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Abstract: Over the last few decades, the statisticians and reliability analysts have looked at putting
exponentiality to the test using the Laplace transform technique. The non-parametric statistical
test used in this study, which is based on this technique, evaluates various treatment modalities by
looking at failure behavior in the survival data that were gathered. Following use of the suggested
strategy, patient survival times are recorded. In this investigation, it was presupposed that the
Laplace transform order of (UBAC2) attribute or the constant failure rate would determine how the
observed data behave (exponential scenario). If the survival data are exponential, the recommended
treatment approach is ineffective. If the survival data are UBAC2L, the technique in use produces a
better or a higher expected total present value than an older one governed by an exponential survival
function (discussed in the Applications section). The efficiency and critical values of the test are
calculated and compared to those of other tests in order to ensure that the suggested statistical test is
applied correctly.

Keywords: reliability theory; medical statistics; UBAC2L; Laplace transform; Non-Parametric Hy-
pothesis Testing; U-statistic and Pittman asymptotic efficiency
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1. Introduction

Reliability engineering uses a variety of ageing criteria to describe how cohesive
engineering systems or their constituent elements decay. Reliability engineering intro-
duced classes of life distributions and their various forms; these classes of life distributions
have uses in biological research, biometrics, engineering, maintenance, and social sciences.
Reliability engineering has also produced a number of ageing criteria that describe how
coherent engineering systems or their component pieces deteriorate with time. Mainte-
nance engineers and designers can use these components to create the finest maintenance
methods. A fundamental idea in probability, statistics, and other related fields including
reliability theory, survival analysis, and economics is the stochastic comparison of prob-
ability distributions. As a result, statisticians and reliability analysts are growing more
and more Interested in modeling life distribution classes based on specific aging-related
factors utilizing survival data. Over the past few decades, a variety of life distributions
have been put forth in an effort to represent various aspects of aging: IFA, IFRA, UBA,
UBAC, UBAC2, and UBAC2L are the most well-known of these classes. For more details,
one can refer to Barlow and Proschan [1], Deshpand et al. [2], Klefsjo [3], Ahmed [4], Ali [5],
and Abu-Youssef and El-Toony [6].

A key characteristic of the surviving distribution is the capacity to age. The studies
provide many categories that may be used to classify distributions.

Let X be a non-negative random variable with cumulative distribution F(x), survival
functions F(x), and finite mean µ = E(X).
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If µ(∞) > 0 and ∀ x, t ≥ 0, Ahmad [4] introduce the used better than aged in concave
(UBA) life distribution as

F(t)e−
x

µ(∞) ≤ F(x + t), x, t ≥ 0.

Ali [5] introduce the used better than aged (UBAC2) life distribution as

F
(t)
(
1− e−x) ≤ v(t)− v(x + t) x, t ≥ 0,

where
V
(x) =

∞∫
x F

(u)du.

Definition 1. F is said to be UBAC2L iff

∞∫
x

e−suF(u)du ≥ 1
s + 1

e−stF(t) f or all s ≥ 0. (1)

It is obvious that UBA =⇒ UBAC2 =⇒ UBAC2L.
See Abu-Youssef and El-Toony [6].

From several aspects, statisticians and reliability analysts investigated testing expo-
nentiality issues against various age classes of life distributions; for more information,
see Ahmad [7], Rolski [8], Mahmoud and Diab [9], Abu-Youssef et al. [10], Ghosh and
Mitra [11], Mahmoud et al. [12], Navarro and Pellerey [13] and Navarro [14].

Several authors, including Gadallah [15] and EL-Sagheer et al. [16], examined testing
exponentiality using the Laplace transform technique after it was first investigated by
Atallah et al. [17].

In this article, we will look upon the case where we have genuine data and want to
compare (H0: data is exponential against the alternative hypothesis H1:data is UBAC2L). To
test the null hypothesis against the alternative hypotheses, a test statistic must be defined.
A random variable called the test statistic is used to gauge how closely a sample result
adheres to one of the tested hypotheses.

The remaining portion of this article is divided into two key parts. For assessing
whether H0 is exponential or whether H1 : F belongs to the UBAC2L class of all data and
not exponential, we first provide a test statistic based on the Laplace transform technique.
Pitman asymptotic efficiency for the LFR, Makeham, and Weibull distributions are pro-
duced. For sample sizes of n = 5(5)100, power estimates and Monte Carlo null distribution
critical points are calculated. The majority of the topics we already looked at in the first
section are covered in the second, which looks at right-censored data. A discussion of sets
of both complete and censored real-world data then highlights the applicability of our test.

The following is how the paper is structured: In Section 2, we provide a test statistic
for complete data based on the Laplace transform technique; Power estimates are calcu-
lated, and critical values are simulated for various sample sizes.. The test statistic for
censored data is obtained in Section 3. Finally, in Section 4, we discuss some applications to
demonstrate the utility of the proposed statistical test.

2. Exponentiality Departure Measure

In order to measure the departure from exponentiality in the approach of the UBAC2L
class, we first develop a statistic. Pitman asymptotic efficiency, Monte Carlo null distribu-
tion critical points, and powers for common substitutes are used to do this.

2.1. Testing Exponentiality versus UBAC2L Class of Complete Data

Consider F(x) = 1− e−βx f or β, x > 0 as the exponential class. The official purpose of
our experiment is to compare H0 : F is exponential with H1 : F is UBAC2L.
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A measure of deviation from H0 in comparison to H1 is provided by the following
lemma. As a result, a testing strategy may be created using it.

Lemma 1.

δ(s) =
1
s2 E

[(
1− e−sx)− 2s + 1

2(s + 1)

(
1− e−2sx

)]
(2)

Proof. We suggest using the functional δ(s) described below to calculate the UBAC2L
distribution’s departure from exponentiality:

δ(s) =
∞∫
0

[∞∫
x

e−suF(u)du− 1
s+1 e−stF(t)

]
e−sxdx

= I − I I,

where

I =
∞∫
0

∞∫
x

e−suF(u)e−stdudt,

= 1
s2 E
[
(1− e−sx)− 1

2
(
1− e−2sx)],

and

I I =
∞∫
0

e−stF(t)e−stdt,

= 1
2s E
[(

1− e−2sx)].
Hence, the result follows.
Based on a random sample X1, X2, . . . , Xn from the distribution function F, then the

empirical estimator form δ(s) in (2) may thus be written as follows:

ˆ
δn
(s) =

1
s2n ∑

i

{(
1− e−sxi

)
− 2s + 1

2(s + 1)

(
1− e−2sxi

)}
.

So, ˆ
δn
(s) can be obtained as

ˆ
δn
(s) =

1
s2n ∑

i
∅(Xi),

where

∅(Xi) =

{(
1− e−sxi

)
− 2s + 1

2(s + 1)

(
1− e−2sxi

)}
.

One may use the U-statistic theory to obtain the limiting distribution of ˆ
δn
(s).

Set
∅(X) =

(
1− e−sx)− 2s + 1

2(s + 1)

(
1− e−2sx

)
.

The next theorem establishes the statistic reported in (2) as having asymptotic normal-
ity. �

Theorem 1. As n→ ∞,
(
δ̂n(s)− δ(s)

)
is asymptotically normal with mean 0 and variance σ2 is

given in (3), under H0, thevariance reduces to (4).
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Proof. U-statistic theory (Lee [18]) yields the following:

E[∅(X)] = E
((

1− e−sx)− 2s + 1
2(s + 1)

(
1− e−2sx

))
,

σ2 = E
((

1− e−sx)− 2s + 1
2(s + 1)

(
1− e−2sx

))2
(3)

One may demonstrate that µ0 = 0 under H0, and the variance is

σ2
0(s) =

2

(1 + s)2(1 + 9s + 26s2 + 24s3)
. (4)

�

2.2. Monte Carlo Null Distribution Critical Points

The highest percentile points of our test δ̂n(s), n = 5(5)100 of UBAC2L class of life
distributions are obtained using a 10,000-sample simulated sample from the exponential
distribution using wolfram mathematica 10 in Table 1.

Table 1. The Higher Percentile Values of δ̂n(0.09).

n 90% 95% 99%

5 0.868731 1.2161 1.57217

10 0.488618 0.836443 1.23035

15 0.410873 0.611245 0.796065

20 0.361404 0.491752 0.696427

25 0.36791 0.485149 0.554637

30 0.298835 0.408053 0.433742

35 0.286803 0.404571 0.479514

40 0.235469 0.345774 0.396459

45 0.231345 0.322356 0.372959

50 0.252539 0.321946 0.377091

55 0.231475 0.330027 0.394961

60 0.250355 0.314627 0.360007

65 0.201125 0.283754 0.314362

70 0.186574 0.232399 0.27165

75 0.204348 0.266098 0.319055

80 0.187613 0.27441 0.332885

85 0.169602 0.229449 0.298501

90 0.18389 0.240486 0.298516

95 0.166333 0.213038 0.280515

100 0.161628 0.2132 0.24905

Table 1 shows that as the confidence level rises, the critical values rise, and as the
sample size rises, the critical values fall.
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2.3. Pittman Asymptotic Relative Efficiency

The PAE of our test δ(s), is investigated in this subsection, where

PAE(δ) =

∣∣∣ ∂
∂θδ
∣∣∣
θ→θ0

σ0
=

=
1
σ0

∣∣∣∣∣∣ 2s + 1
2s2(s + 1)

∞∫
0

e−2sxdF′θ0
(x)− 1

s2

∞∫
0

e−sx dF′θ0
(x)

∣∣∣∣∣∣,
where F′θ0

(x) = d
dθFθ

(u)
∣∣∣∣
θ→θ0

.

Commonly used alternatives to the exponential model include the LFR, Makeham,
and Weibull distributions. For θ > 0, it is obvious that the LFR and Makeham distributions
belong to the UBAC2L class, while the Weibull distribution belongs to the UBAC2L class
for θ > 1.

This leads to the following:

PAE(δ, LFR) =
1
σ0

∣∣∣∣∣3 + 3s + s2

(1 + s)3

∣∣∣∣∣.
PAE(δ, Makeham) =

1
σ0

∣∣∣∣∣ 5 + 4s + s2

2(1 + s)2(2 + s)

∣∣∣∣∣.
PAE(δ, weibull) =

1
σ0

∣∣∣∣∣1s
(

ln(1 + s) + γ− 1

(1 + s)2 − (γ− 1)

)∣∣∣∣∣, γ(Euler constant).

A comparison of our test δ̂n(s) to those of Ahmed et al. [19] (δ(5)n ) and Abu-Youssef
and El-Toony [6] (δU2L ) is proposed in Table 2 for selected values of s.

Table 2. PAE of δ(1)n , δU2L and δ̂(s).

Distribution δ(5)
n δU2L

^
δn(s)

s=0.09 s=0.1 s=0.3 s=0.5

LFR 1.1456 1.3 1.385 1.379 1.262 1.225

Makeham 0.5455 0.58 0.564 0.565 0.562 0.573

Weibull —– —— 1.018 1.017 0.759 0.932

Table 2 shows that statistic ˆ
δn
(s) performs well for the three alternative families and is

more efficient than statistics δ(5)n and δU2L .

2.4. Power Estimates for Different Alternatives

The test statistic’s power estimate is essential for determining how sensitive the test
is to divergence from exponentiality towards the UBAC2L class. The greater the power
estimates, the better the test statistic’s ability to identify this deviation. At the significant
level α = 0.05, Table 3 evaluates the power of the test statistics ˆ

δn
(s) for the LFR, Gamma,

and Weibull alternatives.
According to Table 3, our test yields good powers for the LFR, Gamma, and Weibull

families. The estimated powers rise as the sample size expands.
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Table 3. Estimates of powers at α = 0.05.

Distribution n θ=1 θ=2 θ=3

LFR
10 1 1 1
20 1 1 1
30 1 1 1

Gamma
10 0.0662 0.5736 0.9716
20 0.0673 0.7831 0.9997
30 0.068 0.8973 1

Weibull
10 0.7024 1 1
20 0. 9398 1 1
30 0.9453 1 1

2.5. Applications for Complete Data

We use specific real-world data sets to illustrate how useful the study’s results are.
Table 4’s results show that our test was in line with those of its rivals.

Data # 1: We consider the data set of 27 observations that shows the gaps in time
between repeated failures of Airplane No. 7913′s air cooling system (Proschan [20]). Table 4
makes it clear that the exponentiality null hypothesis is not rejected.

Data # 2: The data set representing “Fatigue life of 6061-T6 aluminium coupons cut
parallel to the direction of rolling and oscillated at 18 cycles per second” is introduced
by Engelhardt et al. [21]. The same data are performed here as well. Our test rejects the
exponentiality null hypothesis.

Table 4. Detailed statistics, for data sets.

Data # 1 ˆ
δn
(s) = −149.074

Data # 2 ˆ
δn
(s) = 0.06575

3. Testing Exponentiality for Censored Data

When subjects are unreachable after a research period, this is referred to as censored
data or censored observations. Since the date of survival or the end of the sickness is
unclear, some patients in some fields, such as biological sciences, may still be alive or
disease-free at the conclusion of the study.

3.1. Test for UBAC2L in Case of Right-Censored Data

Here, a test statistic is suggested to compare: H0 and H1 using right censored data.
Suppose n components are put on test, and X1, X2, . . . , Xn denote their complete-life time.
Let that X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) according to a
continuous life distribution F.

The data in this subsection have been randomly right censored, and a test statistic is
provided to test H0 against H1.

Let’s write the test statistic as follows:

δc(s) =
1

ns2

[
(1− θ(s))− 2s + 1

2(s + 1)
(1− τ(2S)

]
, (5)

where

θ(s) =
∞∫

0

e−sxdF(x), τ(2S) =
∞∫

0

e−2sxdF(x)

θ̂(s) =
l

∑
m=1

e−sZ(m)(
m−2

∏
p=1

C
δp
p −

m−1

∏
p=1

C
δp
p )
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τ̂(2s) =
l

∑
m=1

e−2sZ(m)(
m−2

∏
p=1

C
δp
p −

m−1

∏
p=1

C
δp
p )

η =
l

∑
j=1

j−1

∏
k=1

Cδm
m

(
Z(j) − Z(j−1)

)

dFn(Zi) =
j−2

∏
q=1

Cδi
i −

j−1

∏
q=1

Cδi
i ,

Fn(t) = ∏
m<t

Cδm
m ,

Cm =
n−m

n−m + 1
, t ∈

[
0, z(m)

]
.

For the censored data, let’s simulate the upper percentiles once more in Table 5 using
wolfram mathematica 10.

Table 5. The Higher Percentile Values of δc(0.09).

n 95% 98% 99%

5 9.06044 11.3263 11.3263

10 3.76773 4.24107 4.45821

15 2.16296 2.53999 2.78284

20 1.39771 1.64111 1.73429

25 0.946225 1.09012 1.23866

30 0.713409 0.852922 0.914456

35 0.599153 0.684245 0.774385

40 0.480519 0.543262 0.576404

45 0.424666 0.487289 0.534101

50 0.340545 0.394071 0.427245

55 0.300065 0.347867 0.374279

60 0.263235 0.29784 0.354673

65 0.241464 0.279319 0.306573

70 0.219645 0.253037 0.269572

75 0.194965 0.228086 0.255792

80 0.174686 0.209678 0.230627

85 0.158488 0.185419 0.205321

90 0.147107 0.16895 0.184741

95 0.136914 0.156613 0.166537

100 0.124793 0.142524 0.158562

The critical values roughly drop with increasing sample size and increase with increas-
ing confidence levels as shown in Table 5.

3.2. Applications

We apply the findings to various real data sets to demonstrate the use of the conclu-
sions presented in this article for censored data.
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Data # 3: We take into account the data set in Kamran Abbas et al. [22] regarding
the survival periods, in weeks, of 61 patients with incurable lung cancer treated with
cyclophosphamide.

We calculate the statistic in (5) for s = 0.09 and δc = 0.6178, so we reject the null
hypothesis as n = 61.

4. Conclusions

A statistical test method has been developed in this study to assist in the quality
assessment of possible diseases’ treatment data. Our tests’ outcomes showed whether the
proposed methods had a favorable or unfavorable effect on the patients’ survival times.
The suggested statistical test’s efficiency was calculated and compared to other tests to
make sure it generates reliable results. Independent of the type of treatment method being
utilized, the proposed test can be used to assess the success of any treatment approach in
any area of study. However, it is not advised to compare many unique treatment programs
using this non-parametric test. Moreover, it is suggested that novel, extremely efficient non-
parametric statistical tests be developed and applied to evaluate the numerous suggested
treatments. A statistical method should also be created to compare two or more different
therapies for the same condition. Additionally, the recommended statistics’ percentage
points are simulated. The effectiveness of our suggested tests was compared to the efficacy
of many other tests to demonstrate how well they work using Pitman’s asymptotic relative
efficiency and well-known life distributions including the LFR, Makeham, and Weibull
families. The results of the research were then applied to real data sets.
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Abbreviations

IFR Increasing failure rate.
IFRA Increasing failure rate average.
UBA Used better than age.
UBAC Used better than age in convex order.
UBAC2 Used better than age in concave order.
UBAC2L Laplace transform for used better than age in concave order.

References
1. Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models; Hold, Reinhart and Wiston, Inc.: Silver

Spring, MD, USA, 1981.
2. Deshpande, J.V.; Kochar, S.C.; Singh, H. Aspects of positive aging. J. Appl. Probab. 1986, 23, 748–758. [CrossRef]
3. Klefsjo, B. The HNBUE and HNWUE classes of life distribution. Naval Res. Logist. 1982, 29, 331–344. [CrossRef]
4. Ahmad, I.A. Some properties of classes of life distributions with unknown age. Stat. Probab. Lett. 2004, 9, 333–342. [CrossRef]
5. Ali, N.S.A. On the Properties of the UBAC(2) Class of Life Distributions. J. Test. Eval. 2018, 46, 730–735. [CrossRef]
6. Abu-Youssef, S.E.; El-Toony, A.A. A New Class of Life Distribution based on Laplace Transform and It’s Applications. Inf. Sci.

Lett. 2022, 11, 355–362.
7. Ahmad, I.A. Moments inequalities of aging families with hypotheses testing applications. J. Stat. Plan. Inference 2001, 92, 121–132.

[CrossRef]
8. Rolski, T. Mean residual life. Bull. Int. Stat. Inst. 1975, 4, 266–270.

https://doi.org/10.2307/3214012
https://doi.org/10.1002/nav.3800290213
https://doi.org/10.1016/j.spl.2004.06.029
https://doi.org/10.1520/JTE20160501
https://doi.org/10.1016/S0378-3758(00)00139-7


Axioms 2023, 12, 369 9 of 9

9. Mahmoud, M.A.W.; Diab, L.S. On testing exponentiality against HNRBUE based on a goodness of fit. Int. J. Rel. Appl. 2007, 8,
27–39.

10. Abu-Youssef, S.E.; Ali, N.S.A.; Bakr, M.E. Non-parametric testing for unknown age (UBAL) class of life distribution. J. Test. Eval.
2019, 48, 4576–4587.

11. Ghosh, S.; Mitra, M. A new test for exponentiality against HNBUE alternatives. Commun. Stat. Theor Meth. 2020, 49, 27–43.
[CrossRef]

12. Mahmoud, M.A.W.; Hassan, E.M.A.; Gadallah, A.M. On NRBUL Class of Life Distributions. J. Egypt. Math. Soc. 2018, 26, 483–490.
[CrossRef]

13. Navarro, J.; Pellerey, F. Preservation of ILR and IFR aging classes in sums of dependent random variables. Appl. Stoch. Models Bus.
Ind. 2022, 38, 240–261. [CrossRef]

14. Navarro, J. Preservation of DMRL and IMRL aging classes under the formation of order statistics and coherent systems. Stat.
Probab. Lett. 2018, 137, 264–268. [CrossRef]

15. Gadallah, A.M. Testing EBUmgf Class of Life Distributions based on Laplace Transform Technique. J. Stat. Appl. Probab. 2017, 6,
471–477. [CrossRef]

16. EL-Sagheer, R.M.; Abu-Youssef, S.E.; Sadek, A.; Omar, K.M.; Etman, W.B.H. Characterizations and testing NBRUL class of life
distributions based on Laplace transform technique. J. Stat. Appl. Probab. 2022, 11, 75–89.

17. Atallah, M.A.; Mahmoud, M.A.W.; Alzahrani, B.M. A new test for exponentiality versus NBUmgf life distribution based on
Laplace transform. Qual. Reliab. Eng. Int. 2014, 30, 1353–1359. [CrossRef]

18. Lee, A.J. U-Statistics Theory and Practice; Marcel Dekker, Inc.: New York, NY, USA, 1990.
19. Ahmad, I.A.; Alwasel, I.A.; Mugdadi, A.R. A goodness of fit approach to major life testing problems. Int. J. Reliab. Appl. 2001, 2,

81–97.
20. Proschan, F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963, 5, 375–383. [CrossRef]
21. Engelhardt, M.; Bain, L.J.; Wright, F.T. Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on

maximum likelihood estimation. Technometrics 1981, 23, 251–256. [CrossRef]
22. Abbas, K.; Hussain, Z.; Rashid, N.; Ali, A.; Taj, M.; Khan, S.A.; Manzoor, S.; Khalil, U.; Khan, D.M. Bayesian Estimation of

Gumbel Type-II Distribution under Type-II Censoring with Medical Applications. J. Comput. Math. Methods Med. 2020, 7, 1876073.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/03610926.2018.1528370
https://doi.org/10.21608/joems.2018.2649.1035
https://doi.org/10.1002/asmb.2657
https://doi.org/10.1016/j.spl.2018.02.005
https://doi.org/10.18576/jsap/060302
https://doi.org/10.1002/qre.1557
https://doi.org/10.1080/00401706.1963.10490105
https://doi.org/10.2307/1267788
https://doi.org/10.1155/2020/1876073

	Introduction 
	Exponentiality Departure Measure 
	Testing Exponentiality versus UBAC2L Class of Complete Data 
	Monte Carlo Null Distribution Critical Points 
	Pittman Asymptotic Relative Efficiency 
	Power Estimates for Different Alternatives 
	Applications for Complete Data 

	Testing Exponentiality for Censored Data 
	Test for UBAC2L in Case of Right-Censored Data 
	Applications 

	Conclusions 
	References

