Article

Graphs with Strong Proper Connection Numbers and Large Cliques

Yingbin Ma * ${ }^{\text {(D) }}$, Xiaoxue Zhang (D) and Yanfeng Xue
College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
* Correspondence: mayingbincw@htu.cn

Citation: Ma, Y.; Zhang, X.; Xue, Y. Graphs with Strong Proper Connection Numbers and Large Cliques. Axioms 2023, 12, 353. https://doi.org/10.3390/ axioms12040353

Academic Editor: Baoyindureng Wu
Received: 22 February 2023
Revised: 27 March 2023
Accepted: 28 March 2023
Published: 3 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we mainly investigate graphs with a small (strong) proper connection number and a large clique number. First, we discuss the (strong) proper connection number of a graph G of order n and $\omega(G)=n-i$ for $1 \leqslant i \leqslant 3$. Next, we investigate the rainbow connection number of a graph G of order $n, \operatorname{diam}(G) \geq 3$ and $\omega(G)=n-i$ for $2 \leqslant i \leqslant 3$.

Keywords: edge-coloring; proper connection number; strong proper connection number; rainbow connection number; clique number

MSC: 05C15; 05C40

1. Introduction

We only consider graphs that are undirected, simple, finite, and connected in this paper. For terminology and notation that are not defined here, we refer to [1].

In 2008, Chartrand et al. [2] introduced the concept of rainbow connection. For an edge-colored graph G, if each pair of vertices is connected by a rainbow path, where its edges are assigned different colors, then G is said to be rainbow-connected. An edge-coloring that makes G rainbow-connected is said to be a rainbow coloring of G. The rainbow connection number of G, denoted by $r c(G)$, is the smallest number of colors that are needed to make G rainbow-connected. Obviously, $r c(G)=1$ if and only if G is complete, and $\operatorname{rc}(G) \geq \operatorname{diam}(G)$. As a natural generalization of the rainbow connection number, the concept of the vertex rainbow connection number was presented by Krivelevich et al. [3], and the concept of the total rainbow connection number was introduced by Liu et al. [4]. There are abundant research results on this topic. In [5], Schiermeyer proved that a connected graph G with n vertices has $r c(G)<\frac{4 n}{\delta(G)+1}+4$. Huang et al. [6] provided upper bounds of the rainbow connection number of outerplanar graphs with small diameters. In [7], Li et al. studied the vertex rainbow connection numbers of some graph operations. Ma et al. [8] investigated the total rainbow connection numbers of some special graphs. The reader should also consult [9] for a survey and [10] for a monograph.

Inspired by the concept of rainbow connection, Borozan et al. [11] proposed the concept of proper connection, and Andrews et al. [12] presented the concept of strong proper connection. A path is called a proper path in an edge-colored graph if its adjacent edges are assigned distinct colors. An edge-colored graph G is said to be properly connected if any two vertices are connected by a proper path, and G is said to be strongly properly connected if every pair of vertices is connected by a proper geodesic. An edge-coloring θ of graph G is called a proper-path coloring if it makes G properly connected, and θ is called a strong proper coloring if it makes G strongly properly connected. The proper connection number of G, denoted by $p c(G)$, is the smallest number of colors that are needed to make G properly connected. The strong proper connection number of G, denoted by $\operatorname{spc}(G)$, is the smallest number of colors that are needed to make G strongly properly connected. From these definitions, it is easy to establish that $p c(G)=s p c(G)=1$ if and only if G is
complete. In $[13,14]$, Huang et al. presented an upper bound for the proper connection number of a graph in terms of the bridge-block tree of the graph and investigated the proper connection number of the complement of a graph. Li et al. [15] used dominating sets to study the proper connection number of a graph. Ma and Zhang [16] characterized all connected graphs of size m with (strong) proper connection number $m-4$. For more details, we refer the reader to a survey [17].

Some results regarding the (vertex) rainbow connection numbers of graphs with a large clique number are available; see $[18,19]$. These results motivated us to consider the (strong) proper connection numbers of graphs with a large clique number. In this paper, we mainly discuss the (strong) proper connection number of a graph G of order n and $\omega(G)=n-i$ for $1 \leqslant i \leqslant 3$. Moreover, we also investigate the rainbow connection number of a graph G of order $n, \operatorname{diam}(G) \geq 3$ and $\omega(G)=n-i$ for $2 \leqslant i \leqslant 3$.

2. (Strong) Proper Connection and Clique Number

In this section, we investigate graphs with a small (strong) proper connection number and a large clique number. We first introduce some definitions that will be used later.

A Hamiltonian path in a graph G is a path containing every vertex of G. A graph with a Hamiltonian path is called a traceable graph. Recall that a clique of a graph is a set of mutually adjacent vertices, and that the maximum size of a clique of graph G, i.e., the clique number of G, is denoted $\omega(G)$. For a connected graph G, we say Q is a subgraph of G which induces a maximum clique and $V(F)=V(G) \backslash V(Q)$. We say $N_{Q}(u)$ is the set of neighbors of u in Q and $d_{Q}(u)=\left|N_{Q}(u)\right|$. Additionally, we say $E[V(F), V(Q)]$ is the set of edges of G between vertices of $V(F)$ and vertices of $V(Q)$. Next, we present the following three useful propositions.

Proposition 1 ([12]). Let G be a non-complete graph. If G is traceable, then $p c(G)=2$.
Proposition 2 ([12]). For a non-trivial connected graph G that contains a bridge, if b is the maximum number of bridges incident with a vertex in G, then $\operatorname{spc}(G) \geq p c(G) \geq b$.

Proposition 3 ([18]). Let G be a connected graph of order n and size m. If $\binom{n-1}{2}+1 \leq m \leq$ $\binom{n}{2}-1$, then $r c(G)=2$.

As an immediate consequence of Proposition 3, we have the following Lemma.
Lemma 1. Let G be a connected graph of order n and size m. If $\binom{n-1}{2}+1 \leq m \leq\binom{ n}{2}-1$, then $p c(G)=s p c(G)=2$.

Theorem 1. Let G be a connected graph of order n. If $\omega(G)=n+1-i$ for $i \in\{1,2\}$, then $p c(G)=\operatorname{spc}(G)=i$.

Proof. If $i=1$, then $\omega(G)=n$, which implies that G is a complete graph. Thus, $p c(G)=$ $\operatorname{spc}(G)=1$. If $i=2$, then $\omega(G)=n-1$. Since G is connected, we obtain $|E(G)| \geq\binom{ n-1}{2}+1$, and so $\binom{n-1}{2}+1 \leq|E(G)| \leq\binom{ n}{2}-1$. Hence, $p c(G)=s p c(G)=2$ by Lemma 1 .

Theorem 2. Let G be a connected graph of order $n \geq 4$ and $\omega(G)=n-2$. Let Q be a maximum clique of G and $V(G) \backslash V(Q)=\left\{u_{1}, u_{2}\right\}$. Then, either $p c(G)=\operatorname{spc}(G)=2$ or one of the following holds:
(i) $4 \leq n \leq 5, G[V(G) \backslash V(Q)] \cong 2 K_{1}$ and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=\{v\}$.
(ii) $n \geq 6, G[V(G) \backslash V(Q)] \cong 2 K_{1}$ and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=\{v\}$.
$\operatorname{Moreover}$, we have $p c(G)=\operatorname{spc}(G)=3$ for $(\mathrm{i}), p c(G)=2$, and $\operatorname{spc}(G)=3$ for (ii).
Proof. Let $F=G[V(G) \backslash V(Q)]$ and let θ be an edge-coloring of G. We prove this theorem by analyzing the structure of F.

Case 1. $F \cong K_{2}$. Since G is connected, it follows that $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1 . The following edge-coloring θ with two colors makes G strongly properly connected: color $u_{1} u_{2}$ and all edges of $E(Q)$ with 1, and color all edges of $E[V(F), V(Q)]$ with 2 . Thus, $\operatorname{spc}(G)=2$.

Case 2. $F \cong 2 K_{1}$. Since G is connected, it follows that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$. Assume that $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$. Observe that G is traceable, and we have $p c(G)=2$ by Proposition 1. Assign an edge-coloring θ with two colors to G as follows: color all edges of $E(Q)$ with 1 and all edges of $E[V(F), V(Q)]$ with 2 . It is clear that G is strongly properly connected with the above edge-coloring. Hence, $s p c(G)=2$.

Assume that $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing$ and $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$. Without a loss of generality, let $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. If $n=4$, then $G \cong K_{1,3}$. Hence, $p c(G)=\operatorname{spc}(G)=3$. If $n=5$, then $G \cong G_{1}$, where G_{1} is obtained by adding two pendant edges to a vertex of K_{3}. Thus, $p c(G)=\operatorname{spc}(G)=3$. Now we consider $n \geq 6$. Let $V(Q)=\left\{v, w_{1}, w_{2}, \ldots, w_{n-3}\right\}$. Define an edge-coloring θ of G with two colors as follows: $\theta\left(u_{1} v\right)=\theta\left(w_{1} w_{n-3}\right)=1$; $\theta\left(u_{2} v\right)=\theta\left(v w_{n-4}\right)=2$; color the sequence $v w_{1} w_{2} \cdots w_{n-3} v$ alternately with 1 and 2 starting with $\theta\left(v w_{1}\right)=1$; and color the remaining edges arbitrarily with 1 and 2 . We can check that G is properly connected with the above edge-coloring, and so $p c(G)=2$. If θ is a strong proper coloring of G, then $\theta\left(u_{1} v\right) \neq \theta\left(u_{2} v\right) \neq \theta\left(v w_{1}\right)$, and thus $\operatorname{spc}(G) \geq 3$. On the other hand, we define a strong proper coloring θ^{\prime} of G with three colors as follows: $\theta^{\prime}\left(u_{1} v\right)=1, \theta^{\prime}\left(u_{2} v\right)=2$, and color all edges of $E(Q)$ with 3 . Thus, $\operatorname{spc}(G)=3$.

Assume that $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 2$. Without a loss of generality, let $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$ and $d_{Q}\left(u_{1}\right) \geq 2$. Observe that G is traceable, and we obtain $p c(G)=2$ by Proposition 1. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} v\right)=1 ; \theta\left(u_{2} v\right)=\theta\left(u_{1} w\right)=2$ for any $w \in N_{Q}\left(u_{1}\right) \backslash\{v\}$; and color the remaining edges with 1 . It is clear that θ is a strong proper coloring of G. Hence, $\operatorname{spc}(G)=2$.

Theorem 3. Let G be a connected graph of order $n \geq 5, \operatorname{diam}(G)=2$, and $\omega(G)=n-3$. Let Q be a maximum clique of G and $V(G) \backslash V(Q)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then, either $p c(G)=\operatorname{spc}(G)=2$ or one of the following holds:
(i) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), d_{Q}\left(u_{2}\right)=0, \min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=$ 1, $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right)=V(Q)$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$.
(ii) $n=6, G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$, and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=$ $N_{Q}\left(u_{3}\right)=\{v\}$.
(iii) $n \geq 7, G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$, and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=$ $N_{Q}\left(u_{3}\right)=\{v\}$.
(iv) $G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\{v\}$, $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\}=d_{Q}\left(u_{3}\right)=1$ and $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right) \geq 3$.
(v) $G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing, N_{Q}\left(u_{2}\right) \cap$ $N_{Q}\left(u_{3}\right) \neq \varnothing, d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1, d_{Q}\left(u_{3}\right)=2$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$.
(vi) $n=5, G[V(G) \backslash V(Q)] \cong 3 K_{1}$ and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=N_{Q}\left(u_{3}\right)=\{v\}$.
(vii) $n \geq 6, G[V(G) \backslash V(Q)] \cong 3 K_{1}$ and $N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{2}\right)=N_{Q}\left(u_{3}\right)=\{v\}$.
(viii) $G[V(G) \backslash V(Q)] \cong 3 K_{1}, \mid\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\right.$ $\left.\left(u_{3}\right)\right) \mid=1, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$ and $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right) \geq 4$.
(ix) $G[V(G) \backslash V(Q)] \cong 3 K_{1}, \mid\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\right.$ $\left.\left(u_{3}\right)\right) \mid=2, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$ and $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right)=5$.
Moreover, we have $p c(G)=2$ and $\operatorname{spc}(G)=3$ for (i), (iii), (iv), (v), (viii), and (ix); $p c(G)=\operatorname{spc}(G)=3$ for (ii); $p c(G)=\operatorname{spc}(G)=4$ for (vi); and $p c(G)=3$ and $\operatorname{spc}(G)=4$ for (vii).

Proof. Let $F=G[V(G) \backslash V(Q)]$ and let θ be an edge-coloring of G. We prove this theorem by analyzing the structure of F.

Case 1. $F \cong K_{3}$. Observe that G is traceable, and so $p c(G)=2$ by Proposition 1. The following edge-coloring θ with two colors induces a strong proper coloring of G : color
all edges of $E(F)$ and $E(Q)$ with 1 , and color all edges of $E[V(F), V(Q)]$ with 2 . Thus, $\operatorname{spc}(G)=2$.

Case 2. $F \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right), d_{Q}\left(u_{3}\right)\right\} \geq$ 1. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1. Assign a strong proper coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=1 ; \theta\left(u_{2} u_{3}\right)=2$; and color all edges of $E(Q)$ with 1 and all edges of $E[V(F), V(Q)]$ with 2 . Hence, $s p c(G)=2$.

Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right), d_{Q}\left(u_{3}\right)\right\}=0$. Since $\operatorname{diam}(G)=2$, it follows that $d_{Q}\left(u_{1}\right) \geq 1, d_{Q}\left(u_{2}\right)=0, d_{Q}\left(u_{3}\right) \geq 1$, and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right)=V(Q)$. Observe that G is traceable, and we obtain $p c(G)=2$ by Proposition 1. Next, we only consider the strong proper connection number of graph G under this assumption.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$ and $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=1$. Without a loss of generality, let $d_{Q}\left(u_{1}\right)=1$ and $N_{Q}\left(u_{1}\right)=\{v\}$. If there exists a strong proper coloring θ of G with two colors, then $\theta\left(u_{1} u_{2}\right) \neq \theta\left(u_{2} u_{3}\right)$. Without a loss of generality, let $\theta\left(u_{1} u_{2}\right)=1$ and $\theta\left(u_{2} u_{3}\right)=2$. Since $u_{2} u_{1} v$ is the unique $u_{2}-v$ geodesic and $u_{2} u_{3} w$ is the unique $u_{2}-w$ geodesic for any $w \in N_{Q}\left(u_{3}\right)$, it follows that $\theta\left(u_{1} v\right)=2$ and $\theta\left(u_{3} w\right)=1$. Note that $u_{1} v w$ is the unique $u_{1}-w$ geodesic for any $w \in N_{Q}\left(u_{3}\right)$, and so $\theta(v w)=1$. There is no proper geodesic between u_{3} and v, which is a contradiction. Thus, $s p c(G) \geq 3$. Assign an edgecoloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=\theta^{\prime}\left(u_{3} w\right)=1$ for any $w \in N_{Q}\left(u_{3}\right)$, $\theta^{\prime}\left(u_{2} u_{3}\right)=\theta^{\prime}\left(u_{1} v\right)=2$, and color all edges of $E(Q)$ with 3 . Obviously, θ^{\prime} is a strong proper coloring of G, and so $\operatorname{spc}(G)=3$.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$ and $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Let $N_{Q}\left(u_{1}\right)=\left\{v_{1}, v_{2}\right.$, $\left.\ldots, v_{t}\right\}$ and $N_{Q}\left(u_{3}\right)=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, where $t+k=n-3$. Assign an edge-coloring θ with two colors to G such that G is strongly properly connected: $\theta\left(u_{1} u_{2}\right)=\theta\left(v_{1} w_{1}\right)=$ $\theta\left(u_{3} w_{1}\right)=\theta\left(u_{3} w_{i}\right)=\theta\left(v_{2} w_{i}\right)=1$ for $2 \leq i \leq k, \theta\left(u_{2} u_{3}\right)=\theta\left(v_{1} w_{k}\right)=\theta\left(u_{1} v_{1}\right)=$ $\theta\left(u_{1} v_{j}\right)=\theta\left(w_{1} v_{j}\right)=2$ for $2 \leq j \leq t$, and color the remaining edges arbitrarily with 1 and 2 . Hence, $\operatorname{spc}(G)=2$.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$, and say $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$. This implies that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Color $u_{1} u_{2}, u_{2} u_{3}, u_{1} v$ and all edges of $E(Q)$ with 1 , and color the remaining edges with 2 . Clearly, G is strongly properly connected with the above edge-coloring, and $\operatorname{sospc}(G)=2$.

Case 3. $F \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$. Since G is connected, we obtain $d_{Q}\left(u_{3}\right) \geq 1$. We distinguish the following three subcases.

Subcase 3.1. $d_{Q}\left(u_{3}\right)=1$. Let $N_{Q}\left(u_{3}\right)=\{v\}$. Since $\operatorname{diam}(G)=2$, we have $d_{Q}\left(u_{1}\right) \geq 1$, $d_{Q}\left(u_{2}\right) \geq 1$ and $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$. This implies $n \geq 6$. If $n=6$, then $G \cong G_{2}$, where G_{2} is displayed in Figure 1. Thus, $p c(G)=\operatorname{spc}(G)=3$. Now we consider $n \geq 7$. Let $V(Q)=\left\{w_{1}, w_{2}, \ldots, w_{n-4}, v\right\}$. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=\theta\left(w_{i} v\right)=\theta\left(w_{j} w_{n-4}\right)=1$ for $1 \leq i \leq n-5$ and $2 \leq j \leq n-5, \theta\left(u_{3} v\right)=\theta\left(w_{n-4} v\right)=\theta\left(w_{1} w_{n-4}\right)=\theta\left(w_{1} w_{2}\right)=2$, and color the remaining edges arbitrarily with 1 and 2 . It is easy to verify that θ is a proper-path coloring of G. Thus, $p c(G)=2$. If G is strongly properly connected with an edge-coloring θ, then $\theta\left(u_{1} v\right) \neq \theta\left(u_{3} v\right) \neq \theta\left(w_{1} v\right)$, and so $\operatorname{spc}(G) \geq 3$. Assign an edge-coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=\theta^{\prime}\left(u_{1} v\right)=\theta^{\prime}\left(u_{2} v\right)=1, \theta^{\prime}\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 3 . We can check that G is strongly properly connected with the above edge-coloring. Hence, $s p c(G)=3$.

Figure 1. The graph G_{2} with a strong proper coloring.
Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\}=1$ and $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right) \geq 3$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 2$ and $d_{Q}\left(u_{2}\right)=1$. Observe that G is traceable, and we have
$p c(G)=2$ by Proposition 1. If G is strongly properly connected with an edge-coloring θ, then $\theta\left(u_{2} v\right) \neq \theta\left(u_{3} v\right) \neq \theta(w v)$, where $w \in V(Q) \backslash N_{Q}\left(u_{1}\right)$. Hence, $\operatorname{spc}(G) \geq 3$. Define an edge-coloring θ^{\prime} of G with three colors such that G is strongly properly connected: $\theta^{\prime}\left(u_{1} u_{2}\right)=\theta^{\prime}\left(u_{1} v\right)=\theta^{\prime}\left(u_{2} v\right)=1$, and color all edges of $E(Q)$ with 3 and the remaining edges with 2. Thus, $\operatorname{spc}(G)=3$.

Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 2$. Note that G is traceable, and so $p c(G)=2$ by Proposition 1. Assign a strong proper coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=1$, and color all edges of $E(Q)$ with 1 and the remaining edges with 2. Hence, $s p c(G)=2$.

Subcase 3.2. $d_{Q}\left(u_{3}\right)=2$. Let $N_{Q}\left(u_{3}\right)=\{u, v\}$. Since $\operatorname{diam}(G)=2$, we obtain $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$ and $N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$. Observe that G is traceable, and we have $p c(G)=2$ by Proposition 1 .

Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing$. Let $u \in N_{Q}\left(u_{1}\right) \cap$ $N_{Q}\left(u_{2}\right)$. There exists a strong proper coloring θ of G with two colors as follows: $\theta\left(u_{1} u_{2}\right)=$ $\theta\left(u_{1} u\right)=\theta\left(u_{2} u\right)=\theta\left(u_{3} v\right)=1, \theta\left(u_{3} u\right)=2$, and color all edges of $E(Q)$ with 2 . Thus, $\operatorname{spc}(G)=2$.

Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$. Let $N_{Q}\left(u_{1}\right)=\{u\}$, $N_{Q}\left(u_{2}\right)=\{v\}$ and $V(Q)=\left\{w_{1}, w_{2}, \ldots, w_{n-5}, u, v\right\}$. If there exists a strong proper coloring θ of G with two colors, then $\theta\left(u_{1} u\right) \neq \theta\left(u u_{3}\right)$. Without a loss of generality, let $\theta\left(u_{1} u\right)=1$ and $\theta\left(u u_{3}\right)=2$. Since $u_{1} u w_{1}$ is the unique $u_{1}-w_{1}$ geodesic, it follows that $\theta\left(u w_{1}\right)=$ 2. Note that $u_{2} v u_{3}$ is the unique $u_{2}-u_{3}$ geodesic, and so $\theta\left(u_{2} v\right) \neq \theta\left(v u_{3}\right)$. We first consider $\theta\left(u_{2} v\right)=1$ and $\theta\left(v u_{3}\right)=2$. Since $u_{2} v w_{1}$ is the unique $u_{2}-w_{1}$ geodesic, we have $\theta\left(v w_{1}\right)=2$. There is no proper geodesic between u_{3} and w_{1}, which is a contradiction. Next, we consider $\theta\left(u_{2} v\right)=2$ and $\theta\left(v u_{3}\right)=1$. Note that $u_{2} v w_{1}$ is the unique $u_{2}-w_{1}$ geodesic, so we obtain $\theta\left(v w_{1}\right)=1$. There is no proper geodesic between u_{3} and w_{1}, which is a contradiction. Hence, $\operatorname{spc}(G) \geq 3$. Allocate a strong proper coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=\theta^{\prime}\left(u_{1} u\right)=\theta^{\prime}\left(u_{2} v\right)=1, \theta^{\prime}\left(u u_{3}\right)=\theta^{\prime}\left(v u_{3}\right)=2$, and color all edges of $E(Q)$ with 3. Thus, $\operatorname{spc}(G)=3$.

Assume that $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right) \geq 3$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 2$ and $w \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. Consider $u \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$ or $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. Without a loss of generality, let $u \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. The following edge-coloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} u\right)=\theta\left(u_{2} u\right)=$ $\theta\left(u_{1} u_{2}\right)=1, \theta\left(u_{3} u\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1. Hence, $\operatorname{spc}(G)=2$. Consider $u \notin N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$ and $v \notin N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. Then, $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 2$. Without a loss of generality, let $u \in N_{Q}\left(u_{1}\right)$ and $v \in N_{Q}\left(u_{2}\right)$. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} w\right)=\theta\left(u_{2} w\right)=\theta\left(u_{1} u_{2}\right)=$ $\theta\left(u_{1} u\right)=\theta\left(u_{3} v\right)=1, \theta\left(u_{3} u\right)=\theta\left(u_{2} v\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . It is not difficult to verify that θ is a strong proper coloring of G, and $\operatorname{sospc}(G)=2$.

Assume that $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right) \geq 3$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 2, u \in N_{Q}\left(u_{1}\right)$, and $v \in N_{Q}\left(u_{2}\right)$. There exists an edge-coloring θ with two colors such that G is strongly properly connected, as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} v\right)=$ $\theta\left(u_{3} u\right)=1, \theta\left(u_{1} u\right)=\theta\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Hence, $\operatorname{spc}(G)=2$.

Subcase 3.3. $d_{Q}\left(u_{3}\right) \geq 3$. Note that G is traceable, and we obtain $p c(G)=2$ by Proposition 1. Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$. Let $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\{u\}$ and $N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\{v\}$. Assign a strong proper coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{1} u\right)=\theta\left(u_{2} v\right)=1, \theta\left(u_{3} u\right)=\theta\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Thus, $\operatorname{spc}(G)=2$.

Assume that either $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing$, or $d_{Q}\left(u_{1}\right)+$ $d_{Q}\left(u_{2}\right) \geq 3$. An analogous edge-coloring to that presented in Subcase 3.2 induces a strong proper coloring of G with $\operatorname{spc}(G)=2$.

Case 4. $F \cong 3 K_{1}$. Since $\operatorname{diam}(G)=2$, it follows that $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \neq \varnothing, N_{Q}\left(u_{1}\right) \cap$ $N_{Q}\left(u_{3}\right) \neq \varnothing$ and $N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$. This case is demonstrated by the following three subcases.

Subcase 4.1. $\left|\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right)\right|=1$. This implies that $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|=1$. Let $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\{v\}$. Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$. Then, $\operatorname{spc}(G) \geq p c(G) \geq 3$ by Proposition 2 . If $n=5$, then $G \cong K_{1,4}$. Hence, $p c(G)=\operatorname{spc}(G)=4$. Now we consider $n \geq 6$. Let $V(Q)=\left\{v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$. Assign an edge-coloring θ with three colors to G as follows: $\theta\left(u_{1} v\right)=1 ; \theta\left(u_{2} v\right)=2 ; \theta\left(u_{3} v\right)=3 ; \theta\left(w_{1} w_{n-4}\right)=3$ if n is even, $\theta\left(w_{1} w_{n-4}\right)=2$ if n is odd; color the sequence $w_{1} v w_{2} w_{3} \cdots w_{n-4}$ alternately with 1 and 2 starting with $\theta\left(w_{1} v\right)=1$; and color the remaining edges arbitrarily with 1 and 2 . It is not difficult to check that θ is a proper-path coloring of G. Thus, $p c(G)=3$. Suppose G has a strong proper coloring θ, we have $\theta\left(u_{1} v\right) \neq \theta\left(u_{2} v\right) \neq \theta\left(u_{3} v\right) \neq \theta\left(w_{1} v\right)$, and so $\operatorname{spc}(G) \geq 4$. On the other hand, there exists a strong proper coloring θ^{\prime} of G with four colors, as follows: $\theta^{\prime}\left(u_{1} v\right)=1, \theta^{\prime}\left(u_{2} v\right)=2$, $\theta^{\prime}\left(u_{3} v\right)=3$, and color all edges of $E(Q)$ with 4 . Therefore, we have $\operatorname{spc}(G)=4$.

Assume that $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right) \geq 4$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq$ 2 , and say $u \in N_{Q}\left(u_{1}\right) \backslash\{v\}$. Let $V(Q)=\left\{u, v, w_{1}, w_{2}, \ldots, w_{n-5}\right\}$ with $n \geq 6$. The following edge-coloring θ with two colors makes G properly connected: $\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=$ $\theta(u v)=1, \theta\left(u_{3} v\right)=2$, color the sequence $v w_{1} w_{2} \cdots w_{n-5} u u_{1}$ alternately with 2 and 1 starting with $\theta\left(v w_{1}\right)=2$, and color the remaining edges arbitrarily with 1 and 2 . Thus, $p c(G)=2$. Suppose G has a strong proper coloring θ, we have $\theta\left(u_{1} v\right) \neq \theta\left(u_{2} v\right) \neq \theta\left(u_{3} v\right)$, and so $\operatorname{spc}(G) \geq 3$. On the other hand, there exists a strong proper coloring θ^{\prime} of G with three colors, as follows: $\theta^{\prime}\left(u_{1} u\right)=\theta^{\prime}\left(u_{2} v\right)=1, \theta^{\prime}\left(u_{3} v\right)=2, \theta^{\prime}\left(u_{1} v\right)=3$, and color all edges of $E(Q)$ with 3 and the remaining edges with 1 . Hence, $\operatorname{spc}(G)=3$.

Subcase 4.2. $\left|\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right)\right|=2$. Since $\operatorname{diam}(G)=2$, we obtain $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$, and say $v \in N_{Q}\left(u_{1}\right) \cap$ $N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)$. Without a loss of generality, we consider $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|=2$, and say $u \in\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \backslash\{v\}$. Assign an analogous edge-coloring to that presented in Subcase 4.1 to G that satisfies $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right) \geq 4$. Obviously, G is properly connected, and so $p c(G)=2$.

Assume that $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right)=5$. Suppose that there exists a strong proper coloring θ of G with two colors. Note that $u_{1} v u_{3}$ is the unique $u_{1}-u_{3}$ geodesic, and $u_{2} v u_{3}$ is the unique $u_{2}-u_{3}$ geodesic. Without a loss of generality, let $\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=1$ and $\theta\left(u_{3} v\right)=2$. Since $u_{3} v w$ is the unique $u_{3}-w$ geodesic, where $w \in V(Q) \backslash\{u, v\}$, it follows that $\theta(v w)=1$. In order to have a proper geodesic connecting u_{2} and w, we have $\theta\left(u_{2} u\right) \neq \theta(u w)$. Similarly, for the sake of having a proper geodesic between u_{1} and u_{2}, we obtain $\theta\left(u_{1} u\right) \neq \theta\left(u_{2} u\right)$. Then, $\theta(u w)=\theta\left(u_{1} u\right)$, and so there is no proper geodesic connecting u_{1} and w, which is a contradiction. Thus, $\operatorname{spc}(G) \geq 3$. Now we assign a strong proper coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u\right)=\theta^{\prime}\left(u_{1} v\right)=\theta^{\prime}\left(u_{2} v\right)=1$, $\theta^{\prime}\left(u_{2} u\right)=\theta^{\prime}\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 3 . Hence, $s p c(G)=3$.

Assume that $d_{Q}\left(u_{1}\right)+d_{Q}\left(u_{2}\right)+d_{Q}\left(u_{3}\right) \geq 6$. Suppose $d_{Q}\left(u_{3}\right)=1$. This implies that $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 3$. Without a loss of generality, we consider $d_{Q}\left(u_{1}\right) \geq 3$, and say $w \in N_{Q}\left(u_{1}\right) \backslash\{u, v\}$. The following edge-coloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} u\right)=\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=1, \theta\left(u_{2} u\right)=\theta\left(u_{3} v\right)=\theta\left(u_{1} w\right)=2$, and color all edges of $E(Q)$ with 1 and the remaining edges with 2 . Thus, $\operatorname{spc}(G)=2$. Suppose $d_{Q}\left(u_{3}\right) \geq 2$. Let $z \in N_{Q}\left(u_{3}\right) \backslash\{v\}$, where $u=z$ is possible. Assign an edgecoloring θ with two colors to G as follows: $\theta\left(u_{1} u\right)=\theta\left(u_{1} v\right)=\theta\left(u_{2} v\right)=\theta\left(u_{3} z\right)=1$, $\theta\left(u_{2} u\right)=\theta\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Obviously, θ is a strong proper coloring of G, and $\operatorname{sospc}(G)=2$.

Subcase 4.3. $\left|\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right)\right| \geq 3$, and let $\left\{w_{1}, w_{2}, w_{3}\right\} \subseteq\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right) \cup\left(N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right) \cup\left(N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right)$. Up to isomorphism, we only need to consider the following two cases.

Let $\left\{u_{1} w_{1}, u_{1} w_{2}, u_{2} w_{1}, u_{2} w_{3}, u_{3} w_{2}, u_{3} w_{3}\right\} \subseteq E[V(F), V(Q)]$. Assign an edge-coloring θ with two colors to G such that G is strongly properly connected: $\theta\left(u_{1} w_{1}\right)=\theta\left(u_{2} w_{3}\right)=$
$\theta\left(u_{3} w_{2}\right)=1, \theta\left(u_{1} w_{2}\right)=\theta\left(u_{2} w_{1}\right)=\theta\left(u_{3} w_{3}\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Hence, $p c(G)=\operatorname{spc}(G)=2$.

Let $\left\{u_{1} w_{1}, u_{1} w_{2}, u_{1} w_{3}, u_{2} w_{1}, u_{2} w_{2}, u_{2} w_{3}, u_{3} w_{1}\right\} \subseteq E[V(F), V(Q)]$. The following edgecoloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} w_{2}\right)=\theta\left(u_{2} w_{3}\right)=$ $\theta\left(u_{3} w_{1}\right)=1, \theta\left(u_{1} w_{1}\right)=\theta\left(u_{2} w_{1}\right)=\theta\left(u_{2} w_{2}\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Thus, $p c(G)=s p c(G)=2$.

Theorem 4. Let G be a connected graph of order $n \geq 5, \operatorname{diam}(G) \geq 3$, and $\omega(G)=n-3$. Let Q be a maximum clique of G and $V(G) \backslash V(Q)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then, either $p c(G)=\operatorname{spc}(G)=2$ or one of the following holds:
(i) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=0$, and $d_{Q}\left(u_{2}\right)=1$.
(ii) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=0$, and $d_{Q}\left(u_{2}\right) \geq 2$.
(iii) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), \min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=1, d_{Q}\left(u_{2}\right)=$ $0, N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right) \neq V(Q)$, and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$.
(iv) $5 \leq n \leq 6, G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{3}\right)=\{v\}$, and $d_{Q}\left(u_{2}\right)=0$.
(v) $n \geq 7, G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{3}\right)=\{v\}$, and $d_{Q}\left(u_{2}\right)=0$.
(vi) $G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), d_{Q}\left(u_{2}\right) \geq 1, N_{Q}\left(u_{1}\right)=N_{Q}\left(u_{3}\right)=$ $\{v\}, N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$, and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{2}\right) \neq V(Q)$.
(vii) $5 \leq n \leq 6, G[V(G) \backslash V(Q)] \cong 3 K_{1}, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing, \mid N_{Q}\left(u_{1}\right) \cap$ $N_{Q}\left(u_{2}\right) \mid=1$, and $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$.
(viii) $n=6, G[V(G) \backslash V(Q)] \cong 3 K_{1}, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing,\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|=$ $1, d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$, and $d_{Q}\left(u_{3}\right)=2$.
(ix) $n \geq 7, G[V(G) \backslash V(Q)] \cong 3 K_{1}, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing,\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|=$ $1, d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$, and $d_{Q}\left(u_{3}\right) \geq 1$.
(x) $\quad G[V(G) \backslash V(Q)] \cong 3 K_{1}, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing,\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|=1$, $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing, d_{Q}\left(u_{1}\right)=2$, and $d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$.
Moreover, we have $p c(G)=2$ and $\operatorname{spc}(G)=3$ for (ii), (iii), (v), (vi), (viii), (ix), and (x) and $p c(G)=\operatorname{spc}(G)=3$ for (i), (iv), and (vii).

Proof. Let $F=G[V(G) \backslash V(Q)]$, and let θ be an edge-coloring of G. We prove this theorem by the following two cases.

Case 1. $\operatorname{diam}(G)=3$. We distinguish the following four subcases by analyzing the structure of F.

Subcase 1.1. $F \cong K_{3}$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1 . Assign an edge-coloring θ with two colors to G as follows: color all edges of $E(F)$ and $E(Q)$ with 1, and color all edges of $E[V(F), V(Q)]$ with 2 . It is obvious that θ is a strong proper coloring of G, and so $\operatorname{spc}(G)=2$.

Subcase 1.2. $F \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=0$. Suppose $d_{Q}\left(u_{2}\right)=1$, and let $N_{Q}\left(u_{2}\right)=\{v\}$. Then, $\operatorname{spc}(G) \geq p c(G) \geq 3$ by Proposition 2 . Now we define a strong proper coloring θ of G with three colors as follows: $\theta\left(u_{1} u_{2}\right)=1$, $\theta\left(u_{2} u_{3}\right)=2, \theta\left(u_{2} v\right)=3$, and color all edges of $E(Q)$ with 1 . Thus, $p c(G)=\operatorname{spc}(G)=3$. Suppose $d_{Q}\left(u_{2}\right) \geq 2$, and let $u, v \in N_{Q}\left(u_{2}\right)$. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} u\right)=\theta(v w)=1$ for any $w \in V(Q) \backslash\{u, v\}, \theta\left(u_{2} u_{3}\right)=$ $\theta\left(u_{2} v\right)=\theta(u v)=\theta(u w)=2$ for any $w \in V(Q) \backslash\{u, v\}$, and color the remaining edges arbitrarily with 1 and 2 . We can check that G is properly connected with the above edgecoloring, and so $p c(G)=2$. If G is strongly properly connected with an edge-coloring θ, then $\theta\left(u_{1} u_{2}\right) \neq \theta\left(u_{2} u_{3}\right) \neq \theta\left(u_{2} u\right)$. Thus, $s p c(G) \geq 3$. Assign a strong proper coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=1, \theta^{\prime}\left(u_{2} u_{3}\right)=2$, and color all edges of $E[V(F), V(Q)]$ with 3 and all edges of $E(Q)$ with 1 . Thus, $\operatorname{spc}(G)=3$.

Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=0$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{3}\right)=0$ and $d_{Q}\left(u_{1}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, it follows that $d_{Q}\left(u_{2}\right) \geq 1$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1. The following edge-
coloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} u_{2}\right)=1, \theta\left(u_{2} u_{3}\right)=2$, and color all edges of $E(Q)$ with 2 and all edges of $E[V(F), V(Q)]$ with 1 . Hence, $s p c(G)=2$.

Assume that $d_{Q}\left(u_{1}\right) \geq 1$ and $d_{Q}\left(u_{3}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, it follows that $d_{Q}\left(u_{2}\right)=$ 0 and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right) \neq V(Q)$. Observe that G is traceable, and we have $p c(G)=2$ by Proposition 1. Now, we only consider the strong proper connection number of graph G under this assumption.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$ and $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=1$. Without a loss of generality, we consider $d_{Q}\left(u_{1}\right)=1$, and say $N_{Q}\left(u_{1}\right)=\{u\}$. If there exists a strong proper coloring θ of G with two colors, then $\theta\left(u_{1} u_{2}\right) \neq \theta\left(u_{2} u_{3}\right)$. Without a loss of generality, let $\theta\left(u_{1} u_{2}\right)=1$ and $\theta\left(u_{2} u_{3}\right)=2$. Note that $u_{2} u_{1} u$ is the unique $u_{2}-u$ geodesic, and $u_{2} u_{3} v$ is the unique $u_{2}-v$ geodesic for any $v \in N_{Q}\left(u_{3}\right)$; then, $\theta\left(u_{1} u\right)=2$ and $\theta\left(u_{3} v\right)=1$. Since $u_{1} u v$ is the unique $u_{1}-v$ geodesic for any $v \in N_{Q}\left(u_{3}\right)$, we have $\theta(u v)=1$. There is no proper geodesic between u_{3} and u, which is a contradiction. Thus, $\operatorname{spc}(G) \geq 3$. On the other hand, we assign a strong proper coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=\theta^{\prime}\left(u_{3} v\right)=1$ for any $v \in N_{Q}\left(u_{3}\right), \theta^{\prime}\left(u_{2} u_{3}\right)=\theta^{\prime}\left(u_{1} u\right)=2$, and color all edges of $E(Q)$ with 3 . Hence, $\operatorname{spc}(G)=3$.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$ and $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Let $N_{Q}\left(u_{1}\right)=$ $\left\{w_{1}, w_{2}, \cdots, w_{t}\right\}$ and $N_{Q}\left(u_{3}\right)=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$, where $t+k<n-3$. Assign an edgecoloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(w_{1} v_{1}\right)=\theta\left(u_{3} v_{1}\right)=\theta\left(u_{3} v_{i}\right)=$ $\theta\left(w_{2} v_{i}\right)=1$ for $2 \leq i \leq k, \theta\left(u_{2} u_{3}\right)=\theta\left(w_{1} v_{k}\right)=\theta\left(u_{1} w_{1}\right)=\theta\left(u_{1} w_{j}\right)=\theta\left(v_{1} w_{j}\right)=2$ for $2 \leq j \leq t, \theta\left(v_{1} w\right)=2$ and $\theta\left(w_{1} w\right)=1$ for any $w \in V(Q) \backslash\left\{N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right)\right\}$, and color the remaining edges arbitrarily with 1 and 2 . It is clear that θ is a strong proper coloring of G, and so $\operatorname{spc}(G)=2$.

Suppose $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$, and let $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$. Consider $d_{Q}\left(u_{1}\right)=$ $d_{Q}\left(u_{3}\right)=1$. Color $u_{1} u_{2}$ and all edges of $E(Q)$ with 1 , and color $u_{2} u_{3}, u_{1} v$ and $u_{3} v$ with 2 . Obviously, the above edge-coloring makes G strongly properly connected. Thus, $\operatorname{spc}(G)=$ 2. Consider $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=1$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Without a loss of generality, let $d_{Q}\left(u_{1}\right)=1$ and $d_{Q}\left(u_{3}\right) \geq 2$. Assign a strong proper coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} u_{3}\right)=\theta\left(u_{3} v\right)=1, \theta\left(u_{1} v\right)=\theta\left(u_{3} w\right)=2$ for any $w \in N_{Q}\left(u_{3}\right) \backslash\{v\}$, and color all edges of $E(Q)$ with 1. Hence, $\operatorname{spc}(G)=2$. Consider $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Allocate a strong proper coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} u_{3}\right)=\theta\left(u_{3} v\right)=1$, and color all edges of $E(Q)$ with 1 and the remaining edges with 2 . Thus, $\operatorname{spc}(G)=2$.

Subcase 1.3. $F \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$. Since G is connected, we have $d_{Q}\left(u_{3}\right) \geq 1$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1$. Assume that $d_{Q}\left(u_{2}\right)=0$. Since $\operatorname{diam}(G)=3$, it follows that $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$, and let $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$.

Suppose $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=1$. If $n=5$, then $G \cong G_{3}$, where G_{3} is displayed in Figure 2. Hence, $p c(G)=\operatorname{spc}(G)=3$. If $n=6$, then $G \cong G_{4}$, where G_{4} is shown in Figure 2. Thus, $p c(G)=s p c(G)=3$. Now, we consider $n \geq$ 7. Let $V(Q)=$ $\left\{w_{1}, w_{2}, \ldots, w_{n-4}, v\right\}$. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} u_{2}\right)=$ $\theta\left(u_{3} v\right)=\theta\left(w_{n-4} w_{1}\right)=1, \theta\left(u_{1} v\right)=\theta\left(w_{2} v\right)=2$, color the sequence $v w_{1} w_{2} \cdots w_{n-4} v$ alternately with 1 and 2 starting with $\theta\left(v w_{1}\right)=1$, and color the remaining edges arbitrarily with 1 and 2 . We can verify that θ is a proper-path coloring of G. Thus, $p c(G)=2$. If G has a strong proper coloring θ, then $\theta\left(u_{1} v\right) \neq \theta\left(u_{3} v\right) \neq \theta\left(v w_{1}\right)$, and so $\operatorname{spc}(G) \geq 3$. On the other hand, there exists a strong proper coloring θ^{\prime} of G with three colors: assign 1 to $u_{1} u_{2}$ and $u_{3} v$, assign 2 to $u_{1} v$, and assign 3 to all edges of $E(Q)$. Therefore, $\operatorname{spc}(G)=3$.

Figure 2. The graphs G_{3} and G_{4} with a strong proper coloring.

Suppose $d_{Q}\left(u_{1}\right)=1$ and $d_{Q}\left(u_{3}\right) \geq 2$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1. Allocate an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} v\right)=$ $\theta\left(u_{3} w\right)=1$ for any $w \in N_{Q}\left(u_{3}\right) \backslash\{v\}, \theta\left(u_{1} u_{2}\right)=\theta\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 2. Obviously, θ is a strong proper coloring of G, and $\operatorname{sospc}(G)=2$.

Suppose $d_{Q}\left(u_{1}\right) \geq 2$ and $d_{Q}\left(u_{3}\right)=1$. Observe that G is traceable, and we obtain $p c(G)=2$ by Proposition 1. The following edge-coloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} v\right)=\theta\left(u_{1} w_{1}\right)=1$ for any $w_{1} \in N_{Q}\left(u_{1}\right) \backslash\{v\}, \theta\left(u_{1} u_{2}\right)=$ $\theta\left(u_{3} v\right)=2$, and color all edges incident with v in $E(Q)$ with 1 and the remaining edges with 2. Hence, $s p c(G)=2$.

Suppose $d_{Q}\left(u_{1}\right) \geq 2$ and $d_{Q}\left(u_{3}\right) \geq 2$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1. Define a strong proper coloring θ of G with two colors as follows: $\theta\left(u_{1} v\right)=1, \theta\left(u_{1} u_{2}\right)=\theta\left(u_{3} v\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Thus, $\operatorname{spc}(G)=2$.

Assume that $d_{Q}\left(u_{2}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, it follows that $\min \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|\right.$, $\left.\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Suppose $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\} \geq 1$. Without a loss of generality, we consider $\left.\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$ and $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right| \geq$ 1 , and say $v \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$. Observe that G is traceable, and we have $p c(G)=2$ by Proposition 1. Now, we only consider the strong proper connection number of graph G under this supposition.

We first consider $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right| \geq 2$. The following edge-coloring θ with two colors makes G strongly properly connected: color $u_{1} u_{2}, u_{3} v$ and all edges of $E(Q)$ with 2, and color the remaining edges with 1 . Hence, $\operatorname{spc}(G)=2$.

Next, we consider $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|=1$. Let $d_{Q}\left(u_{1}\right) \geq 2$. Assign a strong proper coloring θ with two colors to G : color $u_{1} v$ and all edges of $E(Q)$ with 1, and color the remaining edges with 2 . Hence, $\operatorname{spc}(G)=2$. Let $d_{Q}\left(u_{3}\right) \geq 2$. Define a strong proper coloring θ of G with two colors as follows: color $u_{1} u_{2}, u_{3} v$ and all edges of $E(Q)$ with 2, and color the remaining edges with 1 . Thus, $\operatorname{spc}(G)=2$. Let $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=1$ and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{2}\right)=V(Q)$. Allocate an edge-coloring θ with two colors to G : color $u_{1} u_{2}$, $u_{1} v$ and all edges of $E(Q)$ with 1 , and color the remaining edges with 2 . We can check that G is strongly properly connected with the above edge-coloring, and so $\operatorname{spc}(G)=2$. Let $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=1$ and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{2}\right) \neq V(Q)$. If θ is a strong proper coloring of G, then $\theta\left(u_{1} v\right) \neq \theta\left(u_{3} v\right) \neq \theta(v w)$, where $w \in V(Q) \backslash\left\{N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{2}\right)\right\}$. Thus, $\operatorname{spc}(G) \geq 3$. On the other hand, there exists an edge-coloring θ^{\prime} with three colors such that G is strongly properly connected: color $u_{1} v$ with 1 and all edges of $E(Q)$ with 3 , and color the remaining edges with 2 . Hence, $s p c(G)=3$.

Suppose $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Observe that G is traceable, and we have $p c(G)=2$ by Proposition 1. Assign an edge-coloring θ with two colors to G as follows: color $u_{1} u_{2}$ and all edges of $E(Q)$ with 2 , and color all edges of $E[V(F), V(Q)]$ with 1 . It is clear that θ is a strong proper coloring of G, and so $\operatorname{spc}(G)=2$.

Subcase 1.4. $F \cong 3 K_{1}$. Since $\operatorname{diam}(G)=3$, it follows that $\min \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|, \mid N_{Q}\right.$ $\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\left|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Assume that $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|, \mid N_{Q}\left(u_{1}\right) \cap\right.$ $N_{Q}\left(u_{3}\right)\left|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. The following edge-coloring θ with two colors makes G strongly properly connected: color all edges of $E(Q)$ with 2 , and color all edges of $E[V(F), V(Q)]$ with 1. Thus, $p c(G)=\operatorname{spc}(G)=2$. Assume that $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|\right.$, $\left.\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\} \geq 1$. Without a loss of generality, we consider $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right| \geq 1$, and say $u \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$.

Suppose $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=1$. If θ is a strong proper coloring of G, then $\theta\left(u_{1} u\right) \neq$ $\theta\left(u_{2} u\right) \neq \theta(u w)$, where $w \in V(Q) \backslash\{u\}$. Hence, $\operatorname{spc}(G) \geq 3$. On the other hand, there exists a strong proper coloring θ^{\prime} of G with three colors, as follows: $\theta^{\prime}\left(u_{1} u\right)=1, \theta^{\prime}\left(u_{2} u\right)=2$, and color all edges of $E(Q)$ with 3 and the remaining edges with 1 . Thus, $\operatorname{spc}(G)=3$. Next, we discuss the proper connection number of G. If $n=5$, then $G \cong G_{3}$, where G_{3} is displayed in Figure 2. Hence, $p c(G)=3$. We consider $n=6$. If $d_{Q}\left(u_{3}\right)=1$, then $G \cong G_{5}$. Thus, $p c(G)=3$. If $d_{Q}\left(u_{3}\right)=2$, then $G \cong G_{6}$. Hence, $p c(G)=2$. The graphs G_{5} and G_{6} are shown in Figure 3. Now, we consider $n \geq 7$. Let $V(Q)=\left\{u, v, w_{1}, w_{2}, \ldots, w_{n-5}\right\}$
and $v \in N_{Q}\left(u_{3}\right)$. Assign an edge-coloring θ with two colors to G as follows: $\theta\left(u_{1} u\right)=$ $\theta\left(u_{3} v\right)=\theta\left(u w_{n-6}\right)=1 ; \theta\left(u_{2} u\right)=\theta\left(w_{n-5} v\right)=2$; color $w_{n-6} v$ with 1 for $n=7$ and $w_{n-6} v$ with 2 for $n \geq 8$; color the sequence $u v w_{1} w_{2} \cdots w_{n-5} u$ alternately with 2 and 1 starting with $\theta(u v)=2$; and color the remaining edges arbitrarily with 1 and 2 . We can check that G is properly connected with the above edge-coloring, and so $p c(G)=2$.

Figure 3. The graphs G_{5} and G_{6} with a proper-path coloring.
Suppose $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 2$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 2$, and say $w \in N_{Q}\left(u_{1}\right) \backslash\{u\}$. We first consider $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$. The following edgecoloring θ with two colors makes G strongly properly connected: $\theta\left(u_{1} u\right)=1, \theta\left(u_{1} w\right)=$ $\theta\left(u_{2} u\right)=2$, color all edges of $E(Q)$ with 1 and all edges incident with u_{3} in $E[V(F), V(Q)]$ with 2, and color the remaining edges with 1 . Thus, $p c(G)=s p c(G)=2$.

Next, we consider $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$ and say $w_{1} \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$. Let $d_{Q}\left(u_{1}\right)=2$ and $d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$. The following edge-coloring θ with two colors makes G properly connected: color all edges of $E(Q)$ with 1 and the remaining edges with 2. Hence, $p c(G)=2$. If there exists a strong proper coloring θ of G with two colors, then $\theta\left(u_{1} u\right) \neq \theta\left(u_{2} u\right)$. Without a loss of generality, let $\theta\left(u_{1} u\right)=1$ and $\theta\left(u_{2} u\right)=2$. Since $u_{2} u w_{1} u_{3}$ is the unique $u_{2}-u_{3}$ geodesic, it follows that $\theta\left(u w_{1}\right)=1$ and $\theta\left(u_{3} w_{1}\right)=2$. Note that $u_{1} w_{1} u_{3}$ is the unique $u_{1}-u_{3}$ geodesic, and thus $\theta\left(u_{1} w_{1}\right)=1$. Since $u_{2} u v$ is the unique $u_{2}-v$ geodesic and $u_{3} w_{1} v$ is the unique $u_{3}-v$ geodesic, we obtain $\theta(u v)=\theta\left(w_{1} v\right)=1$, where $v \in V(Q) \backslash\left\{u, w_{1}\right\}$. There is no proper geodesic connecting u_{1} and v, which is a contradiction. Hence, $\operatorname{spc}(G) \geq 3$. On the other hand, we assign a strong proper coloring θ^{\prime} with three colors to G as follows: $\theta^{\prime}\left(u_{1} u\right)=\theta^{\prime}\left(u_{3} w_{1}\right)=1$, $\theta^{\prime}\left(u_{2} u\right)=\theta^{\prime}\left(u_{1} w_{1}\right)=2$, and color all edges of $E(Q)$ with 3 . Therefore, $\operatorname{spc}(G)=3$. Let $d_{Q}\left(u_{1}\right) \geq 3$. The following edge-coloring θ of G with two colors makes G strongly properly connected: $\theta\left(u_{1} u\right)=\theta\left(u_{1} w_{1}\right)=1, \theta\left(u_{2} u\right)=\theta\left(u_{3} w_{1}\right)=\theta\left(u_{1} w\right)=2$, where $w \in N_{Q}\left(u_{1}\right) \backslash\left\{u, w_{1}\right\}$, and color the remaining edges with 1 . Thus, $p c(G)=s p c(G)=2$. Let $\max \left\{d_{Q}\left(u_{2}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. Without a loss of generality, we consider $d_{Q}\left(u_{2}\right) \geq 2$. Define an edge-coloring θ of G with two colors as follows: $\theta\left(u_{1} u\right)=\theta\left(u_{3} w_{1}\right)=\theta\left(u_{2} z\right)=1$, where $z \in N_{Q}\left(u_{2}\right), \theta\left(u_{1} w_{1}\right)=\theta\left(u_{2} u\right)=2$, and color all edges of $E(Q)$ with 2 and the remaining edges with 1 . Obviously, θ is a strong proper coloring of G, and so $p c(G)=\operatorname{spc}(G)=2$.

Case 2. $\operatorname{diam}(G) \geq 4$. Since $\operatorname{diam}(G) \geq 4$, it follows that $F \cong P_{3}$ or $F \cong K_{2}+$ K_{1}. Assume that $F \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Since $\operatorname{diam}(G) \geq 4$, we have $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=0, \max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 1$, and $d_{Q}\left(u_{2}\right)=0$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1$ and $d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=0$. Note that G is traceable, and we have $p c(G)=2$ by Proposition 1. The following edge-coloring θ with two colors makes G strongly properly connected: color $u_{1} u_{2}$ and all edges of $E(Q)$ with 2 , and color the remaining edges with 1 . Thus, $\operatorname{spc}(G)=2$.

Assume that $F \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$. Since $\operatorname{diam}(G) \geq 4$, we have $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\}=0, \max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$, and $d_{Q}\left(u_{3}\right) \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1, d_{Q}\left(u_{2}\right)=0$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$. Observe that G is traceable, and we obtain $p c(G)=2$ by Proposition 1. Assign a strong proper coloring θ with two colors to G as follows: color $u_{1} u_{2}$ and all edges of $E(Q)$ with 2 , and color the remaining edges with 1 . Hence, $s p c(G)=2$.

3. Rainbow Connection and Clique Number

Kemnitz and Schiermeyer [18] considered the rainbow connection number of graph G of order $n, \operatorname{diam}(G)=2$, and $\omega(G)=n-i$ for $2 \leqslant i \leqslant 3$. In this section, we investigate the rainbow connection number of graph G of order $n, \operatorname{diam}(G) \geq 3$, and $\omega(G)=n-i$ for $2 \leqslant i \leqslant 3$.

Theorem 5. Let G be a connected graph of order $n, \operatorname{diam}(G) \geq 3$, and $\omega(G)=n-2$. Let Q be a maximum clique of G and $V(G) \backslash V(Q)=\left\{u_{1}, u_{2}\right\}$. Then, $r c(G)=3$.

Proof. Let $F=G[V(G) \backslash V(Q)]$ and let θ be an edge-coloring of G. Since $\operatorname{diam}(G) \geq 3$, we have $r c(G) \geq \operatorname{diam}(G) \geq 3$. Assume that $F \cong K_{2}$. Since $\operatorname{diam}(G) \geq 3$, we obtain $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$ and $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\}=0$. The following edge-coloring θ with three colors makes G rainbow-connected: color $u_{1} u_{2}$ with 1 and all edges of $E[V(F), V(Q)]$ with 2 , and color all edges of $E(Q)$ with 3 . Thus, $r c(G)=3$.

Assume that $F \cong 2 K_{1}$. Since G is a connected graph with $\operatorname{diam}(G) \geq 3$, it follows that $d_{Q}\left(u_{1}\right) \geq 1, d_{Q}\left(u_{2}\right) \geq 1$ and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)=\varnothing$. Assign an edge-coloring θ with three colors to G as follows: assign 1 to all edges that are incident with u_{1}, assign 2 to all edges that are incident with u_{2}, and assign 3 to all edges of $E(Q)$. It is not difficult to check that G is rainbow-connected with the above edge-coloring, and so $r c(G)=3$.

Theorem 6. Let G be a connected graph of order $n, \operatorname{diam}(G) \geq 3$, and $\omega(G)=n-3$. Let Q be a maximum clique of G and $V(G) \backslash V(Q)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then, either $r c(G)=3, \operatorname{or} r c(G)=4$ if and only if one of the following holds.
(i) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=0$, and $d_{Q}\left(u_{2}\right)=1$.
(ii) $G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), d_{Q}\left(u_{2}\right)=0, d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=1$, and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$.
(iii) $G[V(G) \backslash V(Q)] \cong 3 K_{1}, N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing,\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|=1$, and $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$.
(iv) $G[V(G) \backslash V(Q)] \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G), d_{Q}\left(u_{1}\right) \geq 1$, and $d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=0$.
(v) $G[V(G) \backslash V(Q)] \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G), d_{Q}\left(u_{1}\right) \geq 1, d_{Q}\left(u_{2}\right)=0, d_{Q}\left(u_{3}\right) \geq 1$, and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$.

Proof. Let $F=G[V(G) \backslash V(Q)]$, and let θ be an edge-coloring of G. We prove this theorem by the following two cases.

Case 1. $\operatorname{diam}(G)=3$. We have $r c(G) \geq \operatorname{diam}(G)=3$. We distinguish the following four subcases by analyzing the structure of F.

Subcase 1.1. $F \cong K_{3}$. The following edge-coloring θ with three colors makes G rainbow-connected: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} u_{3}\right)=\theta\left(u_{1} u_{3}\right)=1$, and color all edges of $E(Q)$ with 3 and all edges of $E[V(F), V(Q)]$ with 2 . Thus, $r c(G)=3$.

Subcase 1.2. $F \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Assume that $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=0$. Suppose $d_{Q}\left(u_{2}\right)=1$, and say $N_{Q}\left(u_{2}\right)=\{u\}$. If an edge-coloring θ is a rainbow coloring of G, then $\theta\left(u_{1} u_{2}\right) \neq \theta\left(u_{2} u_{3}\right) \neq \theta\left(u_{2} u\right) \neq \theta(u v)$, where $v \in V(Q) \backslash\{u\}$. Hence, $r c(G) \geq 4$. Allocate a rainbow coloring θ^{\prime} with four colors to G as follows: $\theta^{\prime}\left(u_{1} u_{2}\right)=1, \theta^{\prime}\left(u_{2} u_{3}\right)=2$, $\theta^{\prime}\left(u_{2} u\right)=3$, and color all edges of $E(Q)$ with 4 . Thus, $r c(G)=4$. Suppose $d_{Q}\left(u_{2}\right) \geq 2$, and say $u, v \in N_{Q}\left(u_{2}\right)$. The following edge-coloring θ with three colors makes G rainbowconnected: $\theta\left(u_{1} u_{2}\right)=\theta\left(u_{2} u\right)=1, \theta\left(u_{2} u_{3}\right)=\theta\left(u_{2} v\right)=2$, and color the remaining edges with 3. Hence, $r c(G)=3$.

Assume that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=0$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{3}\right)=0$ and $d_{Q}\left(u_{1}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, we have $d_{Q}\left(u_{2}\right) \geq 1$. Define an edge-coloring θ of G with three colors as follows: $\theta\left(u_{1} u_{2}\right)=1, \theta\left(u_{2} u_{3}\right)=2$, and color all edges of $E[V(F), V(Q)]$ with 1 and all edges of $E(Q)$ with 3 . We can check that G is rainbow-connected with the above edge-coloring, and so $r c(G)=3$.

Assume that $d_{Q}\left(u_{1}\right) \geq 1$ and $d_{Q}\left(u_{3}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, it follows that $d_{Q}\left(u_{2}\right)=$ 0 and $N_{Q}\left(u_{1}\right) \cup N_{Q}\left(u_{3}\right) \neq V(Q)$. The following edge-coloring θ with three colors makes
G rainbow-connected: $\theta\left(u_{1} u_{2}\right)=1, \theta\left(u_{2} u_{3}\right)=2$, assign 3 to all edges of $E(Q)$, assign 2 to the edges of $E[V(F), V(Q)]$ which are incident with u_{1}, and assign 1 to the edges of $E[V(F), V(Q)]$ which are incident with u_{3}. Thus, $r c(G)=3$.

Subcase 1.3. $F \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$. Since G is connected, we obtain $d_{Q}\left(u_{3}\right) \geq 1$ and $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1$.

Assume that $d_{Q}\left(u_{2}\right)=0$. Since $\operatorname{diam}(G)=3$, we have $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right) \neq \varnothing$, and say $u \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$. Suppose $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{3}\right)=1$. If there exists a rainbow coloring θ of G with three colors, then $\theta\left(u_{2} u_{1}\right) \neq \theta\left(u_{1} u\right) \neq \theta\left(u u_{3}\right)$. Without a loss of generality, let $\theta\left(u_{2} u_{1}\right)=1, \theta\left(u_{1} u\right)=2$ and $\theta\left(u u_{3}\right)=3$. In order to have a rainbow path connecting u_{2} and v for any $v \in V(Q) \backslash\{u\}$, let $\theta(u v)=3$. There is no rainbow path between u_{3} and v, which is a contradiction. Thus, $r c(G) \geq 4$. On the other hand, the following edge-coloring θ^{\prime} with four colors makes G rainbow-connected: $\theta^{\prime}\left(u_{2} u_{1}\right)=1, \theta^{\prime}\left(u_{1} u\right)=2, \theta^{\prime}\left(u u_{3}\right)=3$, and color all edges of $E(Q)$ with 4 . Hence, $r c(G)=4$. Suppose $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 2$. We first consider $d_{Q}\left(u_{1}\right) \geq 2$, and say $v \in N_{Q}\left(u_{1}\right) \backslash\{u\}$. Assign an edge-coloring θ with three colors to G as follows: $\theta\left(u_{2} u_{1}\right)=1, \theta\left(u_{1} u\right)=2, \theta\left(u_{3} u\right)=\theta\left(u_{1} v\right)=3$, and color the remaining edges with 2 . It is obvious that G is rainbow-connected with the above edge-coloring, and so $r c(G)=3$. Next, we consider $d_{Q}\left(u_{3}\right) \geq 2$, and say $w \in N_{Q}\left(u_{3}\right) \backslash\{u\}$. Define a rainbow coloring θ of G with three colors as follows: $\theta\left(u_{2} u_{1}\right)=1, \theta\left(u_{1} u\right)=\theta\left(u_{3} w\right)=2$, $\theta\left(u_{3} u\right)=3$, and color all edges of $E(Q)$ with 3 and the remaining edges with 2 . Thus, $r c(G)=3$.

Assume that $d_{Q}\left(u_{2}\right) \geq 1$. Since $\operatorname{diam}(G)=3$, we obtain $\min \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|, \mid N_{Q}\right.$ $\left.\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right) \mid\right\}=0$. Suppose $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\} \geq 1$. Without a loss of generality, let $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right| \geq 1$ and $\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|=0$. Let $u \in$ $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)$ and $v \in N_{Q}\left(u_{2}\right)$. The following edge-coloring θ with three colors makes G rainbow-connected: $\theta\left(u_{1} u\right)=\theta\left(u_{2} v\right)=1, \theta\left(u_{3} u\right)=2$, and color the remaining edges with 3. Hence, $r c(G)=3$. Suppose $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Let $w \in N_{Q}\left(u_{1}\right), v \in N_{Q}\left(u_{2}\right)$ and $u \in N_{Q}\left(u_{3}\right)$, where $w=v$ is possible. Allocate an edgecoloring θ with three colors to $G: \theta\left(u_{1} u_{2}\right)=\theta\left(u_{3} u\right)=1, \theta\left(u_{1} w\right)=\theta\left(u_{2} v\right)=2$, and color the remaining edges with 3 . We can verify that G is rainbow-connected with the above edge-coloring, and so $r c(G)=3$.

Subcase 1.4. $F \cong 3 K_{1}$. Since $\operatorname{diam}(G)=3$, it follows that $\min \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|, \mid N_{Q}\right.$ $\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\left|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Assume that $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|, \mid N_{Q}\left(u_{1}\right) \cap\right.$ $N_{Q}\left(u_{3}\right)\left|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\}=0$. Let $u \in N_{Q}\left(u_{1}\right), v \in N_{Q}\left(u_{2}\right)$ and $w \in N_{Q}\left(u_{3}\right)$. The following edge-coloring θ with three colors makes G rainbow-connected: $\theta\left(u_{1} u\right)=\theta(v w)=$ $\theta(v z)=1 ; \theta(u v)=\theta\left(u_{3} w\right)=\theta(u z)=2 ; \theta\left(u_{2} v\right)=\theta(u w)=\theta(w z)=3$ for any $z \in V(Q) \backslash\{u, v, w\}$; and color the remaining edges with 1 . Thus, $r c(G)=3$.

Assume that $\max \left\{\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right|,\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)\right|,\left|N_{Q}\left(u_{2}\right) \cap N_{Q}\left(u_{3}\right)\right|\right\} \geq 1$. Without a loss of generality, let $\left|N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)\right| \geq 1$, and say $u \in N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{2}\right)$. Suppose $d_{Q}\left(u_{1}\right)=d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=1$. If an edge-coloring θ is a rainbow coloring of G, then $\theta\left(u_{1} u\right) \neq \theta\left(u_{2} u\right) \neq \theta(u v) \neq \theta\left(u_{3} v\right)$, where $\{v\}=N_{Q}\left(u_{3}\right)$. Thus, $r c(G) \geq 4$. On the other hand, we define a rainbow coloring θ^{\prime} of G with four colors as follows: $\theta^{\prime}\left(u_{1} u\right)=1, \theta^{\prime}\left(u_{2} u\right)=2, \theta^{\prime}\left(u_{3} v\right)=3$, and color all edges of $E(Q)$ with 4 . Hence, $r c(G)=4$. Suppose $\max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 2$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 2$, and say $w \in N_{Q}\left(u_{1}\right) \backslash\{u\}$. Assign an edge-coloring θ with three colors to $G: \theta\left(u_{1} u\right)=\theta\left(u_{2} u\right)=1$; $\theta\left(u_{1} w\right)=\theta\left(u_{3} v\right)=2$, where $v \in N_{Q}\left(u_{3}\right)$ and $v=w$ is possible; and color the remaining edges with 3 . Obviously, the edge-coloring θ is a rainbow coloring of G, and so $r c(G)=3$. Suppose $d_{Q}\left(u_{3}\right) \geq 2$, and say $v_{1}, v_{2} \in N_{Q}\left(u_{3}\right)$. The following edge-coloring θ with three colors makes G rainbow-connected: $\theta\left(u_{1} u\right)=\theta\left(u_{3} v_{1}\right)=1, \theta\left(u_{2} u\right)=\theta\left(u_{3} v_{2}\right)=2$, and color the remaining edges with 3 . Thus, $r c(G)=3$.

Case 2. $\operatorname{diam}(G) \geq 4$. We obtain $r c(G) \geq \operatorname{diam}(G) \geq 4$. Since $\operatorname{diam}(G) \geq 4$, it follows that $F \cong P_{3}$ or $F \cong K_{2}+K_{1}$. Assume that $F \cong P_{3}$, where $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Since $\operatorname{diam}(G) \geq 4$, we have $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\}=0, \max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{3}\right)\right\} \geq 1$, and $d_{Q}\left(u_{2}\right)=$ 0 . Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1$ and $d_{Q}\left(u_{2}\right)=d_{Q}\left(u_{3}\right)=0$. Allocate a rainbow
coloring θ with four colors to G as follows: color $u_{1} u_{2}$ with 2 and $u_{2} u_{3}$ with 1 , and color all edges of $E[V(F), V(Q)]$ with 3 and all edges of $E(Q)$ with 4 . Therefore, $r c(G)=4$.

Assume that $F \cong K_{2}+K_{1}$, where $u_{1} u_{2} \in E(G)$. Since $\operatorname{diam}(G) \geq 4$, it follows that $\min \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\}=0, \max \left\{d_{Q}\left(u_{1}\right), d_{Q}\left(u_{2}\right)\right\} \geq 1$, and $d_{Q}\left(u_{3}\right) \geq 1$. Without a loss of generality, let $d_{Q}\left(u_{1}\right) \geq 1, d_{Q}\left(u_{2}\right)=0$, and $N_{Q}\left(u_{1}\right) \cap N_{Q}\left(u_{3}\right)=\varnothing$. The following edgecoloring θ with four colors makes G rainbow-connected: $\theta\left(u_{1} u_{2}\right)=1, \theta\left(u_{1} u\right)=2$, and $\theta\left(u_{3} v\right)=3$, where $u \in N_{Q}\left(u_{1}\right)$ and $v \in N_{Q}\left(u_{3}\right)$, and color the remaining edges with 4 . Hence, $r c(G)=4$.

Author Contributions: Conceptualization, Y.X.; Methodology, Y.M.; Writing—original draft, X.Z.; Writing-review and editing, X.Z. and Y.X.; Supervision, Y.M.; Funding acquisition, Y.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Foundation of Henan Educational Committee (22A110003). Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: Berlin, Germany, 2008.
2. Chartrand, G.; Johns, G.L.; McKeon, K.A.; Zhang, P. Rainbow connection in graphs. Math. Bohem. 2008, 133, 85-98. [CrossRef]
3. Krivelevich, M.; Yuster, R. The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J. Graph Theory 2010, 63, 185-191. [CrossRef]
4. Liu, H.; Mestre, Â.; Sousa, T. Total rainbow k-connection in graphs. Discrete Appl. Math. 2014, 174, 92-101. [CrossRef]
5. Schiermeyer, I. Rainbow connection and minimum degree. Discrete Appl. Math. 2013, 161, 1784-1787. [CrossRef]
6. Huang, X.; Li, X.; Shi, Y.; Yue, J.; Zhao, Y. Rainbow connections for outerplanar graphs with diameter 2 and 3. Appl. Math. Comput. 2014, 242, 277-280. [CrossRef]
7. Li, H.; Ma, Y.; Li, X. The vertex-rainbow connection number of some graph operations. Discuss. Math. Graph Theory 2021, 41, 513-530. [CrossRef]
8. Ma, Y.; Nie, K.; Jin, F.; Wang, C. Total rainbow connection numbers of some special graphs. Appl. Math. Comput. 2019, 360, 213-220. [CrossRef]
9. Li, X.; Shi, Y.; Sun, Y. Rainbow connections of graphs: A survey. Graphs Combin. 2013, 29, 1-38. [CrossRef]
10. Li, X.; Sun, Y. Rainbow Connections of Graphs; SpringerBriefs in Math.; Springer: New York, NY, USA, 2012.
11. Borozan, V.; Fujita, S.; Gerek, A.; Magnant, C.; Manoussakis, Y.; Montero, L.; Tuza, Z. Proper connection of graphs. Discrete Math. 2012, 312, 2550-2560. [CrossRef]
12. Andrews, E.; Lumduanhom, C.; Laforge, E.; Zhang, P. On proper-path colorings in graphs. J. Combin. Math. Combin. Comput. 2016, 97, 189-207.
13. Huang, F.; Li, X.; Wang, S. Upper bounds of proper connection number of graphs. J. Comb. Optim. 2017, 34, 165-173. [CrossRef]
14. Huang, F.; Li, X.; Wang, S. Proper Connection Numbers of Complementary Graphs. Bull. Malays. Math. Sci. Soc. 2018, 41, 1199-1209. [CrossRef]
15. Li, X.; Wei, M.; Yue, J. Proper connection number and connected dominating sets. Theoret. Comput. Sci. 2015, 607, 480-487. [CrossRef]
16. Ma, Y.; Zhang, X. Graphs with (strong) proper connection numbers $m-3$ and $m-4$. Appl. Math. Comput. 2023, 445, 127843. [CrossRef]
17. Li, X.; Magnant, C. Properly Colored Notions of Connectivity—A Dynamic Survey. Theory Appl. Graphs 2015, 0, 2. [CrossRef]
18. Kemnitz, A.; Schiermeyer, I. Graphs with rainbow connection number two. Discuss. Math. Graph Theory 2011, 31, 313-320. [CrossRef]
19. Lu, Z.; Ma, Y. Graphs with vertex rainbow connection number two. Sci. China Math. 2015, 58, 1803-1810. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

