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1. Introduction

We only consider graphs that are undirected, simple, finite, and connected in this
paper. For terminology and notation that are not defined here, we refer to [1].

In 2008, Chartrand et al. [2] introduced the concept of rainbow connection. For an
edge-colored graph G, if each pair of vertices is connected by a rainbow path, where its
edges are assigned different colors, then G is said to be rainbow-connected. An edge-coloring
that makes G rainbow-connected is said to be a rainbow coloring of G. The rainbow con-

check for nection number of G, denoted by rc(G), is the smallest number of colors that are needed
updates to make G rainbow-connected. Obviously, r¢(G) = 1 if and only if G is complete, and
rc(G) > diam(G). As a natural generalization of the rainbow connection number, the con-
cept of the vertex rainbow connection number was presented by Krivelevich et al. [3], and
the concept of the total rainbow connection number was introduced by Liu et al. [4]. There
are abundant research results on this topic. In [5], Schiermeyer proved that a connected
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:Zi:g;;;;i/m'%%/ graph G with n vertices has r¢(G) < (xéﬁ + 4. Huang et al. [6] provided upper bounds of
the rainbow connection number of outerplanar graphs with small diameters. In [7], Li et al.
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connection. A path is called a proper path in an edge-colored graph if its adjacent edges
are assigned distinct colors. An edge-colored graph G is said to be properly connected
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if any two vertices are connected by a proper path, and G is said to be strongly properly
Copyright: © 2023 by the authors.  connected if every pair of vertices is connected by a proper geodesic. An edge-coloring ¢
Licensee MDPI, Basel, Switzerland. - of graph G is called a proper-path coloring if it makes G properly connected, and 6 is called
This article is an open access article 5 strong proper coloring if it makes G strongly properly connected. The proper connection
distributed under the terms and 1 her of G, denoted by pc(G), is the smallest number of colors that are needed to make
G properly connected. The strong proper connection number of G, denoted by spc(G), is
the smallest number of colors that are needed to make G strongly properly connected.
From these definitions, it is easy to establish that pc(G) = spc(G) = 1 if and only if G is
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complete. In [13,14], Huang et al. presented an upper bound for the proper connection
number of a graph in terms of the bridge-block tree of the graph and investigated the proper
connection number of the complement of a graph. Li et al. [15] used dominating sets to
study the proper connection number of a graph. Ma and Zhang [16] characterized all
connected graphs of size m with (strong) proper connection number m — 4. For more
details, we refer the reader to a survey [17].

Some results regarding the (vertex) rainbow connection numbers of graphs with a
large clique number are available; see [18,19]. These results motivated us to consider
the (strong) proper connection numbers of graphs with a large clique number. In this paper,
we mainly discuss the (strong) proper connection number of a graph G of order n and
w(G) =n —ifor1 < i < 3. Moreover, we also investigate the rainbow connection number
of a graph G of order n, diam(G) > 3 and w(G) =n —ifor2 <i < 3.

2. (Strong) Proper Connection and Clique Number

In this section, we investigate graphs with a small (strong) proper connection number
and a large clique number. We first introduce some definitions that will be used later.

A Hamiltonian path in a graph G is a path containing every vertex of G. A graph with
a Hamiltonian path is called a traceable graph. Recall that a clique of a graph is a set of
mutually adjacent vertices, and that the maximum size of a clique of graph G, i.e., the clique
number of G, is denoted w(G). For a connected graph G, we say Q is a subgraph of G
which induces a maximum clique and V(F) = V(G) \ V(Q). We say N (u) is the set of
neighbors of u in Q and dg(u) = [Np(u)|. Additionally, we say E[V(F), V(Q)] is the set of
edges of G between vertices of V(F) and vertices of V(Q). Next, we present the following
three useful propositions.

Proposition 1 ([12]). Let G be a non-complete graph. If G is traceable, then pc(G) = 2.

Proposition 2 ([12]). For a non-trivial connected graph G that contains a bridge, if b is the maxi-
mum number of bridges incident with a vertex in G , then spc(G) > pc(G) > b.

Proposition 3 ([18]). Let G be a connected graph of order n and size m. If (";1) +1<m<
(3) =1, then re(G) = 2.

As an immediate consequence of Proposition 3, we have the following Lemma.

Lemma 1. Let G be a connected graph of order n and size m. If (",) +1 < m < (4) — 1, then
pc(G) = spc(G) = 2.

Theorem 1. Let G be a connected graph of order n. If w(G) = n+1—ifori € {1,2}, then
pc(G) = spc(G) = i.

Proof. If i = 1, then w(G) = n, which implies that G is a complete graph. Thus, pc(G) =
spc(G) = 1. If i = 2, then w(G) = n — 1. Since G is connected, we obtain [E(G)| > (") +
and so (";') +1 < |E(G)| < (3) — 1. Hence, pc(G) = spc(G) = 2by Lemma 1. [

~

Theorem 2. Let G be a connected graph of order n > 4 and w(G) = n — 2. Let Q be a maxi-
mum clique of G and V(G) \ V(Q) = {uy, uz}. Then, either pc(G) = spc(G) = 2 or one of
the following holds:
(i) 4<n<5G[V(G)\V(Q)] = 2Ky and Ng(u1) = No(up) = {v}.
(i) n>6, G[V(G) \ V(Q)} ~ 2K; and NQ(ul) = NQ(Mz) = {U}

Moreover, we have pc(G) = spc(G) = 3 for (i), pc(G) = 2, and spc(G) = 3 for (ii).

Proof. Let F = G[V(G) \ V(Q)] and let 6 be an edge-coloring of G. We prove this theorem
by analyzing the structure of F.
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Case 1. F = Kj. Since G is connected, it follows that max{dg(u1),do(u2)} > 1. Note
that G is traceable, and we have pc(G) = 2 by Proposition 1. The following edge-coloring
6 with two colors makes G strongly properly connected: color u;u; and all edges of E(Q)
with 1, and color all edges of E[V(F), V(Q)] with 2. Thus, spc(G) = 2.

Case 2. F = 2Kj. Since G is connected, it follows that min{dg(u1),do(uz)} > 1.
Assume that Ng(u1) N Ng(up) = @. Observe that G is traceable, and we have pc(G) = 2
by Proposition 1. Assign an edge-coloring 6 with two colors to G as follows: color all edges
of E(Q) with 1 and all edges of E[V(F), V(Q)] with 2. It is clear that G is strongly properly
connected with the above edge-coloring. Hence, spc(G) = 2.

Assume that Ng(u1) N No(up) # @ and dg(uq) = dg(uz) = 1. Without a loss of
generality, let v € Ng(u1) N Ng(u2). If n = 4, then G = Ky 3. Hence, pc(G) = spc(G) = 3.
If n =5, then G = Gy, where G; is obtained by adding two pendant edges to a vertex of
K3. Thus, pc(G) = spc(G) = 3. Now we consider n > 6. Let V(Q) = {v,wy,wy, ..., w,—3}.
Define an edge-coloring 6 of G with two colors as follows: 6(u1v) = 6(wiw,—3) = 1;
6(upv) = 6(vw,_4) = 2; color the sequence vww; - - - w,_3v alternately with 1 and 2
starting with 6(vw;) = 1; and color the remaining edges arbitrarily with 1 and 2. We can
check that G is properly connected with the above edge-coloring, and so pc(G) = 2. If 6
is a strong proper coloring of G, then 0(u;v) # 6(upv) # 6(vw;), and thus spc(G) > 3.
On the other hand, we define a strong proper coloring 6" of G with three colors as follows:
0’ (u1v) = 1,60’ (upv) = 2, and color all edges of E(Q) with 3. Thus, spc(G) = 3.

Assume that Ng(u1) N Ng(u2) # @ and max{dg(u1),do(uz)} > 2. Without a loss
of generality, let v € No(u1) N Ng(u2) and dp(ug) > 2. Observe that G is traceable, and
we obtain pc(G) = 2 by Proposition 1. Assign an edge-coloring 6 with two colors to
G as follows: 6(u1v) = 1; 6(upv) = O(uyw) = 2 for any w € Ng(uq) \ {v}; and color
the remaining edges with 1. It is clear that 6 is a strong proper coloring of G. Hence,
spe(G) =2. O

Theorem 3. Let G be a connected graph of order n > 5, diam(G) = 2, and w(G) = n — 3. Let Q

be a maximum clique of G and V(G) \ V(Q) = {uy,up, uz}. Then, either pc(G) = spc(G) = 2

or one of the following holds:

(i)  G[V(G)\ V(Q)] = P, where ujuy, upuz € E(G), dg
1, NQ(M]) U NQ(M3) = V(Q) and NQ(Lll) N NQ(ng)

(i) n =6, G[V(G)\V(Q)] = Ky + Ky, where uju, €

(MZ% 0, min{dg(u1),dg(us)} =
E(G) and NQ(ul) = NQ(”Z) =

Ng(u3) = {o}.

(iii) n >7,G[V(G)\V(Q)] = Ky + Ky, where ujuy € E(G), and Ng(u1) = Ng(u2) =
No(us) — {0},

(iv) G[V(G)\V(Q)] = Kz + Ky, where ujuy € E(G), No(u1) N Ng(u2) N Ng(uz) = {v},
min{dg(u1),dq(uz2)} = do(uz) = 1and do(uy) +dg(u2) > 3.

(v) [ ( ) \ (Q)] & Ky + Ky, where uquy € E(G), NQ(ul) N NQ(M3) # Q, NQ(Mz) N
NQ(M3) # Q, dQ(Lﬂ) = dQ(uz) =1, dQ(u3) =2and NQ(ul) N NQ(uz) =Q@.

(vi) n= 5, G[V(G) \ V(Q)] = 3K; and Ng(u1) = No(uz) = No(u3) = {v}.

(vii) n > G[V(G) \ V(Q)} = 3K1 and NQ(ul) NQ(uz) = NQ(ng) = {’0}

(vii) G[ (G) \ V(Q)] = 3Ky, [(Ng(u1) N Ng(u2)) U (Ng(u1) N Ng(uz)) U (Ng(u2) N Ng

)‘ =1, NQ(ul) N NQ(u2) N NQ(M3) # @ and dQ(ul) + dQ(Mz) + dQ(M:},) >4

5 VIO V()] 230 (Nl Natusn) & (Vo) ool U (N (a1 Ne

(u3))| =2, Ng(u1) N Ng(u2) N Ng(uz) # @ and dQ(” ) +dq(u2) +dQ(M3) =5

Moreover, we have pc(G) = 2 and spc(G) = 3 for (i), (iii), (iv), (v), (viii), and (ix);
pc(G) = spc(G) = 3 for (ii); pc(G) = spc(G) = 4 for (vi); and pc(G) = 3 and spc(G) = 4 for
(vii).

Proof. Let F = G[V(G) \ V(Q)] and let 6 be an edge-coloring of G. We prove this theorem
by analyzing the structure of F.

Case 1. F = K3. Observe that G is traceable, and so pc(G) = 2 by Proposition 1.
The following edge-coloring 0 with two colors induces a strong proper coloring of G: color
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all edges of E(F) and E(Q) with 1, and color all edges of E[V(F), V(Q)] with 2. Thus,
spc(G) = 2.

Case 2. F = P3, where ujuy, upuz € E(G). Assume that min{dg(u1),dq(u2),do(us)} >
1. Note that G is traceable, and we have pc(G) = 2 by Proposition 1. Assign a strong proper
coloring 6 with two colors to G as follows: 8(ujuy) = 1; 6(uu3) = 2; and color all edges of
E(Q) with 1 and all edges of E[V(F), V(Q)] with 2. Hence, spc(G) = 2.

Assume that min{dg(u1),dq(u2),dg(uz)} = 0. Since diam(G) = 2, it follows that
do(ur) > 1,dg(u2) = 0,do(uz) > 1, and Ng(uq1) U Ng(uz) = V(Q). Observe that G is
traceable, and we obtain pc(G) = 2 by Proposition 1. Next, we only consider the strong
proper connection number of graph G under this assumption.

Suppose Ng(u1) N Ng(uz) = @ and min{dg(u1),dg(uz)} = 1. Without a loss of
generality, let do(u1) = 1and N (u1) = {v}. If there exists a strong proper coloring 6 of G
with two colors, then 0(ujuy) # 0(upuz). Without a loss of generality, let 6(u1uy) = 1 and
6 (upu3) = 2. Since upuqv is the unique up — v geodesic and upusw is the unique uy — w
geodesic for any w € Ng(u3), it follows that 6(u1v) = 2 and 6(uzw) = 1. Note that ujvw
is the unique u; — w geodesic for any w € Ng(u3), and so f(vw) = 1. There is no proper
geodesic between u3 and v, which is a contradiction. Thus, spc(G) > 3. Assign an edge-
coloring 6’ with three colors to G as follows: 6’ (u1u) = 6’ (uzw) = 1 for any w € Ng(u3),
0’ (upuz) = 6'(u1v) = 2, and color all edges of E(Q) with 3. Obviously, 8’ is a strong proper
coloring of G, and so spc(G) = 3.

Suppose No(u1) N No(uz) = @ and min{dg(u1),do(uz)} > 2. Let No(u1) = {v1, 02,
...,vt} and No(uz) = {wy,wo, ..., wi}, where t + k = n — 3. Assign an edge-coloring 6
with two colors to G such that G is strongly properly connected: 0(ujuy) = 6(viwy) =
O(uzwy) = 0(uzw;) = O(vpw;) = 1for2 < i <k, O(upuz) = 0(vywy) = 0(ugvy) =
0(u1vj) = 0(wyv;) = 2 for 2 < j < t, and color the remaining edges arbitrarily with 1 and 2.
Hence, spc(G) = 2.

Suppose Ng(u1) N No(uz) # @, and say v € Ng(u1) N Ng(uz). This implies that
min{dg(u1),dq(uz)} > 2. Color ujuy, uyuz, ugv and all edges of E(Q) with 1, and color
the remaining edges with 2. Clearly, G is strongly properly connected with the above
edge-coloring, and so spc(G) = 2.

Case 3. F = K, + Ky, where ujuy € E(G). Since G is connected, we obtain dg(u3) > 1.
We distinguish the following three subcases.

Subcase 3.1. dp(u3) = 1. Let No(u3) = {v}. Since diam(G) = 2, wehavedg(u1) > 1,
do(up) > 1and v € No(u1) N Ng(uz). Assume that dg(u1) = dg(up) = 1. This implies
n > 6.1f n = 6, then G = G,, where G, is displayed in Figure 1. Thus, pc(G) = spc(G) = 3.
Now we consider n > 7. Let V(Q) = {wy,wy,...,w,_4,0}. Assign an edge-coloring 6
with two colors to G as follows: 8(ujuz) = 0(u1v) = 0(uv) = 0(w;v) = O(wjw, 4) =1
forl<i<mn—5and2 <j<n-50(uszv) =0(w,_4v) = (wiw,_4) = O(wiwp) = 2,and
color the remaining edges arbitrarily with 1 and 2. It is easy to verify that 0 is a proper-path
coloring of G. Thus, pc(G) = 2. If G is strongly properly connected with an edge-coloring
6, then 0(u1v) # 0(uzv) # 6(wyv), and so spc(G) > 3. Assign an edge-coloring 6’ with
three colors to G as follows: 6’ (ujuy) = 0" (u1v) = 6’ (upv) = 1, 6’ (uszv) = 2, and color all
edges of E(Q) with 3. We can check that G is strongly properly connected with the above
edge-coloring. Hence, spc(G) = 3.

Figure 1. The graph G, with a strong proper coloring.

Assume that min{dg(u1),do(u2)} = 1 and dg(uq) +dg(uz) > 3. Without a loss of
generality, let do(uq) > 2 and dg(uz) = 1. Observe that G is traceable, and we have
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pc(G) = 2 by Proposition 1. If G is strongly properly connected with an edge-coloring 6,
then 0(uyv) # 0(uzv) # 6(wv), where w € V(Q) \ Ng(uq). Hence, spc(G) > 3. Define
an edge-coloring 6’ of G with three colors such that G is strongly properly connected:
0’ (uyuz) = 0'(u10) = 6’ (upv) = 1, and color all edges of E(Q) with 3 and the remaining
edges with 2. Thus, spc(G) = 3.

Assume that min{dg(u1),dg(uz)} > 2. Note that G is traceable, and so pc(G) = 2
by Proposition 1. Assign a strong proper coloring 6 with two colors to G as follows:
6(uqup) = 6(u1v) = 6(upv) = 1, and color all edges of E(Q) with 1 and the remaining
edges with 2. Hence, spc(G) = 2.

Subcase 3.2. dg(u3) = 2. Let Ngo(uz) = {u,v}. Since diam(G) = 2, we obtain
Ng(u1) N Ng(uz) # @ and Ngo(up) N No(uz) # @. Observe that G is traceable, and
we have pc(G) = 2 by Proposition 1.

Assume that dQ(ul) = dQ(uz) = 1and NQ(ul) N NQ(LQ) # @. Letu € NQ(ul) N
Ng(uy). There exists a strong proper coloring 6 of G with two colors as follows: 6(ujuy) =
O(uqu) = 0(upu) = 6(uzv) = 1, O(uzu) = 2, and color all edges of E(Q) with 2. Thus,
spc(G) = 2.

Assume that d(u1) = dg(up) = 1 and No(u1) N Ng(uz) = @. Let No(uq) = {u},
Ng(up) = {v} and V(Q) = {wy,wy, ..., w,—5,u,v}. If there exists a strong proper coloring
6 of G with two colors, then 0(uqu) # 6(uuz). Without a loss of generality, let 6(uju) =1
and 0(uuz) = 2. Since ujuw, is the unique 1y — wy geodesic, it follows that 6(uw;) =
2. Note that upvus is the unique uy — u3 geodesic, and so 0(upv) # 6(vuz). We first
consider 0(upv) = 1 and 6(vug) = 2. Since uyvw; is the unique 1y — wy geodesic, we have
6(vwy) = 2. There is no proper geodesic between u3 and wy, which is a contradiction. Next,
we consider 0(upv) = 2 and 6(vuz) = 1. Note that upvw; is the unique up — wy geodesic,
so we obtain 6(vw;) = 1. There is no proper geodesic between u3 and w;, which is a
contradiction. Hence, spc(G) > 3. Allocate a strong proper coloring 6" with three colors to
G as follows: 0/ (uqup) = 6’ (uqu) = 0'(uv) =1, 6’ (uugz) = 6’ (vusz) = 2, and color all edges
of E(Q) with 3. Thus, spc(G) = 3.

Assume that dg(uq) +dg(u2) > 3 and Ng(u1) N Ng(up) # @. Without a loss of
generality, let dg(u1) > 2 and w € Ng(u1)N Ng(uz). Consider u € No(u1) N Ng(uz) or
v € No(u1) N Ng(u). Without a loss of generality, let u € N (u1) N No(u2). The following
edge-coloring 6 with two colors makes G strongly properly connected: 0(uju) = 6(upu) =
O(uqup) =1, 0(uzu) = 2, and color all edges of E(Q) with 2 and the remaining edges with
1. Hence, spc(G) = 2. Consider u ¢ Ng(u1) N Ng(up) and v ¢ Ng(u1) N Ng(u2). Then,
min{dg(u1),dg(uz)} > 2. Without a loss of generality, let u € No(u1) and v € Np(up).
Assign an edge-coloring 6 with two colors to G as follows: 8(uyw) = 6(upw) = 0(uquy) =
O(uqu) = 0(uszv) = 1, O(uzu) = 0(upv) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. It is not difficult to verify that 6 is a strong proper coloring of
G, and so spc(G) = 2.

Assume that dg(u1) +dg(uz) > 3 and Ng(u1) N Ng(up) = @. Without a loss of
generality, let dg(u1) > 2, u € No(u1), and v € Ng(up). There exists an edge-coloring 6
with two colors such that G is strongly properly connected, as follows: 6(uquy) = 6(uv) =
O(usu) =1, 0(uu) = 6(uzv) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Hence, spc(G) = 2.

Subcase 3.3. dp(uz) > 3. Note that G is traceable, and we obtain pc(G) = 2 by
Proposition 1. Assume that do(u1) = dg(uz) = 1 and Ng(u1) N No(u2) = @. Let
Ng(u1) " Ng(u3) = {u} and No(uz) N Ng(uz) = {v}. Assign a strong proper coloring
6 with two colors to G as follows: 0(uquy) = 0(uqu) = (upv) = 1, 0(uzu) = 0(uzv) = 2,
and color all edges of E(Q) with 2 and the remaining edges with 1. Thus, spc(G) = 2.

Assume that either d(u1) = dg(up) = 1 and Ng(u1) N Ng(u2) # @, or dg(uq) +
dg(uy) > 3. An analogous edge-coloring to that presented in Subcase 3.2 induces a strong
proper coloring of G with spc(G) = 2.
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Case 4. F = 3K;. Since diam(G) = 2, it follows that N (u1) N Ng(u2) # @, Ng(uq) N
Ng(u3z) # @ and Ng(up) N Ng(uz) # @. This case is demonstrated by the following
three subcases.

Subcase 4.1. |(Np(u1) N Ng(uz)) U (No(u1) N Ng(uz)) U (No(u2) N Ng(uz))| = 1.
This implies that [N (u1) N Ng(u2) N Ng(u3)| = 1. Let No(u1) N No(u2) N No(usz) = {v}.
Assume that dg(u1) = dg(up) = dg(uz) = 1. Then, spc(G) > pc(G) > 3 by Proposition 2.
If n = 5, then G = Kj4. Hence, pc(G) = spc(G) = 4. Now we consider n > 6. Let
V(Q) = {v,wy,wy,..., wy_4}. Assign an edge-coloring 6 with three colors to G as follows:
0(u1v) = 1; 0(upv) = 2; 0(uzv) = 3; 0(ww,_4) = 3 if nis even, O(wiw,_4) = 2if nis odd;
color the sequence wvw,ws3 - - - wy,_4 alternately with 1 and 2 starting with 8(wqv) = 1;
and color the remaining edges arbitrarily with 1 and 2. It is not difficult to check that 6 is
a proper-path coloring of G. Thus, pc(G) = 3. Suppose G has a strong proper coloring 6,
we have 0(u11v) # 0(upv) # 0(usv) # 6(w1v), and so spc(G) > 4. On the other hand, there
exists a strong proper coloring 6’ of G with four colors, as follows: 6’ (u1v) =1, 6/ (upv) = 2,
6’ (uzv) = 3, and color all edges of E(Q) with 4. Therefore, we have spc(G) = 4.

Assume that dg(u1) +dg(u2) +dg(uz) > 4. Without a loss of generality, let do (u1) >
2,and say u € Ng(uq) \ {v}. Let V(Q) = {u,v,wy,wy, ..., w,_5} withn > 6. The fol-
lowing edge-coloring 6 with two colors makes G properly connected: 6(u1v) = 0(uv) =
6(uv) = 1, 6(uzv) = 2, color the sequence vw wy - - - w,_suuq alternately with 2 and 1
starting with 0(vw;) = 2, and color the remaining edges arbitrarily with 1 and 2. Thus,
pc(G) = 2. Suppose G has a strong proper coloring 6, we have 6(u1v) # 0(uyv) # 6(uzv),
and so spc(G) > 3. On the other hand, there exists a strong proper coloring 6 of G with
three colors, as follows: 6/ (uju) = 0'(uv) = 1, 6'(uzv) = 2, 0'(u1v) = 3, and color all
edges of E(Q) with 3 and the remaining edges with 1. Hence, spc(G) = 3.

Subcase 4.2. |(NQ(M1) N NQ(MZ)) U (NQ(Ml) N NQ(ug)) U (NQ(MQ) N NQ(M3))| = 2.
Since diam(G) = 2, we obtain N (u1) N Ng(u2) N No(uz) # @, and say v € Np(u1) N
No(u2) N No(uz). Without a loss of generality, we consider [Ng(u1) N No(u2)| = 2,
andsay u € (Ngo(u1) "Ng(uz)) \ {v}. Assign an analogous edge-coloring to that presented
in Subcase 4.1 to G that satisfies dg(u1) + dg(u2) +dg(u3) > 4. Obviously, G is properly
connected, and so pc(G) = 2.

Assume that dg(u1) +dg(uy) +dg(u3) = 5. Suppose that there exists a strong proper
coloring 6 of G with two colors. Note that u;vu3 is the unique 11 — u3 geodesic, and uyvus
is the unique u, — us geodesic. Without a loss of generality, let 6(u10) = 0(upv) = 1
and 0(u3v) = 2. Since uzvw is the unique uz — w geodesic, where w € V(Q) \ {u, v},
it follows that 6(vw) = 1. In order to have a proper geodesic connecting 1, and w, we have
0(upu) # 6(uw). Similarly, for the sake of having a proper geodesic between 17 and uy,
we obtain 0(uju) # 6(upu). Then, 6(uw) = 6(uqu), and so there is no proper geodesic
connecting 17 and w, which is a contradiction. Thus, spc(G) > 3. Now we assign a strong
proper coloring 6’ with three colors to G as follows: ¢/ (uju) = 6'(uyv) = 6'(upv) = 1,
0’ (upu) = 6'(u3v) = 2, and color all edges of E(Q) with 3. Hence, spc(G) = 3.

Assume that dg(uy) +dg(uz) +dg(uz) > 6. Suppose dg(u3) = 1. This implies that
max{dg(u1),dg(uz)} > 3. Without a loss of generality, we consider do(u;) > 3, and say
w € Ng(uq) \ {u,v}. The following edge-coloring 6 with two colors makes G strongly
properly connected: 0(uqu) = 0(u1v) = 0(upv) = 1, O(upu) = 0(uzv) = O(ww) = 2,
and color all edges of E(Q) with 1 and the remaining edges with 2. Thus, spc(G) = 2.
Suppose do(uz) > 2. Let z € Ng(u3z) \ {v}, where u = z is possible. Assign an edge-
coloring 6 with two colors to G as follows: 0(uju) = 6(u1v) = 0(uv) = 0(uzz) = 1,
6(upu) = 0(uzv) = 2, and color all edges of E(Q) with 2 and the remaining edges with 1.
Obviously, 6 is a strong proper coloring of G, and so spc(G) = 2.

Subcase 4.3. |(Ng(u1) N Ng(uz)) U (No(u1) N Ng(uz)) U (No(u2) N Ng(uz))| > 3,
and let {wy, wy, w3} C (Ng(u1) N Ng(u2)) U (Ng(u1) N No(uz)) U (No(u2) N No(uz)).
Up to isomorphism, we only need to consider the following two cases.

Let {ujwy, ugwy, upwy, upws, uswy, usws } < E[V(F), V(Q)]. Assign an edge-coloring
6 with two colors to G such that G is strongly properly connected: 6(uyw;) = 6(upws) =
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0(uswyp) =1, 0(uywy) = 0(upwq) = 0(uzws) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. Hence, pc(G) = spc(G) = 2.

Let {ulwl, U1Wo, U1W3, UpTW1, UpTW)o, U W3, ugwl} - E[V(F), V(Q)] The fOllOWil’lg edge-
coloring 6 with two colors makes G strongly properly connected: 0(ujw;) = 0(upws) =
O(uswy) =1, 0(ugwy) = 0(upwy) = 0(upwy) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. Thus, pc(G) = spc(G) =2. O

Theorem 4. Let G be a connected graph of order n > 5, diam(G) > 3, and w(G) = n — 3. Let Q

be a maximum clique of G and V(G) \ V(Q) = {uy,up, uz}. Then, either pc(G) = spc(G) =2

or one of the following holds:

(i)  G[V(G)\V(Q)] = P3, where ujuy, upuz € E(G),do(u1) = dg(uz) = 0,and dg(us) =1

(i1) G[V(G) \ V( )] P, where uquy, uyus € E( ) dQ(ul) = dQ(M:;) =0, anddQ(u ) > 2.

(iii) G[V(G)\ V(Q)] = P, where ujuy, upuz € E(G), min{dg(uy),do(us)} =1, dg(uz) =
0, NQ(ul)UNQ( ) #V( ) andNQ(ul)ﬂNQ(ug) Q.

(iv) 5<n<6, G[V(G)\V(Q)] = Ky + Ky, where uquy € E(G), No(u1) = Ng(u3) = {v},
and dg(up) = 0.

(v) n>7G[V(G)\V(Q)] = Ky + Ky, where uyuy € E(G), No(u1) = Ng(u3) = {v}, and
dQ(ng) =0.

(vi) G[V(G) \ V(Q)] = K2 +K1, where Uiy € E(G), dQ(uz) > 1, NQ(M]) = NQ(Mg) =
{0}, No(u2) N No(t3) = @, and No(u) UNg(u2) # V/(Q).

(vii)) 5 < n <6, G[V(G) \ V(Q)] = 3Ky, NQ(Z/ll) ﬂNQ(uz) ﬂNQ(ug,) = Q, |NQ(M1) N
NQ(M2)| =1, and dQ(Ml) = dQ(Mz) = dQ(u3) =1

(viii) n = 6, G[V( ) \V(Q)] = 3Kq, NQ(ul) ﬂNQ(LQ) ﬁNQ(ug) =Q, \NQ(ul) ﬂNQ(u2)| =
1,dg(u) =do(up) =1,and dg(uz) = 2.

() 0 >7,GIV(GY\V(Q)] & 3Ky, No(ur) N N(uz) M No(us) = @, [N(ia) NNg ()| =
1, dQ(ul) =d (Mz) =1, and dQ(M3) > 1.

(x) G[V(G)\V(Q )} & 3Ky, Ng(u1) N Ng(u2) N Ng(uz) = @, [Ng(u1) N Ng(u2)| =1,
NQ(L[1> N NQ(L[:J,) 7é @, dQ(Ml) =2, and dQ(l/lz) = dQ(u3) =1
Moreover, we have pc(G) = 2 and spc(G) = 3 for (ii), (iii), (v), (vi), (viii), (ix), and (x) and

pc(G) = spc(G) = 3 for (i), (iv), and (vii).

HZ 1R

Q=
~— W

Proof. Let F = G[V(G) \ V(Q)], and let 6 be an edge-coloring of G. We prove this theorem
by the following two cases.

Case 1. diam(G) = 3. We distinguish the following four subcases by analyzing
the structure of F.

Subcase 1.1. F = Kj3. Note that G is traceable, and we have pc(G) = 2 by Proposition 1.
Assign an edge-coloring 6 with two colors to G as follows: color all edges of E(F) and E(Q)
with 1, and color all edges of E[V(F), V(Q)] with 2. It is obvious that 6 is a strong proper
coloring of G, and so spc(G) = 2.

Subcase 1.2. F = P, where ujuy, upuz € E(G). Assume that dg(u;) = dg(uz) = 0.
Suppose dg(uz) = 1, and let No(u2) = {v}. Then, spc(G) > pc(G) > 3 by Proposition 2.
Now we define a strong proper coloring 6 of G with three colors as follows: 6(uquy) =1,
0(upus) = 2, 0(upv) = 3, and color all edges of E(Q) with 1. Thus, pc(G) = spc(G) = 3.
Suppose dg(uz) > 2, and let u,v € Ng(up). Assign an edge-coloring 6 with two colors
to G as follows: 0(ujup) = 6(upu) = 6(vw) = 1forany w € V(Q) \ {u, v}, 0(upu3z) =
0(upv) = 6(uv) = 0(uw) = 2 for any w € V(Q) \ {u, v}, and color the remaining edges
arbitrarily with 1 and 2. We can check that G is properly connected with the above edge-
coloring, and so pc(G) = 2. If G is strongly properly connected with an edge-coloring
6, then 0(ujuy) # 0(uguz) # 6(upu). Thus, spc(G) > 3. Assign a strong proper coloring
¢’ with three colors to G as follows: 6’ (ujuy) = 1, 6'(uau3) = 2, and color all edges of
E[V(F),V(Q)] with 3 and all edges of E(Q) with 1. Thus, spc(G) = 3.

Assume that min{dg(u1),dg(u3)} = 0 and max{dg(u1),dg(us)} > 1. Without a loss
of generality, let dy(u3) = 0and dg(u1) > 1. Since diam(G) = 3, it follows that dg(u2) > 1.
Note that G is traceable, and we have pc(G) = 2 by Proposition 1. The following edge-
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coloring 6 with two colors makes G strongly properly connected: 6 (ujuy) = 1, 6(upuz) =
and color all edges of E(Q) with 2 and all edges of E[V(F), V(Q)] with 1. Hence, spc(G) =

Assume that dg (1) > 1and dg(u3) > 1. Since diam(G) = 3, it follows that d (u2)
0and Ng(u1) UNg(u3) # V(Q). Observe that G is traceable, and we have pc(G) = 2 by
Proposition 1. Now, we only consider the strong proper connection number of graph G
under this assumption.

Suppose Ng(u1) N Ng(uz) = @ and min{dg(u1),dg(uz)} = 1. Without a loss of
generality, we consider d(u1) = 1, and say Ng(u1) = {u}. If there exists a strong proper
coloring 6 of G with two colors, then 6(ujuy) # 6(upuz). Without a loss of generality,
let O(uquy) = 1 and 6(upuz) = 2. Note that upuju is the unique u; — u geodesic, and
upu3v is the unique up — v geodesic for any v € N (u3); then, 6(uju) = 2 and 6(u3zv) = 1.
Since ujuv is the unique 1y — v geodesic for any v € Ng(u3), we have 6(uv) = 1. There
is no proper geodesic between u3 and u, which is a contradiction. Thus, spc(G) > 3.
On the other hand, we assign a strong proper coloring 6’ with three colors to G as follows:
6" (u1uy) = 0'(uzv) = 1forany v € Ng(u3), ' (upuz) = 0'(uqu) = 2, and color all edges of
E(Q) with 3. Hence, spc(G) = 3.

Suppose Ng(u1) N Ng(uz) = @ and min{dg(u1),dg(uz)} > 2. Let No(u1) =
{wy,wy,- - ,wi} and No(uz) = {v1,vp,--- , vk}, where t +k < n —3. Assign an edge-
coloring 6 with two colors to G as follows: 0(ujup) = 6(wiv1) = 0(uzv1) = 0(uzv;) =
0(wyv;) = 1for2 < i <k, 0(uouz) = 0(wyvg) = O(uywy) = 0(uqw;) = 0(v1w;) = 2 for
2<j<t0(vw)=2and §(ww) = 1forany w € V(Q) \ {No(u1) UNg(u3z)}, and color
the remaining edges arbitrarily with 1 and 2. It is clear that 6 is a strong proper coloring of
G, and so spc(G) = 2.

Suppose Np(u1) N Ng(uz) # @, and let v € Ng(u1) N Ng(u3). Consider dg(up) =
dg(u3) = 1. Color uquy and all edges of E(Q) with 1, and color uyu3, u;v and uzv with 2.
Obviously, the above edge-coloring makes G strongly properly connected. Thus, spc(G) =
2. Consider min{dg(u1),dg(uz)} = 1 and max{dg(u1),dq(uz)} > 2. Without a loss
of generality, let dg(u1) = 1 and dg(u3) > 2. Assign a strong proper coloring 6 with
two colors to G as follows: 0(ujuy) = 0(upuz) = 0(uzv) = 1, 0(u1v) = O(ugw) = 2
for any w € Np(u3) \ {v}, and color all edges of E(Q) with 1. Hence, spc(G) = 2.
Consider min{dg(u1),dq(u3)} > 2. Allocate a strong proper coloring 6 with two colors
to G as follows: 0(ujuy) = 0(upuz) = 6(u3v) = 1, and color all edges of E(Q) with 1 and
the remaining edges with 2. Thus, spc(G) = 2.

Subcase 1.3. F = K; + Ky, where ujup; € E(G). Since G is connected, we have
do(uz) > 1 and max{dg(uy),dg(uz)} > 1. Without a loss of generality, let dg(u;) > 1.
Assume that dg(uz) = 0. Since diam(G) = 3, it follows that N (1) N Ng(u3) # @, and let
RS NQ(ul) N NQ(u3).

Suppose dg(u1) = dg(uz) = 1. If n = 5, then G = G3, where Gz is displayed in
Figure 2. Hence, pc(G) = spc(G) = 3. If n = 6, then G = G4, where Gy is shown
in Figure 2. Thus, pc(G) = spc(G) = 3. Now, we consider n > 7. Let V(Q) =
{wy,wy, ..., wy_4,v}. Assign an edge-coloring 6 with two colors to G as follows: 0 (ujuy) =
0(uzv) = 0(wy—_awq) =1, 0(ugv) = 6(wov) = 2, color the sequence vw wy - - - w;,_4v alter-
nately with 1 and 2 starting with 6(vw;) = 1, and color the remaining edges arbitrarily
with 1 and 2. We can verify that 0 is a proper-path coloring of G. Thus, pc(G) = 2. If G
has a strong proper coloring 0, then 6(u1v) # 6(u3v) # 6(vw; ), and so spc(G) > 3. On the
other hand, there exists a strong proper coloring 6’ of G with three colors: assign 1 to uju;
and u3v, assign 2 to 110, and assign 3 to all edges of E(Q). Therefore, spc(G) = 3.

2,
2.

G3

Figure 2. The graphs Gz and G4 with a strong proper coloring.
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Suppose dg(u1) = 1and dg(u3) > 2. Note that G is traceable, and we have pc(G) =
by Proposition 1. Allocate an edge-coloring 6 with two colors to G as follows: 6(u1v)
0(usw) = 1forany w € Ng(u3z) \ {v}, 8(u1u2) = 6(uzv) = 2, and color all edges of E(Q)
with 2. Obviously, 6 is a strong proper coloring of G, and so spc(G) = 2.

Suppose dg(u1) > 2 and dg(uz) = 1. Observe that G is traceable, and we obtain
pc(G) = 2 by Proposition 1. The following edge-coloring 6 with two colors makes G
strongly properly connected: 8(u1v) = 0(ujw;) = 1 for any w; € No(u1) \ {v}, O(uiup) =
6(uzv) = 2, and color all edges incident with v in E(Q) with 1 and the remaining edges
with 2. Hence, spc(G) = 2.

Suppose dg(u1) > 2and dg(uz) > 2. Note that G is traceable, and we have pc(G) = 2
by Proposition 1. Define a strong proper coloring 6 of G with two colors as follows:
6(u1v) =1, 0(uquy) = 0(u3v) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Thus, spc(G) = 2.

Assume that dg(uz) > 1. Since diam(G) = 3, it follows that min{|Ng(u1) N No(u3)|,
[No(12) 1 No(us)[} = 0. Suppose max{|No(u1) N No(us)], [Ng(u2) 0 No(us)[} > 1.
Without a loss of generality, we consider |[Ng(u2) N Ng(u3)|} = 0and [N (u1) "Ng(us)| >
1, and say v € No(u1) N No(u3). Observe that G is traceable, and we have pc(G) = 2 by
Proposition 1. Now, we only consider the strong proper connection number of graph G
under this supposition.

We first consider |Ng(u1) N No(usz)| > 2. The following edge-coloring 6 with two
colors makes G strongly properly connected: color uquy, u3v and all edges of E(Q) with 2,
and color the remaining edges with 1. Hence, spc(G) = 2.

Next, we consider |[No(u1) N Ng(u3)| = 1. Let dg(uq) > 2. Assign a strong proper
coloring 6 with two colors to G: color ujv and all edges of E(Q) with 1, and color the re-
maining edges with 2. Hence, spc(G) = 2. Let dg(uz) > 2. Define a strong proper
coloring 0 of G with two colors as follows: color ujuy, uzv and all edges of E(Q) with 2,
and color the remaining edges with 1. Thus, spc(G) = 2. Let dg(u1) = do(u3) = 1 and
Ng(u1) UNg(u2) = V(Q). Allocate an edge-coloring 6 with two colors to G: color ujuy,
upv and all edges of E(Q) with 1, and color the remaining edges with 2. We can check that
G is strongly properly connected with the above edge-coloring, and so spc(G) = 2. Let
do(uy) = dg(uz) = 1and Ng(u1) U Ng(u2) # V(Q). If 8 is a strong proper coloring of G,
then 6(u1v) # 8(u3v) # 6(vw), where w € V(Q) \ {Ng(u1) U Ng(u2)}. Thus, spc(G) > 3.
On the other hand, there exists an edge-coloring 6’ with three colors such that G is strongly
properly connected: color u;v with 1 and all edges of E(Q) with 3, and color the remaining
edges with 2. Hence, spc(G) = 3.

Suppose max{|Ng(u1) N Ng(u3)|,|Ng(u2) N Ng(uz)|} = 0. Observe that G is trace-
able, and we have pc(G) = 2 by Proposition 1. Assign an edge-coloring 6 with two colors to
G as follows: color ujuy and all edges of E(Q) with 2, and color all edges of E[V(F), V(Q)]
with 1. It is clear that 6 is a strong proper coloring of G, and so spc(G) = 2.

Subcase 1.4. F = 3K;. Since diam(G) = 3, it follows that min{|Ng(u1) " Ng(u2)|, [Ng
(1) N No(u3)|, [INg(u2) N No(uz)|} = 0. Assume that max{|Ng(u1) N Ng(u2)|, [INg(u1) N
No(u3)|, [Ng(u2) N Ng(us)|} = 0. The following edge-coloring 6 with two colors makes
G strongly properly connected: color all edges of E(Q) with 2, and color all edges of
E[V(F),V(Q)] with 1. Thus, pc(G) = spc(G) = 2. Assume that max{|Ng(u1) N Ng(u2)],
INg(u1) N No(usz)|, |[Ng(u2) N Ng(usz)|} > 1. Without a loss of generality, we consider
|NQ(M1) N NQ(M2)| >1,and say u € NQ(ul) N NQ(L!2).

Suppose dg(u1) = dg(uz) = 1. If 6 is a strong proper coloring of G, then 6(uju) #
O(upu) # 0(uw), where w € V(Q) \ {u}. Hence, spc(G) > 3. On the other hand, there
exists a strong proper coloring 6’ of G with three colors, as follows: 6/ (uju) = 1,6 (upu) = 2,
and color all edges of E(Q) with 3 and the remaining edges with 1. Thus, spc(G) = 3.
Next, we discuss the proper connection number of G. If n = 5, then G = Gz, where Gz is
displayed in Figure 2. Hence, pc(G) = 3. We consider n = 6. If dy(u3) = 1, then G = Gs.
Thus, pc(G) = 3. If do(uz) = 2, then G = Gq. Hence, pc(G) = 2. The graphs G5 and
Gg are shown in Figure 3. Now, we consider n > 7. Let V(Q) = {u, v, Wy, W, . . .,wn_5}

2
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and v € Np(u3). Assign an edge-coloring 6 with two colors to G as follows: 6(uju) =
0(u3v) = O(uwy—_g) = 1; 0(upu) = 6(w,_s5v) = 2; color w,,_¢v with 1 for n = 7 and w,,_¢v
with 2 for n > §; color the sequence uvw w, - - - w,_su alternately with 2 and 1 starting
with 8(uv) = 2; and color the remaining edges arbitrarily with 1 and 2. We can check that
G is properly connected with the above edge-coloring, and so pc(G) = 2.

Gs Ge

Figure 3. The graphs G5 and G¢ with a proper-path coloring.

Suppose max{dg(u1),dg(uz)} > 2. Without a loss of generality, let dg(u1) > 2,
and say w € Ng(uq) \ {u}. We first consider N (u1) N N (uz) = @. The following edge-
coloring 0 with two colors makes G strongly properly connected: 0(uju) = 1, 8(uyw) =
6(uyu) = 2, color all edges of E(Q) with 1 and all edges incident with u3 in E[V(F), V(Q)]
with 2, and color the remaining edges with 1. Thus, pc(G) = spc(G) = 2.

Next, we consider Ng(u1) N Ng(u3) # @ and say wy; € Ng(uq) N Ng(uz). Let
do(u1) = 2 and dg(up) = do(us) = 1. The following edge-coloring 6 with two col-
ors makes G properly connected: color all edges of E(Q) with 1 and the remaining
edges with 2. Hence, pc(G) = 2. If there exists a strong proper coloring 6 of G with
two colors, then 6(uqu) # 6(upu). Without a loss of generality, let 6(u;u) = 1 and
6(upu) = 2. Since upuwiuz is the unique uy — uz geodesic, it follows that 6(uw;) = 1
and 6(uzwy) = 2. Note that ujw;u3 is the unique u; — usz geodesic, and thus 0(ujwq) = 1.
Since upuv is the unique 1, — v geodesic and uzw v is the unique u3 — v geodesic, we obtain
6(uv) = 0(wrv) = 1, where v € V(Q) \ {u, w1 }. There is no proper geodesic connecting
uq and v, which is a contradiction. Hence, spc(G) > 3. On the other hand, we assign
a strong proper coloring 6’ with three colors to G as follows: 6’ (uju) = ' (uzwy) = 1,
0’ (upu) = 0'(uqwy) = 2, and color all edges of E(Q) with 3. Therefore, spc(G) = 3.
Let do(u1) > 3. The following edge-coloring 6 of G with two colors makes G strongly
properly connected: 6(uqu) = 6(uqw1) = 1, 0(upu) = 6(uzw;) = 6(uyw) = 2, where
w € No(u1) \ {u, w1}, and color the remaining edges with 1. Thus, pc(G) = spc(G) = 2.
Let max{dg(u),dq(u3)} > 2. Without a loss of generality, we consider d(u5) > 2. Define
an edge-coloring 6 of G with two colors as follows: 6(uqu) = 6(uzw;) = 6(u2z) = 1, where
z € Ng(uz), 0(u1wy) = 6(upu) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Obviously, 8 is a strong proper coloring of G, and so pc(G) = spc(G) = 2.

Case 2. diam(G) > 4. Since diam(G) > 4, it follows that F = Py or F & K; +
Ki. Assume that F & P3, where uquy, upuz € E(G). Since diam(G) > 4, we have
min{dQ(ul),dQ(ug)} =0, max{dQ(ul),dQ(ug)} > 1, and dQ(uz) = 0. Without a loss
of generality, let dg(u1) > 1 and dg(up) = dg(uz) = 0. Note that G is traceable, and
we have pc(G) = 2 by Proposition 1. The following edge-coloring 6 with two colors
makes G strongly properly connected: color uqu; and all edges of E(Q) with 2, and color
the remaining edges with 1. Thus, spc(G) = 2.

Assume that F = Kj + Ky, where ujuy; € E(G). Since diam(G) > 4, we have
min{dQ(ul),dQ(uz)} =0, max{dQ(u1),dQ(u2)} > 1, and dQ(Ll3) > 1. Without a loss
of generality, let dg(u1) > 1, dg(up) = 0 and Np(u1) N Ng(u3) = @. Observe that G is
traceable, and we obtain pc(G) = 2 by Proposition 1. Assign a strong proper coloring
6 with two colors to G as follows: color uju; and all edges of E(Q) with 2, and color
the remaining edges with 1. Hence, spc(G) =2. O
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3. Rainbow Connection and Clique Number

Kemnitz and Schiermeyer [18] considered the rainbow connection number of graph
G of order n, diam(G) = 2, and w(G) = n —i for 2 < i < 3. In this section, we investigate
the rainbow connection number of graph G of order 1, diam(G) > 3, and w(G) = n — i for
2<i<3

Theorem 5. Let G be a connected graph of order n, diam(G) > 3, and w(G) = n — 2. Let Q be
a maximum clique of G and V(G) \ V(Q) = {uq,uz}. Then, rc(G) = 3.

Proof. Let F = G[V(G) \ V(Q)] and let 6 be an edge-coloring of G. Since diam(G) > 3,
we have rc(G) > diam(G) > 3. Assume that F = K;. Since diam(G) > 3, we obtain
max{dg(u1),do(uz)} > 1 and min{dg(u1),dg(uz)} = 0. The following edge-coloring
6 with three colors makes G rainbow-connected: color uju; with 1 and all edges of
E[V(F),V(Q)] with 2, and color all edges of E(Q) with 3. Thus, rc(G) = 3.

Assume that F = 2Kj. Since G is a connected graph with diam(G) > 3, it follows that
do(u1) > 1,dg(uz) > 1and Ng(uq1) N Ng(u2) = @. Assign an edge-coloring 6 with three
colors to G as follows: assign 1 to all edges that are incident with 1, assign 2 to all edges
that are incident with u,, and assign 3 to all edges of E(Q). It is not difficult to check that G
is rainbow-connected with the above edge-coloring, and so rc¢(G) = 3. O

Theorem 6. Let G be a connected graph of order n, diam(G) > 3, and w(G) = n — 3. Let Q be
a maximum clique of G and V(G) \ V(Q) = {uy, up, uz}. Then, either rc(G) = 3, or rc(G) = 4
if and only if one of the following holds.

(i)  G[V(G)\V(Q)] = P3, where uyuy, upuz € E(G),dg(u1) = do(u ) =0,anddg(uz) = 1.

(ii) G[ ( )\V( )] = Ky + Ky, where Ujup € E( ), dQ(uz = O (ul) = dQ(u3) =1,
and Ng(u1) N Ng(uz) # @.

(iii) G[V(G) V(QH = 3Kq, NQ(M1) N NQ(uz) ﬂNQ(U3) =00, |NQ(M1) ﬂNQ(u2)| =1,
and d (ul) = dQ( 2) = dQ(u3) =1

(iv) G[V(G)\V(Q)] = P3, where ujuy, upuz € E(G),dg(u1) > 1,and dgy(uy) = dg(us) = 0.

(v) G[V(G)\V(Q)] = Ky + Ky, where ujup € E(G), dg(u1) > 1,do(up) =0,dg(uz) > 1,
and NQ(ul) N NQ(ug) =Q

Proof. Let F = G[V(G) \ V(Q)], and let 6 be an edge-coloring of G. We prove this theorem
by the following two cases.

Case 1. diam(G) = 3. We have rc(G) > diam(G) = 3. We distinguish the following
four subcases by analyzing the structure of F.

Subcase 1.1. F = Kj. The following edge-coloring 6 with three colors makes G
rainbow-connected: 6(uquy) = 6(uus) = 0(ujuz) = 1, and color all edges of E(Q) with 3
and all edges of E[V(F), V(Q)] with 2. Thus, r¢(G) = 3.

Subcase 1.2. F = P, where ujuy, upuz € E(G). Assume that do(u;) = dg(uz) = 0.
Suppose d(u2) =1, and say Ng(uz) = {u}. If an edge-coloring 6 is a rainbow coloring of
G, then 0(uqup) # 0(ususz) # 0(ugu) # 6(uv), where v € V(Q) \ {u}. Hence, rc(G) > 4.
Allocate a rainbow coloring 6’ with four colors to G as follows: 6/ (ujuy) =1, 6’ (upuz) = 2,
0’ (upu) = 3, and color all edges of E(Q) with 4. Thus, r¢(G) = 4. Suppose d(u2) > 2,
and say u,v € Np(uy). The following edge-coloring 6 with three colors makes G rainbow-
connected: 0(uqup) = 0(upu) =1, 0(upuz) = 6(upv) = 2, and color the remaining edges
with 3. Hence, r¢(G) = 3.

Assume that min{dg(uy),dg(u3)} = 0 and max{do(uy),do(uz)} > 1. Without a loss
of generality, let do(u3) = 0 and dg(u1) > 1. Since diam(G) = 3, we have dg(uz) > 1.
Define an edge-coloring 6 of G with three colors as follows: 0(uquy) = 1, 0(upuz) = 2,
and color all edges of E[V(F), V(Q)] with 1 and all edges of E(Q) with 3. We can check
that G is rainbow-connected with the above edge-coloring, and so rc(G) = 3.

Assume that dg(u1) > 1and dg(u3) > 1. Since diam(G) = 3, it follows that dg(up) =
0and Ng(u1) U Ng(u3) # V(Q). The following edge-coloring 6 with three colors makes
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G rainbow-connected: 0(uqup) = 1, 0(upu3) = 2, assign 3 to all edges of E(Q), assign 2
to the edges of E[V(F), V(Q)] which are incident with 1, and assign 1 to the edges of
E[V(F),V(Q)] which are incident with u3. Thus, r¢(G) = 3.

Subcase 1.3. F = K; + Kj, where uqjuy € E(G). Since G is connected, we obtain
do(uz) > 1and max{dg(uy),do(uz)} > 1. Without a loss of generality, let d(u1) > 1.

Assume that d(uy) = 0. Since diam(G) = 3, we have N (u1) N Np(u3) # @, and say
u € No(u1) N Ng(u3z). Suppose dg(uq) = do(uz) = 1. If there exists a rainbow coloring 6
of G with three colors, then 0(uu1) # 0(uqu) # 0(uuz). Without a loss of generality, let
0(upu1) = 1,0(uu) = 2and 0(uuz) = 3. In order to have a rainbow path connecting 1, and
vforany v € V(Q) \ {u}, let 6(uv) = 3. There is no rainbow path between u3 and v, which
is a contradiction. Thus, r¢(G) > 4. On the other hand, the following edge-coloring 6’ with
four colors makes G rainbow-connected: 6’ (upu1) =1, 6’ (ugu) = 2, 6’ (uuz) = 3, and color
all edges of E(Q) with 4. Hence, rc¢(G) = 4. Suppose max{dg(u1),dg(usz)} > 2. We first
consider dg(u1) > 2,andsay v € Ng(u1) \ {u}. Assign an edge-coloring 6 with three colors
to G as follows: 0(upuy) =1, 0(uqu) = 2, 0(usu) = 6(u1v) = 3, and color the remaining
edges with 2. It is obvious that G is rainbow-connected with the above edge-coloring,
and so rc(G) = 3. Next, we consider dg(u3) > 2, and say w € Ng(u3) \ {u}. Define
a rainbow coloring 6 of G with three colors as follows: 8(upu1) =1, 0(uu) = 0(uzw) = 2,
6(usu) = 3, and color all edges of E(Q) with 3 and the remaining edges with 2. Thus,
re(G) = 3.

Assume that d(uy) > 1. Since diam(G) = 3, we obtain min{|Ng(u1) N No(u3)|, [Ng
(Mz) N NQ(M3)|} = 0. Suppose max{\NQ(ul) N NQ(M3)|, |NQ(M2) N NQ(M3)|} > 1. Without
a loss of generality, let [No(u1) N No(uz)| > 1 and [Ng(uz) N Ng(uz)| = 0. Let u €
Ng(u1) N Ng(u3) and v € Ng(uz). The following edge-coloring 6 with three colors makes
G rainbow-connected: 6(uju) = 0(upv) = 1, 6(uzu) = 2, and color the remaining edges
with 3. Hence, r¢(G) = 3. Suppose max{|Ng(u1) N Ng(u3)|,|No(u2) N Ng(uz)|} = 0. Let
w € No(u1),v € Ng(up) and u € Np(u3), where w = v is possible. Allocate an edge-
coloring 6 with three colors to G: 0(ujuy) = 6(uzu) =1, 0(u;w) = 6(upv) = 2, and color
the remaining edges with 3. We can verify that G is rainbow-connected with the above
edge-coloring, and so r¢(G) = 3.

Subcase 1.4. F = 3Kj. Since diam(G) = 3, it follows that min{|Ng(u1) " Ng(u2)|, [Ng
(ul) N NQ(M;),) ‘, ‘NQ(uz) N NQ(M3)|} = 0. Assume that max{\NQ(ul) N NQ(M2)|, \NQ(ul) N
NQ(M3)|, |NQ(L£2) N NQ(ug,)‘} =0.Letu € NQ(ul),v € NQ(uz) and w € NQ(u3). The fol-
lowing edge-coloring 6 with three colors makes G rainbow-connected: 0(uju) = 6(vw) =
O(vz) = 1; O(uv) = O(uzw) = O(uz) = 2; 0(upv) = O(uw) = 6(wz) = 3 for any
z € V(Q) \ {u,v,w}; and color the remaining edges with 1. Thus, rc(G) = 3.

Assume that max{|Ng(u1) N No(uz)|, [No(u1) N Ng(u3z)|, [No(u2) N Ng(uz)|} > 1.
Without a loss of generality, let [Ng(u1) N No(u2)| > 1, and say u € Ng(uq) N Ng(u2).
Suppose dg(u1) = dg(up) = dg(uz) = 1. If an edge-coloring 6 is a rainbow coloring
of G, then 0(uqu) # 0(upu) # 6(uv) # 6(uzv), where {v} = Np(u3). Thus, rc(G) > 4.
On the other hand, we define a rainbow coloring 6’ of G with four colors as follows:
0/ (uu) = 1,0 (ugu) = 2,6’ (uzv) = 3, and color all edges of E(Q) with 4. Hence, r¢(G) = 4.
Suppose max{dg(u1),dg(u2)} > 2. Without a loss of generality, let dg(11) > 2, and say
w € Ng(uq) \ {u}. Assign an edge-coloring 6 with three colors to G: 8(uqu) = 6(upu) = 1;
O(uyw) = 6(uzv) = 2, where v € Ng(u3) and v = w is possible; and color the remaining
edges with 3. Obviously, the edge-coloring 6 is a rainbow coloring of G, and so r¢(G) = 3.
Suppose dg(u3) > 2, and say v;,v2 € Ng(uz). The following edge-coloring 6 with
three colors makes G rainbow-connected: 8(uqu) = 0(uzv1) = 1, 0(upu) = 0(uzv2) = 2,
and color the remaining edges with 3. Thus, r¢(G) = 3.

Case 2. diam(G) > 4. We obtain rc(G) > diam(G) > 4. Since diam(G) > 4, it follows
that F & Py or F = Kp + K;. Assume that F = P3, where uqup, upus € E(G). Since
diam(G) > 4, wehave min{dg(uy),dg(uz)} = 0, max{dg(u1),dg(uz)} > 1,and dg(uz) =
0. Without a loss of generality, let dg(u1) > 1and dg(up) = dg(u3) = 0. Allocate a rainbow
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coloring 6 with four colors to G as follows: color ujuy with 2 and upu3 with 1, and color all
edges of E[V(F), V(Q)] with 3 and all edges of E(Q) with 4. Therefore, rc(G) = 4.

Assume that F = K; + Ky, where ujup; € E(G). Since diam(G) > 4, it follows that
min{dg(u1),dq(u2)} = 0, max{dg(u1),do(uz)} > 1, and dg(uz) > 1. Without a loss of
generality, let do(u1) > 1, dg(uz) = 0, and Np(uq) N Ng(u3) = @. The following edge-
coloring 6 with four colors makes G rainbow-connected: 0(ujuy) = 1, 0(uju) = 2, and
6(u3v) = 3, where u € Ng(u1) and v € Np(u3), and color the remaining edges with 4.
Hence, rc(G) =4. O
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