the final printed
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structure. However, compared to the latter two errors, if the first error cannot be effectively
reduced, it will be difficult to manufacture a high-precision structure even if the subsequent
process is highly accurate.

When performing 3D printing, we first need to build a digital model through mod-
eling software. However, the model formats generated by different modeling software
vary. They are not directly used to drive 3D printers. In order to generate Gcode that can
“communicate” directly with the 3D printer, the model needs to be converted from different
formats to the common STereoLithography (STL) format file for 3D printing. Currently, 3D
printing models usually use planar triangles to form an envelope model to represent the
CAD model, such as the more widely used STL model. It approximates the CAD model
by setting the maximum chord height between the planar triangle and the surface of the
model [12,13]. For this reason, when the CAD model has complex surfaces or high local
accuracy, using planar triangles to simplify it will inevitably result in a loss of features and
accuracy of the model [14]. In order to retain the features and accuracy of the CAD model
as much as possible, the triangular facets of the overall model need to be continuously
subdivided during the format conversion process. This will cause problems such as the too-
large amount of model data or data redundancy, which inevitably increases the difficulty of
model data processing [15]. Compared with the planar triangle model, the surface triangle
model has higher degrees of freedom through parametric shape control. It can fit the
surface and complex features of the model with high accuracy by using a relatively small
number of face pieces, which effectively solves the problems caused by the simplification of
the overall model by planar triangles. Several scholars have investigated the construction
methods of surface triangles. Vlachos et al. [16] proposed a point-normal triangle in order
to improve the visual quality in graphics rendering. Its main idea is to use a Bezier surface
triangle (e.g., PN triangle) surface to replace each triangle in the original mesh. Com-
pared with other Bezier triangles, PN triangles have lower degrees of freedom, and their
shapes are influenced not only by the normal vectors but also by their different methods.
Hamann et al. [17] constructs a C0 continuous surface by using a triangular rational
quadratic Bezier surface to approximate a cubic linear interpolation function profile. The
construction of Bezier surfaces requires control point information, which is harder to obtain
directly when performing model fitting. NURBS and B-sample surfaces using surface
approximation control meshes all have a similar problem to Bezier surfaces in that it is
difficult to construct a direct mathematical relationship between the surface model and the
original model.

Unlike surfaces using control meshes, surface shape control based on boundary con-
ditions is simpler and more intuitive, and easier to achieve stitching between surfaces.
Márta et al. [18] proposed a new definition of a surface that uses three triangular surfaces
instead of the original boundary curves on the triangular parameter domain to generate
a triangular surface. This interpolation scheme has affine transformation invariance [19],
while the connection between the resulting surface and its components is continuous along
a common boundary curve, except for the vertices. This method involves a tremendous
amount of data input and also contains the combined operation of three surfaces, which
greatly increases the computational cost. In addition, Hagen [20] proposes an interpola-
tion method based on the Hermite operator, which implements the interpolation of the
boundary curvature of an arbitrary triangle.

In order to meet the growing demand for model formats for 3D printing, the American
Society for Testing and Materials (ASTM) Special Advisory Panel has creatively proposed
a surface triangle in the additive manufacturing file (AMF) format [21,22]. The surface
triangle consists of cubic Hermite curves [23], but they only define the boundary curves
of the surface triangle and do not define the Hermite surface triangle model completely.
According to the authors’ knowledge, there are few studies on Hermite surface triangles,
but compared with other surface triangles, the definition and input quantity of Hermite
surface triangles are relatively easy. It is not only suitable for 3D printing the required
multi-surface sheet model, but also can make full use of the surface information contained
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in the original design model to achieve high accuracy fitting of the model. Therefore, how
to construct a Hermite surface triangle model and make full use of the existing 3D printing
manufacturing model information to fit the CAD model with high accuracy is a problem
worthy of study.

Based on the above analysis, this paper proposes a Hermite surface triangle model
construction method considering the high-precision fitting of 3D printing models. Affine
transformation is used to establish the mapping relationship between multiple surface
triangles and feature triangles. Then, the cubic surface model with general parameters is
constructed and the cubic Hermite surface model is solved using the vertex and tangent
vector information. Finally, the model fitting error calculation and comprehensive evalua-
tion are realized by using the height difference between the model sampling points and the
mapping points.

2. Hermite Surface Characterization
2.1. Definition of Hermite Curve in AMF

AMF is a format file that supports 3D printing, which contains the multi-color, multi-
material, honeycomb structures and properties, etc. Its structure is similar to the STL file,
which is a collection of several small spatial triangular facets. It is a model shell formed
by combining triangular facets together after the triangular meshing of a 3D solid model.
Each of its triangular face pieces consist of three vertices that obey the right-hand rule
and whose corresponding normal vectors are directed outward. According to the AMF
standard file, each edge of a surface triangle is a cubic Hermite curve, and the construction
of each surface triangle depends on the Hermite curve of the boundary. Each Hermite
curve is then determined by the position information of the triangle vertices recorded in
the AMF file and the normal or tangential vector information. The surface triangles in the
AMF file can be defined by the vertex and endpoint tangent vectors tij of the edges, as
shown in Figure 1a. It can also be defined directly by the normal vectors ni on the vertices,
as shown in Figure 1b.

Figure 1. Definition of AMF surface triangles: (a) tangent vector of the vertex; (b) normal vectors of
the vertices.

In the surface triangle definition of the AMF file, the cubic Hermite curve consists of
two endpoints and their tangent vectors, as shown in Figure 2.
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The mathematical expression of the cubic Hermite curve [24–26] can be described as:

he(s) =
(

2s3 − 3s2 + 1
)

v0 +
(

s3 − 2s2 + s
)

t0 +
(
−2s3 + 3s2

)
v1 +

(
s3 − s2

)
t1 (1)

where v0 and v1 are the two endpoints of the curve. t0 and t1 are the two tangent vectors in
the direction of the Hermite surface. The formula for calculating the tangent vector at any
point on the curve can be formulated as:

t(s) =
(

6s2 − 6s
)

v0 +
(

3s2 − 4s + 1
)

t0 +
(
−6s2 + 6s

)
v1 +

(
3s2 − 2s

)
t1 (2)

when a normal vector is defined at the endpoint, it can be converted to a tangent vector
by Equation (3).

t0 = |d0|
−(n0 × d0)× n0

|(n0 × d0)× n0|
(3)

where d0 = v1−v0. n0 and n1 are the normal vectors of the corresponding endpoints, respectively.

2.2. Determine Feature Triangle and Mapping Relationship

The Hermite surface triangle is constructed by means of cubic Hermite curves based
on the vertices. The triangle is essentially parametric curves and each curve involves a
parameter that takes values in the range [0, 1]. Therefore, its shape is theoretically related
to the three parameters η, ξ and τ, and there is a certain correlation between η, ξ and τ, as
shown in Figure 3.
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of parameter fields.

The shape of the Hermite surface triangle is influenced by the location of its vertices,
the direction of the tangent vectors, and the size of the tangent vectors. Each surface
triangle has a different shape, so the shape of the base triangle formed by the three vertices
of the surface triangle is also different. This would introduce too many parameters and
increase the computational cost. To facilitate the calculation, the affine transformation
is used in this subsection to simplify the calculation of the parameters in the surface
triangle. Affine transformation is the process of transforming to another vector space by
performing one linear transformation (multiplying by one matrix) and one translation
(adding one vector) in the vector space. The basic idea of the proposed method is to use
affine transformation to establish a mapping relationship between surface triangles, base
triangles, and specified feature triangle. It can effectively normalize the complex problem
and reduce the computational cost. More knowledge about affine transformations can be
found in the literature [27].

According to the affine transformation property, all triangles can be obtained by
the affine transformation of feature triangles. As shown in Figure 4, in the right-angle
parameter domain, the feature triangle with right-angle characteristics and two right-angle
sides of unit length is constructed with (0, 0), (1, 0), and (1, 1) as vertices, which satisfies the
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principle of regular shape and simple calculation. It effectively reduces the three parameter
variables of the surface triangle to two. The feature triangle can be described as:

C = {(u, v)|0 ≤ v ≤ u ≤ 1} (4)
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Based on the affine transformation property, any surface triangle and base triangle
have a mapping relationship with the feature triangle C, i.e., their three vertices correspond
to the three vertices of the base triangle, as shown in Figure 5.
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Figure 5. Vertex one-to-one correspondence.

The mapping relationship between the surface triangles and the feature triangles is
described by S(u, v), as shown in Figure 6. S(ui, vi) is the corresponding point of any point
(ui, vi) on the characteristic triangle in the surface triangle.
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The mapping relation is essentially a parametric formulation of surface triangles, as it
satisfies the one-to-one correspondence between surface triangles and characteristic triangle
vertices. Therefore, the mapping relation between them can be described as:

x00 = S(0, 0)
x10 = S(1, 0)
x11 = S(1, 1)

(5)

The model is greatly simplified by Equation (5), which can effectively reduce the
complexity of subsequent calculations. It is worth noting that for different surface triangles,
the corresponding S(u, v) is different.
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3. Hermite Surface Triangle Model

In this subsection, based on the constructed feature triangles and mapping relations,
the general parametric surface model is first established by the two parameters u and v.
Then, the vertex coordinates and normal vectors of the Hermite curve are matched with
the surface model to build the Hermite surface triangle model.

Let S(u, v) be a general two-parameter surface. To ensure the smoothness of the
surface, set it as a cubic equation. Then, its mathematical expression can be described as:

S(u, v) = C00 + C10u + C01v + C20u2 + C11uv + C02v2

+C21u2v + C12uv2 + C30u3 + C03v3 (6)

where Cij is the three-dimensional characteristic coefficient.

Cij =

Cx
ij

Cy
ij

Cz
ij

, i, j ∈ [0, 3] (7)

As shown in Figure 7, from the vertex coordinates and tangent vector information of
the surface triangles, it is known that v = 0, u = 1 and u = v are the three boundary curve
parameters characterized by the vertices x00, x10, and x11 in the counterclockwise direction,
respectively. Let S(u, 0), S(1, v), and S(u, u) be their corresponding curves, respectively.
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The eigencoefficients of the Hermite surface model can be obtained by solving Equa-
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Substitute the characteristic parameters v = 0, u = 1, and u = v into Equation (6).
Then, the three boundary curves in the general parametric surface can be expressed as:

S(u, 0) = C00 + C10u + C20u2 + C30u3

S(1, v) = C00 + C10 + C01v + C20 + C11v + C02v2

+C21v + C12v2 + C30 + C03v3

S(u, u) = C00 + C10u + C01u + C20u2 + C11u2

+C02u2 + C21u3 + C12u3 + C30u3 + C03u3

(8)

The Hermite boundary curve corresponding to Equation (8) is obtained by substituting
the vertex and tangent vector information in Figure 8 into Equation (1).

S(u, 0) =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00 +

(
−2u3 + 3u2)x10 +

(
u3 − u2)t10

S(1, v) =
(
2v3 − 3v2 + 1

)
x10 +

(
v3 − 2v2 + v

)
t10
′ +
(
−2v3 + 3v2)x11 +

(
v3 − v2)t11

S(u, u) =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00
′ +
(
−2u3 + 3u2)x11 +

(
u3 − u2)t11

′
(9)
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Equations (8) and (9) are combined to obtain Equation (10).

C00 + C10u + C20u2 + C30u3 =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00

+
(
−2u3 + 3u2)x10 +

(
u3 − u2)t10

C00 + C10 + C01v + C20 + C11v + C02v2 + C21v + C12v2 + C30 + C03v3

=
(
2v3 − 3v2 + 1

)
x10 +

(
v3 − 2v2 + v

)
t10
′ +
(
−2v3 + 3v2)x11 +

(
v3 − v2)t11

C00 + C10u + C01u + C20u2 + C11u2 + C02u2 + C21u3 + C12u3 + C30u3 + C03u3

=
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00
′ +
(
−2u3 + 3u2)x11 +

(
u3 − u2)t11

′

(10)

The eigencoefficients of the Hermite surface model can be obtained by solving Equation (10).

C00=x00
C10=t00
C01=t00

′ − t00
C20=− 3x00 − 2t00 + 3x10 − t10
C11=a
C02=− 2t00

′ + 3x11 − t11
′ + 2t00 − 3x10 + t10 − a

C21=t10
′ − t00

′ + t00 − a
C12=2t00

′ + t11
′ − 2t10

′ − 2t00 − t10 − t11 + a
C30=2x00 + t00 − 2x10 + t10
C03=2x10 + t10

′ − 2x11 + t11

(11)

Then, Equation (6) can be written as Equation (12).

S(u, v) = S′(u, v) + fa(u, v)a (12)

S′(u, v) = C00 + C10u + C01v + C20u2 + C′02v2

+C′21u2v + C′12uv2 + C30u3 + C03v3 (13)

C′21=t10
′ − t00

′ + t00
C′02=− 2t00

′ + 3x11 − t11
′ + 2t00 − 3x10 + t10

C′12=2t00
′ + t11

′ − 2t10
′ − 2t00 − t10 − t11

(14)

where fa(u, v) = v(u− v)(1− u). a = [ax ay az]
T is the set shape vector, which aims to improve the

controllability of the surface model, and thus achieve the adjustment of the accuracy of fitting the
local details of the CAD model. Figure 8 shows the change in the shape of the surface triangle when
a is taken to different values. The focus of this paper is to construct a Hermite surface triangle for 3D
printing with high-precision model fitting. A discussion of a will not be developed in this paper, and
the specific details will be reflected in another paper. In order to verify the validity of the constructed
surface model fit, we set a =

[
0 0 0

]T in the subsequent examples.

4. Error Calculation and Evaluation Method
In order to verify the effectiveness of the proposed method, the error calculation and com-

prehensive evaluation method between the fitted model and the CAD model are presented in this
section. The fitting error is essentially the offset that exists between the fitted model and the original
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model surface. It is theoretically more accurate to use the inter-model volume error as the evaluation
criterion for the offset of the model. However, since the distance H(x, y) between model surfaces is
related to both its location (x, y) and surface data, and the original model shape has uncertainty, this
will make the fitting error difficult to be uniformly expressed by mathematical formulas. To this end,
the fitting error is calculated in this paper by means of model sampling. The main idea is to transform
the problem of integration of the volumes between the two models into a problem of summing the
height differences at the sampling points.

In order to sample the data points of the original model reasonably and comprehensively,
a method of calculating the sampling mapping points is proposed. The sampled data points are
obtained by meshing the CAD model using Hypermesh software, as is shown Figure 9.
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Figure 9. Sampling point acquisition for basketball model: (a) CAD model; (b) grid division;
(c) sampling data points.

Figure 10 shows the schematic diagram of the model fitting error. PO(xO, yO, zO) is any sampling
point in the CAD model, and the fitting error at that point is the height difference between that point
and the corresponding mapping point of the fitted model. The mapping point is the intersection
point between a vertical line LO made along the X/Y/Z direction past the PO(xO, yO, zO) point and
the fitted model, as shown in Figure 10. PH(xO, yO, zH) and PS(xO, yO, zS) are the mapping points of
PO(xO, yO, zO) on the Hermite surface model MH and STL model MS, respectively.
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The coordinates of the mapped point can be calculated from the information of the triangular
surface slice where the vertical line intersects the fitted model. As shown in Figure 11, PO

′ is the

projection of the sampled points.
→

PO
′Pi
′,

→
PO
′Pj
′, and

→
PO
′Pk
′ are the vectors constructed with the

∆Pi
′Pj
′Pk
′ vertices in a counterclockwise direction starting from PO

′, respectively.
→

PO
′Pi
′,

→
PO
′Pj
′, and

→
PO
′Pk
′ can be regarded as vectors rotating counterclockwise with PO

′ as the center. When PO
′ lies

within ∆Pi
′Pj
′Pk
′,

→
PO
′Pi
′ ×

→
PO
′Pj
′,

→
PO
′Pj
′ ×

→
PO
′Pk
′, and

→
PO
′Pk
′ ×

→
PO
′Pi
′ have the same sign, indicating

that the vertical line LO intersects the triangle ∆PiPjPk. Conversely, when PO
′ is outside ∆Pi

′Pj
′Pk
′,

the vertical line LO does not intersect with triangle ∆PiPjPk.
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location of projection point.

Taking a vertical line along the Z-direction as an example, when the triangle in the Hermite
model intersecting the vertical line is determined, the parameter value (uH , vH) of the sampled
mapping point on the Hermite surface triangle can be found by Equation (16). The vertical coordinates
of the sampling mapping points (e.g., Equation (16)) can be obtained by substituting (uH , vH)
into Equation (14).

xO = Cx
00 + Cx

10uH + Cx
01vH + Cx

20uH
2 + Cx

11uHvH

+Cx
02vH

2 + Cx
21uH

2vH + Cx
12uHvH

2 + Cx
30uH

3 + Cx
03vH

3

yO = Cy
00 + Cy

10uH + Cy
01vH + Cy

20uH
2 + Cy

11uHvH

+Cy
02vH

2 + Cy
21uH

2vH + Cy
12uHvH

2 + Cy
30uH

3 + Cy
03vH

3

(15)

zH = Cz
00 + Cz

10uH + Cz
01vH + Cz

20uH
2 + Cz

11uHvH
+Cz

02vH
2 + Cz

21uH
2vH + Cz

12uHvH
2 + Cz

30uH
3 + Cz

03vH
3 (16)

It is worth noting that the procedure calculates all the sampled mapping points on the surface
triangles intersecting the vertical line and takes the point closest to the sampled point as the error
calculation point.

In the Z-direction of the STL fitted model, the triangles with vertices Pi(xi, yi, zi), Pj

(
xj, yj, zj

)
and Pk(xk, yk, zk), where the sampled mapping point PS(xO, yO, zS) is located, should satisfy the
following conditions. ∣∣∣∣∣∣

x− xi y− yi z− zi
xj − xi yj − yi zj − zi
xk − xi yk − yi zk − zi

∣∣∣∣∣∣ = 0 (17)

The vertical coordinate of this sample mapping point can be described as:

zS =
−a(xO − xi)− b(yO − yi)

c
+ zi (18)

where
a = (yj − yi)(zk − zi)− (yk − yi)(zj − zi)

b = (zj − zi)(xk − xi)− (zk − zi)(xj − xi)

c = (xj − xi)(yk − yi)− (xk − xi)(yj − yi)

(19)

After obtaining the sampling mapping points on the fitted model, the error between the fitted
model and the original model can be obtained by calculating the distance between the sampling points
and the mapping points, and the unit of distance is by millimeter. In order to make a comprehensive
evaluation of the error of the fitted model, the evaluation method of calculating the fitting error in
terms of mean deviation and variance is proposed. In the Z-direction, the mean deviation (mm) and
variance (mm2) of the sampled points can be described as:

eZ =

∣∣HZ
1

∣∣+ ∣∣HZ
2
∣∣+ . . . +

∣∣HZ
n
∣∣

n
(20)

sz
2 =

(∣∣HZ
1

∣∣− ez
)2

+
(∣∣HZ

2
∣∣− ez

)2
+ . . . +

(∣∣HZ
n
∣∣− ez

)2

n− 1
(21)

where HZ
ij (x, y) = Mi(x, y) − Mj(x, y). Mi and Mj are the original model and the fitted model,

respectively. H is the distance difference between the models at the point (x, y). n is the number
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of sampling point. Similarly, the fitting errors in the X and Y directions can be solved by the
above method.

5. Numerical Cases

Case 1. In this section, we take the Stanford classical rabbit model with high complexity morphology as an
example and compare the fitting error of its Hermite surface model and the 3D printing generic STL model.
As shown in Figure 12, the solid rabbit model in step format was imported into Hypermesh software, and the
sampled data points with 702 located on the model surface were obtained by meshing.
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Figure 12. Sampling point acquisition for rabbit model: (a) solid model; (b) grid division; (c) sampling
data points.

The rabbit model was fitted using the Hermite surface triangles constructed in this paper and
the planar triangles of the STL, respectively. The number of triangular surface slices is controlled
by changing the approximation tolerance and mesh density of the fit. And finally, five groups of
Hermite and STL fitted models were obtained, corresponding to the number of triangular facets of
16,862, 18,519, 22,820, 25,323 and 27,239, respectively. Table 1 shows the sampling mean deviation
and variance of the original model and the fitted model in the X, Y, and Z directions.

Table 1. Results of model fitting errors.

Number Models Number of Facets

Z-Direction Y-Direction X-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermite 16,862 0.29 4.15 0.89 16.20 0.64 25.06
STL 13.17 5561 3.47 59.78 2.31 102.10

2 Hermite 18,519 0.27 3.92 1.77 160.76 0.79 38.81
STL 22.19 215,450 3.12 53.73 3.50 174.12

3 Hermite 22,820 0.50 16.88 0.92 23.84 0.43 9.66
STL 2.06 57.23 3.16 57.51 2.10 112.78

4 Hermite 25,323 0.26 3.70 0.60 9.13 0.47 10.15
STL 2.59 306.76 2.64 40.47 1.81 67.52

5 Hermite 27,239 0.25 3.67 0.84 21.53 0.38 8.80
STL 2.76 259.87 2.69 45.57 2.84 461.31

Theoretically, as the number of fitted model facets increases, the accuracy of the fit should also
improve, i.e., the mean deviation will be reduced. However, as shown in Table 1, there is no such rule
between the obtained data. The main reason for the existence of this phenomenon is that when the
fitted model is not finely drawn to the local features of the original model, the triangle that should be
used to calculate the fitting error at its closest distance does not intersect with the vertical line after
some of the sampling points make a vertical line along the error calculation direction. This will cause
an offset in the mapping point selection, resulting in a large sampling error.

Tables 2 and 3 show the distribution of the sampling mean deviation of the data in groups 1
and 5, respectively. As shown in Table 2, the maximum fitting error of the Hermite surface model
in the Z direction is around 50, and then the overall fitting error is mostly distributed below 5. In
contrast, the maximum fitting error of the STL model reaches more than 800, and there is still a large
distribution around 50. In the other two directions, the maximum fitting errors of the two are similar,
but the Hermite surface model has a smaller value of sampling error and a relatively concentrated
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distribution. In contrast, the fitting errors of the STL model are relatively discrete in distribution
and have larger values. Similarly, as shown in Table 3, the maximum fitting error is similar in the Y
direction, but in the Z and X directions, the maximum fitting error of the STL model is much larger
than that of the Hermite surface model, and the overall error distribution is more discrete in all
three directions.

As shown in Tables 1–3, the overall fitting accuracy of the Hermite surface model is higher
compared to the STL model, but the obtained fitting error fluctuates more due to the existence
of mapping point bias, which does not truly reflect the deviation between the fitted model and
the original model. In order to evaluate the fitting ability of the two models more accurately and
objectively, the distance-weighted nearest neighbor algorithm [28] is used to process the data in
Table 1. This method achieves the screening and removal of data with more discrete distribution by
calculating the distance between objects and assigning larger weights to closer distances. Table 4
and Figure 13 show the fitting errors and the variation in mean deviation of mean deviation after
removing the “noise points”, respectively.

Table 2. Mean deviation in the three directions in group 1.

Hermite Model STL Model

Z-direction
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As can be seen from Table 4 and Figure 13, the mean deviation between the Hermite and STL
models in the Z, X, and Y directions gradually decrease as the number of model facets increases, and
gradually stabilize at the 4th and 5th groups. It shows that the accuracy of the fit of the 2 to the model
is gradually improving with the increase in the number of face slices. The fitting error of the STL
model fluctuates in the Y-direction, e.g., the error becomes larger in group 3. The main reason for this
phenomenon is that STL uses planar triangles for fitting, which is more likely to produce an offset in
the mapping points. At the same time, the overall fitting accuracy of the Hermite surface model is
much better than that of the STL planar model, which can preserve the original model characteristics
and accuracy as much as possible with a smaller number of face slices. This not only can effectively
solve the problem of excessive data volume or data redundancy caused by the continuous subdivision
of the face slices in the STL model when improving the fitting accuracy, but also can further improve
the processing efficiency and manufacturing accuracy of complex models in the 3D printing process.
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Table 4. Fitting error results after removing the “noise” from the rabbit model.

Number Models Number of Facets

Z-Direction Y-Direction X-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermite 16,862 0.18 0.23 0.32 1.43 0.15 0.91
STL 0.40 2.33 1.39 3.21 0.28 1.80

2 Hermite 18,519 0.16 0.22 0.33 1.32 0.13 0.74
STL 0.38 2.15 1.20 2.86 0.27 1.87

3 Hermite 22,820 0.10 0.49 0.23 0.71 0.02 0.04
STL 0.33 2.01 1.44 4.04 0.21 1.32

4 Hermite 25,323 0.09 0.31 0.24 0.65 0.02 0.17
STL 0.29 1.74 1.32 3.81 0.17 1.09

5 Hermite 27,239 0.08 0.29 0.28 1.07 0.03 0.05
STL 0.29 1.73 1.20 3.22 0.16 0.84
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of face slices. The fitting error of the STL model fluctuates in the Y-direction, e.g., the error 
becomes larger in group 3. The main reason for this phenomenon is that STL uses planar 
triangles for fitting, which is more likely to produce an offset in the mapping points. At 
the same time, the overall fitting accuracy of the Hermite surface model is much better 

Figure 13. Variation in mean deviation: (a) Z-direction; (b) X-direction; (c) Y-direction.
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Case 2. The turbine model is used as another example to verify the effectiveness of the proposed method. A
Hermite surface model and a 3D printing generic STL model are used to fit it, and the fitting error is analyzed.
The solid model of the turbine and the 950 sampled data points extracted based on the grid division are shown
in Figure 14.
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Figure 14. Sampling point acquisition for turbine model: (a) CAD model; (b) grid division;
(c) sampling data points.

Table 5. Fitting error results after removing the “noise” from the turbine model.

Number Models Number of Facets

Z-Direction X-Direction Y-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermit 18,272 0.25 0.08 0.18 0.07 0.24 0.07
STL 0.35 0.13 0.30 0.19 0.33 0.16

2 Hermit 20,540 0.26 0.08 0.12 0.02 0.25 0.07
STL 0.38 0.13 0.24 0.12 0.36 0.13

3 Hermit 22,752 0.23 0.05 0.13 0.06 0.24 0.07
STL 0.37 0.14 0.26 0.18 0.33 0.16

4 Hermit 24,336 0.20 0.07 0.12 0.08 0.23 0.08
STL 0.35 0.12 0.25 0.12 0.33 0.19

5 Hermit 28,592 0.21 0.07 0.11 0.10 0.20 0.04
STL 0.34 0.12 0.25 0.12 0.32 0.08

The Hermite and STL fitting errors were compared by five groups of models with face piece
numbers of 18,272, 20,540, 22,752, 24,336, and 28,592, respectively. Table 5 shows the mean deviation
and variance of the fitted model in three directions after removing the “noise”. The variation of the
mean deviation is shown in Figure 15.

As is shown in Table 4 and Figure 13, the fitting error is gradually decreasing as the number
of model facets increases in the Z and Y directions. The model fit error was minimized in group 5.
The mean deviation was about 0.2 and 0.35 for Hermite and STL, respectively. In the X-direction, the
fitting error of Hermite ranged from 0.2 to 0.1, and gradually tended to 0.1 as the number of model
facets increased. The fitting error of the STL model showed a gradual decrease with the increase in
the number of model facets, except for a slight fluctuation due to the mapping point offset on group 3.
However, its lowest error among the 5 groups is still around 0.25. The overall fitting accuracy of the
Hermite model for this case is still better than that of the STL model, which verifies the effectiveness
of the proposed method.
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STL 0.35 0.12 0.25 0.12 0.33 0.19 

5 
Hermit 

28,592 
0.21 0.07 0.11 0.10 0.20 0.04 

STL 0.34 0.12 0.25 0.12 0.32 0.08 

Figure 15. Variation in mean deviation: (a) Z-direction; (b) X-direction; (c) Y-direction.



Axioms 2023, 12, 370 14 of 15

6. Conclusions
In this paper, we propose a Hermite surface triangle model construction method considering

the high-precision fitting of 3D printing models. The mapping relationship between different surface
triangles and characteristic triangles is established by radial variation. Using the vertex and tangent
vector information, a cubic Hermite curve model with adjustable accuracy of the model local fitting
is constructed based on the general parametric cubic surface model. The model effectively reduces
the parameter variables, simplifies the complexity of the calculation, and achieves the specification of
the solution problem. A model fitting error calculation and evaluation method based on sampling
mapping points is proposed. It transforms the continuous integration into a discrete summation
problem, effectively solving the problem that is difficult to express uniformly in mathematical
formulas due to the uncertainty of the original model. The effectiveness of the proposed method
in improving the model fitting accuracy was verified by using rabbit and turbine models with five
different sets of face slices. In the future research work, we will carry out a systematic study of a.
Considering the different characteristics of the model, we will study an adaptive control method
of a that can satisfy high-precision fitting. In addition, based on the constructed Hermite surface
model, we will study the adaptive layering technique of the surface model and surface path planning
method considering the layered slicing and path planning errors. This will provide vital support to
further enhance efficient and high-precision manufacturing of 3D printing.
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