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1. Introduction

We only consider graphs that are undirected, simple, finite, and connected in this
paper. For terminology and notation that are not defined here, we refer to [1].

In 2008, Chartrand et al. [2] introduced the concept of rainbow connection. For an
edge-colored graph G, if each pair of vertices is connected by a rainbow path, where its
edges are assigned different colors, then G is said to be rainbow-connected. An edge-coloring
that makes G rainbow-connected is said to be a rainbow coloring of G. The rainbow con-
nection number of G, denoted by rc(G), is the smallest number of colors that are needed
to make G rainbow-connected. Obviously, rc(G) = 1 if and only if G is complete, and
rc(G) ≥ diam(G). As a natural generalization of the rainbow connection number, the con-
cept of the vertex rainbow connection number was presented by Krivelevich et al. [3], and
the concept of the total rainbow connection number was introduced by Liu et al. [4]. There
are abundant research results on this topic. In [5], Schiermeyer proved that a connected
graph G with n vertices has rc(G) < 4n

δ(G)+1 + 4. Huang et al. [6] provided upper bounds of
the rainbow connection number of outerplanar graphs with small diameters. In [7], Li et al.
studied the vertex rainbow connection numbers of some graph operations. Ma et al. [8]
investigated the total rainbow connection numbers of some special graphs. The reader
should also consult [9] for a survey and [10] for a monograph.

Inspired by the concept of rainbow connection, Borozan et al. [11] proposed the concept
of proper connection, and Andrews et al. [12] presented the concept of strong proper
connection. A path is called a proper path in an edge-colored graph if its adjacent edges
are assigned distinct colors. An edge-colored graph G is said to be properly connected
if any two vertices are connected by a proper path, and G is said to be strongly properly
connected if every pair of vertices is connected by a proper geodesic. An edge-coloring θ
of graph G is called a proper-path coloring if it makes G properly connected, and θ is called
a strong proper coloring if it makes G strongly properly connected. The proper connection
number of G, denoted by pc(G), is the smallest number of colors that are needed to make
G properly connected. The strong proper connection number of G, denoted by spc(G), is
the smallest number of colors that are needed to make G strongly properly connected.
From these definitions, it is easy to establish that pc(G) = spc(G) = 1 if and only if G is
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complete. In [13,14], Huang et al. presented an upper bound for the proper connection
number of a graph in terms of the bridge-block tree of the graph and investigated the proper
connection number of the complement of a graph. Li et al. [15] used dominating sets to
study the proper connection number of a graph. Ma and Zhang [16] characterized all
connected graphs of size m with (strong) proper connection number m − 4. For more
details, we refer the reader to a survey [17].

Some results regarding the (vertex) rainbow connection numbers of graphs with a
large clique number are available; see [18,19]. These results motivated us to consider
the (strong) proper connection numbers of graphs with a large clique number. In this paper,
we mainly discuss the (strong) proper connection number of a graph G of order n and
ω(G) = n− i for 1 6 i 6 3. Moreover, we also investigate the rainbow connection number
of a graph G of order n, diam(G) ≥ 3 and ω(G) = n− i for 2 6 i 6 3.

2. (Strong) Proper Connection and Clique Number

In this section, we investigate graphs with a small (strong) proper connection number
and a large clique number. We first introduce some definitions that will be used later.

A Hamiltonian path in a graph G is a path containing every vertex of G. A graph with
a Hamiltonian path is called a traceable graph. Recall that a clique of a graph is a set of
mutually adjacent vertices, and that the maximum size of a clique of graph G, i.e., the clique
number of G, is denoted ω(G). For a connected graph G, we say Q is a subgraph of G
which induces a maximum clique and V(F) = V(G) \ V(Q). We say NQ(u) is the set of
neighbors of u in Q and dQ(u) = |NQ(u)|. Additionally, we say E[V(F), V(Q)] is the set of
edges of G between vertices of V(F) and vertices of V(Q). Next, we present the following
three useful propositions.

Proposition 1 ([12]). Let G be a non-complete graph. If G is traceable, then pc(G) = 2.

Proposition 2 ([12]). For a non-trivial connected graph G that contains a bridge, if b is the maxi-
mum number of bridges incident with a vertex in G , then spc(G) ≥ pc(G) ≥ b.

Proposition 3 ([18]). Let G be a connected graph of order n and size m. If (n−1
2 ) + 1 ≤ m ≤

(n
2)− 1, then rc(G) = 2.

As an immediate consequence of Proposition 3, we have the following Lemma.

Lemma 1. Let G be a connected graph of order n and size m. If (n−1
2 ) + 1 ≤ m ≤ (n

2)− 1, then
pc(G) = spc(G) = 2.

Theorem 1. Let G be a connected graph of order n. If ω(G) = n + 1− i for i ∈ {1, 2}, then
pc(G) = spc(G) = i.

Proof. If i = 1, then ω(G) = n, which implies that G is a complete graph. Thus, pc(G) =
spc(G) = 1. If i = 2, then ω(G) = n− 1. Since G is connected, we obtain |E(G)| ≥ (n−1

2 ) + 1,
and so (n−1

2 ) + 1 ≤ |E(G)| ≤ (n
2)− 1. Hence, pc(G) = spc(G) = 2 by Lemma 1.

Theorem 2. Let G be a connected graph of order n ≥ 4 and ω(G) = n− 2. Let Q be a maxi-
mum clique of G and V(G) \ V(Q) = {u1, u2}. Then, either pc(G) = spc(G) = 2 or one of
the following holds:

(i) 4 ≤ n ≤ 5, G[V(G) \V(Q)] ∼= 2K1 and NQ(u1) = NQ(u2) = {v}.
(ii) n ≥ 6, G[V(G) \V(Q)] ∼= 2K1 and NQ(u1) = NQ(u2) = {v}.

Moreover, we have pc(G) = spc(G) = 3 for (i), pc(G) = 2, and spc(G) = 3 for (ii).

Proof. Let F = G[V(G) \V(Q)] and let θ be an edge-coloring of G. We prove this theorem
by analyzing the structure of F.
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Case 1. F ∼= K2. Since G is connected, it follows that max{dQ(u1), dQ(u2)} ≥ 1. Note
that G is traceable, and we have pc(G) = 2 by Proposition 1. The following edge-coloring
θ with two colors makes G strongly properly connected: color u1u2 and all edges of E(Q)
with 1, and color all edges of E[V(F), V(Q)] with 2. Thus, spc(G) = 2.

Case 2. F ∼= 2K1. Since G is connected, it follows that min{dQ(u1), dQ(u2)} ≥ 1.
Assume that NQ(u1) ∩ NQ(u2) = ∅. Observe that G is traceable, and we have pc(G) = 2
by Proposition 1. Assign an edge-coloring θ with two colors to G as follows: color all edges
of E(Q) with 1 and all edges of E[V(F), V(Q)] with 2. It is clear that G is strongly properly
connected with the above edge-coloring. Hence, spc(G) = 2.

Assume that NQ(u1) ∩ NQ(u2) 6= ∅ and dQ(u1) = dQ(u2) = 1. Without a loss of
generality, let v ∈ NQ(u1) ∩ NQ(u2). If n = 4, then G ∼= K1,3. Hence, pc(G) = spc(G) = 3.
If n = 5, then G ∼= G1, where G1 is obtained by adding two pendant edges to a vertex of
K3. Thus, pc(G) = spc(G) = 3. Now we consider n ≥ 6. Let V(Q) = {v, w1, w2, . . . , wn−3}.
Define an edge-coloring θ of G with two colors as follows: θ(u1v) = θ(w1wn−3) = 1;
θ(u2v) = θ(vwn−4) = 2; color the sequence vw1w2 · · ·wn−3v alternately with 1 and 2
starting with θ(vw1) = 1; and color the remaining edges arbitrarily with 1 and 2. We can
check that G is properly connected with the above edge-coloring, and so pc(G) = 2. If θ
is a strong proper coloring of G, then θ(u1v) 6= θ(u2v) 6= θ(vw1), and thus spc(G) ≥ 3.
On the other hand, we define a strong proper coloring θ′ of G with three colors as follows:
θ′(u1v) = 1, θ′(u2v) = 2, and color all edges of E(Q) with 3. Thus, spc(G) = 3.

Assume that NQ(u1) ∩ NQ(u2) 6= ∅ and max{dQ(u1), dQ(u2)} ≥ 2. Without a loss
of generality, let v ∈ NQ(u1) ∩ NQ(u2) and dQ(u1) ≥ 2. Observe that G is traceable, and
we obtain pc(G) = 2 by Proposition 1. Assign an edge-coloring θ with two colors to
G as follows: θ(u1v) = 1; θ(u2v) = θ(u1w) = 2 for any w ∈ NQ(u1) \ {v}; and color
the remaining edges with 1. It is clear that θ is a strong proper coloring of G. Hence,
spc(G) = 2.

Theorem 3. Let G be a connected graph of order n ≥ 5, diam(G) = 2, and ω(G) = n− 3. Let Q
be a maximum clique of G and V(G) \V(Q) = {u1, u2, u3}. Then, either pc(G) = spc(G) = 2
or one of the following holds:

(i) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), dQ(u2) = 0, min{dQ(u1), dQ(u3)} =
1, NQ(u1) ∪ NQ(u3) = V(Q) and NQ(u1) ∩ NQ(u3) = ∅.

(ii) n = 6, G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), and NQ(u1) = NQ(u2) =
NQ(u3) = {v}.

(iii) n ≥ 7, G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), and NQ(u1) = NQ(u2) =
NQ(u3) = {v}.

(iv) G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), NQ(u1) ∩ NQ(u2) ∩ NQ(u3) = {v},
min{dQ(u1), dQ(u2)} = dQ(u3) = 1 and dQ(u1) + dQ(u2) ≥ 3.

(v) G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), NQ(u1) ∩ NQ(u3) 6= ∅, NQ(u2) ∩
NQ(u3) 6= ∅, dQ(u1) = dQ(u2) = 1, dQ(u3) = 2 and NQ(u1) ∩ NQ(u2) = ∅.

(vi) n = 5, G[V(G) \V(Q)] ∼= 3K1 and NQ(u1) = NQ(u2) = NQ(u3) = {v}.
(vii) n ≥ 6, G[V(G) \V(Q)] ∼= 3K1 and NQ(u1) = NQ(u2) = NQ(u3) = {v}.
(viii) G[V(G) \V(Q)] ∼= 3K1, |(NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ

(u3))| = 1, NQ(u1) ∩ NQ(u2) ∩ NQ(u3) 6= ∅ and dQ(u1) + dQ(u2) + dQ(u3) ≥ 4.
(ix) G[V(G) \V(Q)] ∼= 3K1, |(NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ

(u3))| = 2, NQ(u1) ∩ NQ(u2) ∩ NQ(u3) 6= ∅ and dQ(u1) + dQ(u2) + dQ(u3) = 5.

Moreover, we have pc(G) = 2 and spc(G) = 3 for (i), (iii), (iv), (v), (viii), and (ix);
pc(G) = spc(G) = 3 for (ii); pc(G) = spc(G) = 4 for (vi); and pc(G) = 3 and spc(G) = 4 for
(vii).

Proof. Let F = G[V(G) \V(Q)] and let θ be an edge-coloring of G. We prove this theorem
by analyzing the structure of F.

Case 1. F ∼= K3. Observe that G is traceable, and so pc(G) = 2 by Proposition 1.
The following edge-coloring θ with two colors induces a strong proper coloring of G: color
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all edges of E(F) and E(Q) with 1, and color all edges of E[V(F), V(Q)] with 2. Thus,
spc(G) = 2.

Case 2. F ∼= P3, where u1u2, u2u3 ∈ E(G). Assume that min{dQ(u1), dQ(u2), dQ(u3)} ≥
1. Note that G is traceable, and we have pc(G) = 2 by Proposition 1. Assign a strong proper
coloring θ with two colors to G as follows: θ(u1u2) = 1; θ(u2u3) = 2; and color all edges of
E(Q) with 1 and all edges of E[V(F), V(Q)] with 2. Hence, spc(G) = 2.

Assume that min{dQ(u1), dQ(u2), dQ(u3)} = 0. Since diam(G) = 2, it follows that
dQ(u1) ≥ 1, dQ(u2) = 0, dQ(u3) ≥ 1, and NQ(u1) ∪ NQ(u3) = V(Q). Observe that G is
traceable, and we obtain pc(G) = 2 by Proposition 1. Next, we only consider the strong
proper connection number of graph G under this assumption.

Suppose NQ(u1) ∩ NQ(u3) = ∅ and min{dQ(u1), dQ(u3)} = 1. Without a loss of
generality, let dQ(u1) = 1 and NQ(u1) = {v}. If there exists a strong proper coloring θ of G
with two colors, then θ(u1u2) 6= θ(u2u3). Without a loss of generality, let θ(u1u2) = 1 and
θ(u2u3) = 2. Since u2u1v is the unique u2 − v geodesic and u2u3w is the unique u2 − w
geodesic for any w ∈ NQ(u3), it follows that θ(u1v) = 2 and θ(u3w) = 1. Note that u1vw
is the unique u1 − w geodesic for any w ∈ NQ(u3), and so θ(vw) = 1. There is no proper
geodesic between u3 and v, which is a contradiction. Thus, spc(G) ≥ 3. Assign an edge-
coloring θ′ with three colors to G as follows: θ′(u1u2) = θ′(u3w) = 1 for any w ∈ NQ(u3),
θ′(u2u3) = θ′(u1v) = 2, and color all edges of E(Q) with 3. Obviously, θ′ is a strong proper
coloring of G, and so spc(G) = 3.

Suppose NQ(u1)∩ NQ(u3) = ∅ and min{dQ(u1), dQ(u3)} ≥ 2. Let NQ(u1) = {v1, v2,
. . . , vt} and NQ(u3) = {w1, w2, . . . , wk}, where t + k = n− 3. Assign an edge-coloring θ
with two colors to G such that G is strongly properly connected: θ(u1u2) = θ(v1w1) =
θ(u3w1) = θ(u3wi) = θ(v2wi) = 1 for 2 ≤ i ≤ k, θ(u2u3) = θ(v1wk) = θ(u1v1) =
θ(u1vj) = θ(w1vj) = 2 for 2 ≤ j ≤ t, and color the remaining edges arbitrarily with 1 and 2.
Hence, spc(G) = 2.

Suppose NQ(u1) ∩ NQ(u3) 6= ∅, and say v ∈ NQ(u1) ∩ NQ(u3). This implies that
min{dQ(u1), dQ(u3)} ≥ 2. Color u1u2, u2u3, u1v and all edges of E(Q) with 1, and color
the remaining edges with 2. Clearly, G is strongly properly connected with the above
edge-coloring, and so spc(G) = 2.

Case 3. F ∼= K2 + K1, where u1u2 ∈ E(G). Since G is connected, we obtain dQ(u3) ≥ 1.
We distinguish the following three subcases.

Subcase 3.1. dQ(u3) = 1. Let NQ(u3) = {v}. Since diam(G) = 2, we have dQ(u1) ≥ 1,
dQ(u2) ≥ 1 and v ∈ NQ(u1) ∩ NQ(u2). Assume that dQ(u1) = dQ(u2) = 1. This implies
n ≥ 6. If n = 6, then G ∼= G2, where G2 is displayed in Figure 1. Thus, pc(G) = spc(G) = 3.
Now we consider n ≥ 7. Let V(Q) = {w1, w2, . . . , wn−4, v}. Assign an edge-coloring θ
with two colors to G as follows: θ(u1u2) = θ(u1v) = θ(u2v) = θ(wiv) = θ(wjwn−4) = 1
for 1 ≤ i ≤ n− 5 and 2 ≤ j ≤ n− 5, θ(u3v) = θ(wn−4v) = θ(w1wn−4) = θ(w1w2) = 2, and
color the remaining edges arbitrarily with 1 and 2. It is easy to verify that θ is a proper-path
coloring of G. Thus, pc(G) = 2. If G is strongly properly connected with an edge-coloring
θ, then θ(u1v) 6= θ(u3v) 6= θ(w1v), and so spc(G) ≥ 3. Assign an edge-coloring θ′ with
three colors to G as follows: θ′(u1u2) = θ′(u1v) = θ′(u2v) = 1, θ′(u3v) = 2, and color all
edges of E(Q) with 3. We can check that G is strongly properly connected with the above
edge-coloring. Hence, spc(G) = 3.

G2

1 1

1

2 2

23

Figure 1. The graph G2 with a strong proper coloring.

Assume that min{dQ(u1), dQ(u2)} = 1 and dQ(u1) + dQ(u2) ≥ 3. Without a loss of
generality, let dQ(u1) ≥ 2 and dQ(u2) = 1. Observe that G is traceable, and we have
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pc(G) = 2 by Proposition 1. If G is strongly properly connected with an edge-coloring θ,
then θ(u2v) 6= θ(u3v) 6= θ(wv), where w ∈ V(Q) \ NQ(u1). Hence, spc(G) ≥ 3. Define
an edge-coloring θ′ of G with three colors such that G is strongly properly connected:
θ′(u1u2) = θ′(u1v) = θ′(u2v) = 1, and color all edges of E(Q) with 3 and the remaining
edges with 2. Thus, spc(G) = 3.

Assume that min{dQ(u1), dQ(u2)} ≥ 2. Note that G is traceable, and so pc(G) = 2
by Proposition 1. Assign a strong proper coloring θ with two colors to G as follows:
θ(u1u2) = θ(u1v) = θ(u2v) = 1, and color all edges of E(Q) with 1 and the remaining
edges with 2. Hence, spc(G) = 2.

Subcase 3.2. dQ(u3) = 2. Let NQ(u3) = {u, v}. Since diam(G) = 2, we obtain
NQ(u1) ∩ NQ(u3) 6= ∅ and NQ(u2) ∩ NQ(u3) 6= ∅. Observe that G is traceable, and
we have pc(G) = 2 by Proposition 1.

Assume that dQ(u1) = dQ(u2) = 1 and NQ(u1) ∩ NQ(u2) 6= ∅. Let u ∈ NQ(u1) ∩
NQ(u2). There exists a strong proper coloring θ of G with two colors as follows: θ(u1u2) =
θ(u1u) = θ(u2u) = θ(u3v) = 1, θ(u3u) = 2, and color all edges of E(Q) with 2. Thus,
spc(G) = 2.

Assume that dQ(u1) = dQ(u2) = 1 and NQ(u1) ∩ NQ(u2) = ∅. Let NQ(u1) = {u},
NQ(u2) = {v} and V(Q) = {w1, w2, . . . , wn−5, u, v}. If there exists a strong proper coloring
θ of G with two colors, then θ(u1u) 6= θ(uu3). Without a loss of generality, let θ(u1u) = 1
and θ(uu3) = 2. Since u1uw1 is the unique u1 − w1 geodesic, it follows that θ(uw1) =
2. Note that u2vu3 is the unique u2 − u3 geodesic, and so θ(u2v) 6= θ(vu3). We first
consider θ(u2v) = 1 and θ(vu3) = 2. Since u2vw1 is the unique u2 − w1 geodesic, we have
θ(vw1) = 2. There is no proper geodesic between u3 and w1, which is a contradiction. Next,
we consider θ(u2v) = 2 and θ(vu3) = 1. Note that u2vw1 is the unique u2 − w1 geodesic,
so we obtain θ(vw1) = 1. There is no proper geodesic between u3 and w1, which is a
contradiction. Hence, spc(G) ≥ 3. Allocate a strong proper coloring θ′ with three colors to
G as follows: θ′(u1u2) = θ′(u1u) = θ′(u2v) = 1, θ′(uu3) = θ′(vu3) = 2, and color all edges
of E(Q) with 3. Thus, spc(G) = 3.

Assume that dQ(u1) + dQ(u2) ≥ 3 and NQ(u1) ∩ NQ(u2) 6= ∅. Without a loss of
generality, let dQ(u1) ≥ 2 and w ∈ NQ(u1)∩ NQ(u2). Consider u ∈ NQ(u1) ∩ NQ(u2) or
v ∈ NQ(u1)∩NQ(u2). Without a loss of generality, let u ∈ NQ(u1)∩NQ(u2). The following
edge-coloring θ with two colors makes G strongly properly connected: θ(u1u) = θ(u2u) =
θ(u1u2) = 1, θ(u3u) = 2, and color all edges of E(Q) with 2 and the remaining edges with
1. Hence, spc(G) = 2. Consider u /∈ NQ(u1) ∩ NQ(u2) and v /∈ NQ(u1) ∩ NQ(u2). Then,
min{dQ(u1), dQ(u2)} ≥ 2. Without a loss of generality, let u ∈ NQ(u1) and v ∈ NQ(u2).
Assign an edge-coloring θ with two colors to G as follows: θ(u1w) = θ(u2w) = θ(u1u2) =
θ(u1u) = θ(u3v) = 1, θ(u3u) = θ(u2v) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. It is not difficult to verify that θ is a strong proper coloring of
G, and so spc(G) = 2.

Assume that dQ(u1) + dQ(u2) ≥ 3 and NQ(u1) ∩ NQ(u2) = ∅. Without a loss of
generality, let dQ(u1) ≥ 2, u ∈ NQ(u1), and v ∈ NQ(u2). There exists an edge-coloring θ
with two colors such that G is strongly properly connected, as follows: θ(u1u2) = θ(u2v) =
θ(u3u) = 1, θ(u1u) = θ(u3v) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Hence, spc(G) = 2.

Subcase 3.3. dQ(u3) ≥ 3. Note that G is traceable, and we obtain pc(G) = 2 by
Proposition 1. Assume that dQ(u1) = dQ(u2) = 1 and NQ(u1) ∩ NQ(u2) = ∅. Let
NQ(u1) ∩ NQ(u3) = {u} and NQ(u2) ∩ NQ(u3) = {v}. Assign a strong proper coloring
θ with two colors to G as follows: θ(u1u2) = θ(u1u) = θ(u2v) = 1, θ(u3u) = θ(u3v) = 2,
and color all edges of E(Q) with 2 and the remaining edges with 1. Thus, spc(G) = 2.

Assume that either dQ(u1) = dQ(u2) = 1 and NQ(u1) ∩ NQ(u2) 6= ∅, or dQ(u1) +
dQ(u2) ≥ 3. An analogous edge-coloring to that presented in Subcase 3.2 induces a strong
proper coloring of G with spc(G) = 2.
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Case 4. F ∼= 3K1. Since diam(G) = 2, it follows that NQ(u1) ∩ NQ(u2) 6= ∅, NQ(u1) ∩
NQ(u3) 6= ∅ and NQ(u2) ∩ NQ(u3) 6= ∅. This case is demonstrated by the following
three subcases.

Subcase 4.1. |(NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ(u3))| = 1.
This implies that |NQ(u1)∩ NQ(u2)∩ NQ(u3)| = 1. Let NQ(u1)∩ NQ(u2)∩ NQ(u3) = {v}.
Assume that dQ(u1) = dQ(u2) = dQ(u3) = 1. Then, spc(G) ≥ pc(G) ≥ 3 by Proposition 2.
If n = 5, then G ∼= K1,4. Hence, pc(G) = spc(G) = 4. Now we consider n ≥ 6. Let
V(Q) = {v, w1, w2, . . . , wn−4}. Assign an edge-coloring θ with three colors to G as follows:
θ(u1v) = 1; θ(u2v) = 2; θ(u3v) = 3; θ(w1wn−4) = 3 if n is even, θ(w1wn−4) = 2 if n is odd;
color the sequence w1vw2w3 · · ·wn−4 alternately with 1 and 2 starting with θ(w1v) = 1;
and color the remaining edges arbitrarily with 1 and 2. It is not difficult to check that θ is
a proper-path coloring of G. Thus, pc(G) = 3. Suppose G has a strong proper coloring θ,
we have θ(u1v) 6= θ(u2v) 6= θ(u3v) 6= θ(w1v), and so spc(G) ≥ 4. On the other hand, there
exists a strong proper coloring θ′ of G with four colors, as follows: θ′(u1v) = 1, θ′(u2v) = 2,
θ′(u3v) = 3, and color all edges of E(Q) with 4. Therefore, we have spc(G) = 4.

Assume that dQ(u1) + dQ(u2) + dQ(u3) ≥ 4. Without a loss of generality, let dQ(u1) ≥
2, and say u ∈ NQ(u1) \ {v}. Let V(Q) = {u, v, w1, w2, . . . , wn−5} with n ≥ 6. The fol-
lowing edge-coloring θ with two colors makes G properly connected: θ(u1v) = θ(u2v) =
θ(uv) = 1, θ(u3v) = 2, color the sequence vw1w2 · · ·wn−5uu1 alternately with 2 and 1
starting with θ(vw1) = 2, and color the remaining edges arbitrarily with 1 and 2. Thus,
pc(G) = 2. Suppose G has a strong proper coloring θ, we have θ(u1v) 6= θ(u2v) 6= θ(u3v),
and so spc(G) ≥ 3. On the other hand, there exists a strong proper coloring θ′ of G with
three colors, as follows: θ′(u1u) = θ′(u2v) = 1, θ′(u3v) = 2, θ′(u1v) = 3, and color all
edges of E(Q) with 3 and the remaining edges with 1. Hence, spc(G) = 3.

Subcase 4.2. |(NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ(u3))| = 2.
Since diam(G) = 2, we obtain NQ(u1) ∩ NQ(u2) ∩ NQ(u3) 6= ∅, and say v ∈ NQ(u1) ∩
NQ(u2) ∩ NQ(u3). Without a loss of generality, we consider |NQ(u1) ∩ NQ(u2)| = 2,
and say u ∈ (NQ(u1)∩NQ(u2)) \ {v}. Assign an analogous edge-coloring to that presented
in Subcase 4.1 to G that satisfies dQ(u1) + dQ(u2) + dQ(u3) ≥ 4. Obviously, G is properly
connected, and so pc(G) = 2.

Assume that dQ(u1) + dQ(u2) + dQ(u3) = 5. Suppose that there exists a strong proper
coloring θ of G with two colors. Note that u1vu3 is the unique u1 − u3 geodesic, and u2vu3
is the unique u2 − u3 geodesic. Without a loss of generality, let θ(u1v) = θ(u2v) = 1
and θ(u3v) = 2. Since u3vw is the unique u3 − w geodesic, where w ∈ V(Q) \ {u, v},
it follows that θ(vw) = 1. In order to have a proper geodesic connecting u2 and w, we have
θ(u2u) 6= θ(uw). Similarly, for the sake of having a proper geodesic between u1 and u2,
we obtain θ(u1u) 6= θ(u2u). Then, θ(uw) = θ(u1u), and so there is no proper geodesic
connecting u1 and w, which is a contradiction. Thus, spc(G) ≥ 3. Now we assign a strong
proper coloring θ′ with three colors to G as follows: θ′(u1u) = θ′(u1v) = θ′(u2v) = 1,
θ′(u2u) = θ′(u3v) = 2, and color all edges of E(Q) with 3. Hence, spc(G) = 3.

Assume that dQ(u1) + dQ(u2) + dQ(u3) ≥ 6. Suppose dQ(u3) = 1. This implies that
max{dQ(u1), dQ(u2)} ≥ 3. Without a loss of generality, we consider dQ(u1) ≥ 3, and say
w ∈ NQ(u1) \ {u, v}. The following edge-coloring θ with two colors makes G strongly
properly connected: θ(u1u) = θ(u1v) = θ(u2v) = 1, θ(u2u) = θ(u3v) = θ(u1w) = 2,
and color all edges of E(Q) with 1 and the remaining edges with 2. Thus, spc(G) = 2.
Suppose dQ(u3) ≥ 2. Let z ∈ NQ(u3) \ {v}, where u = z is possible. Assign an edge-
coloring θ with two colors to G as follows: θ(u1u) = θ(u1v) = θ(u2v) = θ(u3z) = 1,
θ(u2u) = θ(u3v) = 2, and color all edges of E(Q) with 2 and the remaining edges with 1.
Obviously, θ is a strong proper coloring of G, and so spc(G) = 2.

Subcase 4.3. |(NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ(u3))| ≥ 3,
and let {w1, w2, w3} ⊆ (NQ(u1) ∩ NQ(u2)) ∪ (NQ(u1) ∩ NQ(u3)) ∪ (NQ(u2) ∩ NQ(u3)).
Up to isomorphism, we only need to consider the following two cases.

Let {u1w1, u1w2, u2w1, u2w3, u3w2, u3w3} ⊆ E[V(F), V(Q)]. Assign an edge-coloring
θ with two colors to G such that G is strongly properly connected: θ(u1w1) = θ(u2w3) =
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θ(u3w2) = 1, θ(u1w2) = θ(u2w1) = θ(u3w3) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. Hence, pc(G) = spc(G) = 2.

Let {u1w1, u1w2, u1w3, u2w1, u2w2, u2w3, u3w1} ⊆ E[V(F), V(Q)]. The following edge-
coloring θ with two colors makes G strongly properly connected: θ(u1w2) = θ(u2w3) =
θ(u3w1) = 1, θ(u1w1) = θ(u2w1) = θ(u2w2) = 2, and color all edges of E(Q) with 2 and
the remaining edges with 1. Thus, pc(G) = spc(G) = 2.

Theorem 4. Let G be a connected graph of order n ≥ 5, diam(G) ≥ 3, and ω(G) = n− 3. Let Q
be a maximum clique of G and V(G) \V(Q) = {u1, u2, u3}. Then, either pc(G) = spc(G) = 2
or one of the following holds:

(i) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), dQ(u1) = dQ(u3) = 0, and dQ(u2) = 1.
(ii) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), dQ(u1) = dQ(u3) = 0, and dQ(u2) ≥ 2.
(iii) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), min{dQ(u1), dQ(u3)} = 1, dQ(u2) =

0, NQ(u1) ∪ NQ(u3) 6= V(Q), and NQ(u1) ∩ NQ(u3) = ∅.
(iv) 5 ≤ n ≤ 6, G[V(G) \V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), NQ(u1) = NQ(u3) = {v},

and dQ(u2) = 0.
(v) n ≥ 7, G[V(G) \V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), NQ(u1) = NQ(u3) = {v}, and

dQ(u2) = 0.
(vi) G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), dQ(u2) ≥ 1, NQ(u1) = NQ(u3) =

{v}, NQ(u2) ∩ NQ(u3) = ∅, and NQ(u1) ∪ NQ(u2) 6= V(Q).
(vii) 5 ≤ n ≤ 6, G[V(G) \ V(Q)] ∼= 3K1, NQ(u1) ∩ NQ(u2) ∩ NQ(u3) = ∅, |NQ(u1) ∩

NQ(u2)| = 1, and dQ(u1) = dQ(u2) = dQ(u3) = 1.
(viii) n = 6, G[V(G) \V(Q)] ∼= 3K1, NQ(u1)∩NQ(u2)∩NQ(u3) = ∅, |NQ(u1)∩NQ(u2)| =

1, dQ(u1) = dQ(u2) = 1, and dQ(u3) = 2.
(ix) n ≥ 7, G[V(G) \V(Q)] ∼= 3K1, NQ(u1)∩NQ(u2)∩NQ(u3) = ∅, |NQ(u1)∩NQ(u2)| =

1, dQ(u1) = dQ(u2) = 1, and dQ(u3) ≥ 1.
(x) G[V(G) \ V(Q)] ∼= 3K1, NQ(u1) ∩ NQ(u2) ∩ NQ(u3) = ∅, |NQ(u1) ∩ NQ(u2)| = 1,

NQ(u1) ∩ NQ(u3) 6= ∅, dQ(u1) = 2, and dQ(u2) = dQ(u3) = 1.

Moreover, we have pc(G) = 2 and spc(G) = 3 for (ii), (iii), (v), (vi), (viii), (ix), and (x) and
pc(G) = spc(G) = 3 for (i), (iv), and (vii).

Proof. Let F = G[V(G) \V(Q)], and let θ be an edge-coloring of G. We prove this theorem
by the following two cases.

Case 1. diam(G) = 3. We distinguish the following four subcases by analyzing
the structure of F.

Subcase 1.1. F ∼= K3. Note that G is traceable, and we have pc(G) = 2 by Proposition 1.
Assign an edge-coloring θ with two colors to G as follows: color all edges of E(F) and E(Q)
with 1, and color all edges of E[V(F), V(Q)] with 2. It is obvious that θ is a strong proper
coloring of G, and so spc(G) = 2.

Subcase 1.2. F ∼= P3, where u1u2, u2u3 ∈ E(G). Assume that dQ(u1) = dQ(u3) = 0.
Suppose dQ(u2) = 1, and let NQ(u2) = {v}. Then, spc(G) ≥ pc(G) ≥ 3 by Proposition 2.
Now we define a strong proper coloring θ of G with three colors as follows: θ(u1u2) = 1,
θ(u2u3) = 2, θ(u2v) = 3, and color all edges of E(Q) with 1. Thus, pc(G) = spc(G) = 3.
Suppose dQ(u2) ≥ 2, and let u, v ∈ NQ(u2). Assign an edge-coloring θ with two colors
to G as follows: θ(u1u2) = θ(u2u) = θ(vw) = 1 for any w ∈ V(Q) \ {u, v}, θ(u2u3) =
θ(u2v) = θ(uv) = θ(uw) = 2 for any w ∈ V(Q) \ {u, v}, and color the remaining edges
arbitrarily with 1 and 2. We can check that G is properly connected with the above edge-
coloring, and so pc(G) = 2. If G is strongly properly connected with an edge-coloring
θ, then θ(u1u2) 6= θ(u2u3) 6= θ(u2u). Thus, spc(G) ≥ 3. Assign a strong proper coloring
θ′ with three colors to G as follows: θ′(u1u2) = 1, θ′(u2u3) = 2, and color all edges of
E[V(F), V(Q)] with 3 and all edges of E(Q) with 1. Thus, spc(G) = 3.

Assume that min{dQ(u1), dQ(u3)} = 0 and max{dQ(u1), dQ(u3)} ≥ 1. Without a loss
of generality, let dQ(u3) = 0 and dQ(u1) ≥ 1. Since diam(G) = 3, it follows that dQ(u2) ≥ 1.
Note that G is traceable, and we have pc(G) = 2 by Proposition 1. The following edge-
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coloring θ with two colors makes G strongly properly connected: θ(u1u2) = 1, θ(u2u3) = 2,
and color all edges of E(Q) with 2 and all edges of E[V(F), V(Q)] with 1. Hence, spc(G) = 2.

Assume that dQ(u1) ≥ 1 and dQ(u3) ≥ 1. Since diam(G) = 3, it follows that dQ(u2) =
0 and NQ(u1) ∪ NQ(u3) 6= V(Q). Observe that G is traceable, and we have pc(G) = 2 by
Proposition 1. Now, we only consider the strong proper connection number of graph G
under this assumption.

Suppose NQ(u1) ∩ NQ(u3) = ∅ and min{dQ(u1), dQ(u3)} = 1. Without a loss of
generality, we consider dQ(u1) = 1, and say NQ(u1) = {u}. If there exists a strong proper
coloring θ of G with two colors, then θ(u1u2) 6= θ(u2u3). Without a loss of generality,
let θ(u1u2) = 1 and θ(u2u3) = 2. Note that u2u1u is the unique u2 − u geodesic, and
u2u3v is the unique u2 − v geodesic for any v ∈ NQ(u3); then, θ(u1u) = 2 and θ(u3v) = 1.
Since u1uv is the unique u1 − v geodesic for any v ∈ NQ(u3), we have θ(uv) = 1. There
is no proper geodesic between u3 and u, which is a contradiction. Thus, spc(G) ≥ 3.
On the other hand, we assign a strong proper coloring θ′ with three colors to G as follows:
θ′(u1u2) = θ′(u3v) = 1 for any v ∈ NQ(u3), θ′(u2u3) = θ′(u1u) = 2, and color all edges of
E(Q) with 3. Hence, spc(G) = 3.

Suppose NQ(u1) ∩ NQ(u3) = ∅ and min{dQ(u1), dQ(u3)} ≥ 2. Let NQ(u1) =
{w1, w2, · · · , wt} and NQ(u3) = {v1, v2, · · · , vk}, where t + k < n − 3. Assign an edge-
coloring θ with two colors to G as follows: θ(u1u2) = θ(w1v1) = θ(u3v1) = θ(u3vi) =
θ(w2vi) = 1 for 2 ≤ i ≤ k, θ(u2u3) = θ(w1vk) = θ(u1w1) = θ(u1wj) = θ(v1wj) = 2 for
2 ≤ j ≤ t, θ(v1w) = 2 and θ(w1w) = 1 for any w ∈ V(Q) \ {NQ(u1) ∪ NQ(u3)}, and color
the remaining edges arbitrarily with 1 and 2. It is clear that θ is a strong proper coloring of
G, and so spc(G) = 2.

Suppose NQ(u1) ∩ NQ(u3) 6= ∅, and let v ∈ NQ(u1) ∩ NQ(u3). Consider dQ(u1) =
dQ(u3) = 1. Color u1u2 and all edges of E(Q) with 1, and color u2u3, u1v and u3v with 2.
Obviously, the above edge-coloring makes G strongly properly connected. Thus, spc(G) =
2. Consider min{dQ(u1), dQ(u3)} = 1 and max{dQ(u1), dQ(u3)} ≥ 2. Without a loss
of generality, let dQ(u1) = 1 and dQ(u3) ≥ 2. Assign a strong proper coloring θ with
two colors to G as follows: θ(u1u2) = θ(u2u3) = θ(u3v) = 1, θ(u1v) = θ(u3w) = 2
for any w ∈ NQ(u3) \ {v}, and color all edges of E(Q) with 1. Hence, spc(G) = 2.
Consider min{dQ(u1), dQ(u3)} ≥ 2. Allocate a strong proper coloring θ with two colors
to G as follows: θ(u1u2) = θ(u2u3) = θ(u3v) = 1, and color all edges of E(Q) with 1 and
the remaining edges with 2. Thus, spc(G) = 2.

Subcase 1.3. F ∼= K2 + K1, where u1u2 ∈ E(G). Since G is connected, we have
dQ(u3) ≥ 1 and max{dQ(u1), dQ(u2)} ≥ 1. Without a loss of generality, let dQ(u1) ≥ 1.
Assume that dQ(u2) = 0. Since diam(G) = 3, it follows that NQ(u1) ∩ NQ(u3) 6= ∅, and let
v ∈ NQ(u1) ∩ NQ(u3).

Suppose dQ(u1) = dQ(u3) = 1. If n = 5, then G ∼= G3, where G3 is displayed in
Figure 2. Hence, pc(G) = spc(G) = 3. If n = 6, then G ∼= G4, where G4 is shown
in Figure 2. Thus, pc(G) = spc(G) = 3. Now, we consider n ≥ 7. Let V(Q) =
{w1, w2, . . . , wn−4, v}. Assign an edge-coloring θ with two colors to G as follows: θ(u1u2) =
θ(u3v) = θ(wn−4w1) = 1, θ(u1v) = θ(w2v) = 2, color the sequence vw1w2 · · ·wn−4v alter-
nately with 1 and 2 starting with θ(vw1) = 1, and color the remaining edges arbitrarily
with 1 and 2. We can verify that θ is a proper-path coloring of G. Thus, pc(G) = 2. If G
has a strong proper coloring θ, then θ(u1v) 6= θ(u3v) 6= θ(vw1), and so spc(G) ≥ 3. On the
other hand, there exists a strong proper coloring θ′ of G with three colors: assign 1 to u1u2
and u3v, assign 2 to u1v, and assign 3 to all edges of E(Q). Therefore, spc(G) = 3.

1

111
2

3

2

3

33

G3 G4

Figure 2. The graphs G3 and G4 with a strong proper coloring.
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Suppose dQ(u1) = 1 and dQ(u3) ≥ 2. Note that G is traceable, and we have pc(G) = 2
by Proposition 1. Allocate an edge-coloring θ with two colors to G as follows: θ(u1v) =
θ(u3w) = 1 for any w ∈ NQ(u3) \ {v}, θ(u1u2) = θ(u3v) = 2, and color all edges of E(Q)
with 2. Obviously, θ is a strong proper coloring of G, and so spc(G) = 2.

Suppose dQ(u1) ≥ 2 and dQ(u3) = 1. Observe that G is traceable, and we obtain
pc(G) = 2 by Proposition 1. The following edge-coloring θ with two colors makes G
strongly properly connected: θ(u1v) = θ(u1w1) = 1 for any w1 ∈ NQ(u1) \ {v}, θ(u1u2) =
θ(u3v) = 2, and color all edges incident with v in E(Q) with 1 and the remaining edges
with 2. Hence, spc(G) = 2.

Suppose dQ(u1) ≥ 2 and dQ(u3) ≥ 2. Note that G is traceable, and we have pc(G) = 2
by Proposition 1. Define a strong proper coloring θ of G with two colors as follows:
θ(u1v) = 1, θ(u1u2) = θ(u3v) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Thus, spc(G) = 2.

Assume that dQ(u2) ≥ 1. Since diam(G) = 3, it follows that min{|NQ(u1) ∩ NQ(u3)|,
|NQ(u2) ∩ NQ(u3)|} = 0. Suppose max{|NQ(u1) ∩ NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} ≥ 1.
Without a loss of generality, we consider |NQ(u2)∩NQ(u3)|} = 0 and |NQ(u1)∩NQ(u3)| ≥
1, and say v ∈ NQ(u1) ∩ NQ(u3). Observe that G is traceable, and we have pc(G) = 2 by
Proposition 1. Now, we only consider the strong proper connection number of graph G
under this supposition.

We first consider |NQ(u1) ∩ NQ(u3)| ≥ 2. The following edge-coloring θ with two
colors makes G strongly properly connected: color u1u2, u3v and all edges of E(Q) with 2,
and color the remaining edges with 1. Hence, spc(G) = 2.

Next, we consider |NQ(u1) ∩ NQ(u3)| = 1. Let dQ(u1) ≥ 2. Assign a strong proper
coloring θ with two colors to G: color u1v and all edges of E(Q) with 1, and color the re-
maining edges with 2. Hence, spc(G) = 2. Let dQ(u3) ≥ 2. Define a strong proper
coloring θ of G with two colors as follows: color u1u2, u3v and all edges of E(Q) with 2,
and color the remaining edges with 1. Thus, spc(G) = 2. Let dQ(u1) = dQ(u3) = 1 and
NQ(u1) ∪ NQ(u2) = V(Q). Allocate an edge-coloring θ with two colors to G: color u1u2,
u1v and all edges of E(Q) with 1, and color the remaining edges with 2. We can check that
G is strongly properly connected with the above edge-coloring, and so spc(G) = 2. Let
dQ(u1) = dQ(u3) = 1 and NQ(u1) ∪ NQ(u2) 6= V(Q). If θ is a strong proper coloring of G,
then θ(u1v) 6= θ(u3v) 6= θ(vw), where w ∈ V(Q) \ {NQ(u1) ∪ NQ(u2)}. Thus, spc(G) ≥ 3.
On the other hand, there exists an edge-coloring θ′ with three colors such that G is strongly
properly connected: color u1v with 1 and all edges of E(Q) with 3, and color the remaining
edges with 2. Hence, spc(G) = 3.

Suppose max{|NQ(u1) ∩ NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} = 0. Observe that G is trace-
able, and we have pc(G) = 2 by Proposition 1. Assign an edge-coloring θ with two colors to
G as follows: color u1u2 and all edges of E(Q) with 2, and color all edges of E[V(F), V(Q)]
with 1. It is clear that θ is a strong proper coloring of G, and so spc(G) = 2.

Subcase 1.4. F ∼= 3K1. Since diam(G) = 3, it follows that min{|NQ(u1)∩NQ(u2)|, |NQ
(u1)∩NQ(u3)|, |NQ(u2)∩NQ(u3)|} = 0. Assume that max{|NQ(u1)∩NQ(u2)|, |NQ(u1)∩
NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} = 0. The following edge-coloring θ with two colors makes
G strongly properly connected: color all edges of E(Q) with 2, and color all edges of
E[V(F), V(Q)] with 1. Thus, pc(G) = spc(G) = 2. Assume that max{|NQ(u1) ∩ NQ(u2)|,
|NQ(u1) ∩ NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} ≥ 1. Without a loss of generality, we consider
|NQ(u1) ∩ NQ(u2)| ≥ 1, and say u ∈ NQ(u1) ∩ NQ(u2).

Suppose dQ(u1) = dQ(u2) = 1. If θ is a strong proper coloring of G, then θ(u1u) 6=
θ(u2u) 6= θ(uw), where w ∈ V(Q) \ {u}. Hence, spc(G) ≥ 3. On the other hand, there
exists a strong proper coloring θ′ of G with three colors, as follows: θ′(u1u) = 1, θ′(u2u) = 2,
and color all edges of E(Q) with 3 and the remaining edges with 1. Thus, spc(G) = 3.
Next, we discuss the proper connection number of G. If n = 5, then G ∼= G3, where G3 is
displayed in Figure 2. Hence, pc(G) = 3. We consider n = 6. If dQ(u3) = 1, then G ∼= G5.
Thus, pc(G) = 3. If dQ(u3) = 2, then G ∼= G6. Hence, pc(G) = 2. The graphs G5 and
G6 are shown in Figure 3. Now, we consider n ≥ 7. Let V(Q) = {u, v, w1, w2, . . . , wn−5}
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and v ∈ NQ(u3). Assign an edge-coloring θ with two colors to G as follows: θ(u1u) =
θ(u3v) = θ(uwn−6) = 1; θ(u2u) = θ(wn−5v) = 2; color wn−6v with 1 for n = 7 and wn−6v
with 2 for n ≥ 8; color the sequence uvw1w2 · · ·wn−5u alternately with 2 and 1 starting
with θ(uv) = 2; and color the remaining edges arbitrarily with 1 and 2. We can check that
G is properly connected with the above edge-coloring, and so pc(G) = 2.

G5 G6

1

1 2

3

3

3

1 2

1

2 1

21

Figure 3. The graphs G5 and G6 with a proper-path coloring.

Suppose max{dQ(u1), dQ(u2)} ≥ 2. Without a loss of generality, let dQ(u1) ≥ 2,
and say w ∈ NQ(u1) \ {u}. We first consider NQ(u1) ∩ NQ(u3) = ∅. The following edge-
coloring θ with two colors makes G strongly properly connected: θ(u1u) = 1, θ(u1w) =
θ(u2u) = 2, color all edges of E(Q) with 1 and all edges incident with u3 in E[V(F), V(Q)]
with 2, and color the remaining edges with 1. Thus, pc(G) = spc(G) = 2.

Next, we consider NQ(u1) ∩ NQ(u3) 6= ∅ and say w1 ∈ NQ(u1) ∩ NQ(u3). Let
dQ(u1) = 2 and dQ(u2) = dQ(u3) = 1. The following edge-coloring θ with two col-
ors makes G properly connected: color all edges of E(Q) with 1 and the remaining
edges with 2. Hence, pc(G) = 2. If there exists a strong proper coloring θ of G with
two colors, then θ(u1u) 6= θ(u2u). Without a loss of generality, let θ(u1u) = 1 and
θ(u2u) = 2. Since u2uw1u3 is the unique u2 − u3 geodesic, it follows that θ(uw1) = 1
and θ(u3w1) = 2. Note that u1w1u3 is the unique u1 − u3 geodesic, and thus θ(u1w1) = 1.
Since u2uv is the unique u2− v geodesic and u3w1v is the unique u3− v geodesic, we obtain
θ(uv) = θ(w1v) = 1, where v ∈ V(Q) \ {u, w1}. There is no proper geodesic connecting
u1 and v, which is a contradiction. Hence, spc(G) ≥ 3. On the other hand, we assign
a strong proper coloring θ′ with three colors to G as follows: θ′(u1u) = θ′(u3w1) = 1,
θ′(u2u) = θ′(u1w1) = 2, and color all edges of E(Q) with 3. Therefore, spc(G) = 3.
Let dQ(u1) ≥ 3. The following edge-coloring θ of G with two colors makes G strongly
properly connected: θ(u1u) = θ(u1w1) = 1, θ(u2u) = θ(u3w1) = θ(u1w) = 2, where
w ∈ NQ(u1) \ {u, w1}, and color the remaining edges with 1. Thus, pc(G) = spc(G) = 2.
Let max{dQ(u2), dQ(u3)} ≥ 2. Without a loss of generality, we consider dQ(u2) ≥ 2. Define
an edge-coloring θ of G with two colors as follows: θ(u1u) = θ(u3w1) = θ(u2z) = 1, where
z ∈ NQ(u2), θ(u1w1) = θ(u2u) = 2, and color all edges of E(Q) with 2 and the remaining
edges with 1. Obviously, θ is a strong proper coloring of G, and so pc(G) = spc(G) = 2.

Case 2. diam(G) ≥ 4. Since diam(G) ≥ 4, it follows that F ∼= P3 or F ∼= K2 +
K1. Assume that F ∼= P3, where u1u2, u2u3 ∈ E(G). Since diam(G) ≥ 4, we have
min{dQ(u1), dQ(u3)} = 0, max{dQ(u1), dQ(u3)} ≥ 1, and dQ(u2) = 0. Without a loss
of generality, let dQ(u1) ≥ 1 and dQ(u2) = dQ(u3) = 0. Note that G is traceable, and
we have pc(G) = 2 by Proposition 1. The following edge-coloring θ with two colors
makes G strongly properly connected: color u1u2 and all edges of E(Q) with 2, and color
the remaining edges with 1. Thus, spc(G) = 2.

Assume that F ∼= K2 + K1, where u1u2 ∈ E(G). Since diam(G) ≥ 4, we have
min{dQ(u1), dQ(u2)} = 0, max{dQ(u1), dQ(u2)} ≥ 1, and dQ(u3) ≥ 1. Without a loss
of generality, let dQ(u1) ≥ 1, dQ(u2) = 0 and NQ(u1) ∩ NQ(u3) = ∅. Observe that G is
traceable, and we obtain pc(G) = 2 by Proposition 1. Assign a strong proper coloring
θ with two colors to G as follows: color u1u2 and all edges of E(Q) with 2, and color
the remaining edges with 1. Hence, spc(G) = 2.
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3. Rainbow Connection and Clique Number

Kemnitz and Schiermeyer [18] considered the rainbow connection number of graph
G of order n, diam(G) = 2, and ω(G) = n− i for 2 6 i 6 3. In this section, we investigate
the rainbow connection number of graph G of order n, diam(G) ≥ 3, and ω(G) = n− i for
2 6 i 6 3.

Theorem 5. Let G be a connected graph of order n, diam(G) ≥ 3, and ω(G) = n− 2. Let Q be
a maximum clique of G and V(G) \V(Q) = {u1, u2}. Then, rc(G) = 3.

Proof. Let F = G[V(G) \ V(Q)] and let θ be an edge-coloring of G. Since diam(G) ≥ 3,
we have rc(G) ≥ diam(G) ≥ 3. Assume that F ∼= K2. Since diam(G) ≥ 3, we obtain
max{dQ(u1), dQ(u2)} ≥ 1 and min{dQ(u1), dQ(u2)} = 0. The following edge-coloring
θ with three colors makes G rainbow-connected: color u1u2 with 1 and all edges of
E[V(F), V(Q)] with 2, and color all edges of E(Q) with 3. Thus, rc(G) = 3.

Assume that F ∼= 2K1. Since G is a connected graph with diam(G) ≥ 3, it follows that
dQ(u1) ≥ 1, dQ(u2) ≥ 1 and NQ(u1) ∩ NQ(u2) = ∅. Assign an edge-coloring θ with three
colors to G as follows: assign 1 to all edges that are incident with u1, assign 2 to all edges
that are incident with u2, and assign 3 to all edges of E(Q). It is not difficult to check that G
is rainbow-connected with the above edge-coloring, and so rc(G) = 3.

Theorem 6. Let G be a connected graph of order n, diam(G) ≥ 3, and ω(G) = n− 3. Let Q be
a maximum clique of G and V(G) \V(Q) = {u1, u2, u3}. Then, either rc(G) = 3, or rc(G) = 4
if and only if one of the following holds.

(i) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), dQ(u1) = dQ(u3) = 0, and dQ(u2) = 1.
(ii) G[V(G) \ V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), dQ(u2) = 0, dQ(u1) = dQ(u3) = 1,

and NQ(u1) ∩ NQ(u3) 6= ∅.
(iii) G[V(G) \ V(Q)] ∼= 3K1, NQ(u1) ∩ NQ(u2) ∩ NQ(u3) = ∅, |NQ(u1) ∩ NQ(u2)| = 1,

and dQ(u1) = dQ(u2) = dQ(u3) = 1.
(iv) G[V(G) \V(Q)] ∼= P3, where u1u2, u2u3 ∈ E(G), dQ(u1) ≥ 1, and dQ(u2) = dQ(u3) = 0.
(v) G[V(G) \V(Q)] ∼= K2 + K1, where u1u2 ∈ E(G), dQ(u1) ≥ 1, dQ(u2) = 0, dQ(u3) ≥ 1,

and NQ(u1) ∩ NQ(u3) = ∅.

Proof. Let F = G[V(G) \V(Q)], and let θ be an edge-coloring of G. We prove this theorem
by the following two cases.

Case 1. diam(G) = 3. We have rc(G) ≥ diam(G) = 3. We distinguish the following
four subcases by analyzing the structure of F.

Subcase 1.1. F ∼= K3. The following edge-coloring θ with three colors makes G
rainbow-connected: θ(u1u2) = θ(u2u3) = θ(u1u3) = 1, and color all edges of E(Q) with 3
and all edges of E[V(F), V(Q)] with 2. Thus, rc(G) = 3.

Subcase 1.2. F ∼= P3, where u1u2, u2u3 ∈ E(G). Assume that dQ(u1) = dQ(u3) = 0.
Suppose dQ(u2) = 1, and say NQ(u2) = {u}. If an edge-coloring θ is a rainbow coloring of
G, then θ(u1u2) 6= θ(u2u3) 6= θ(u2u) 6= θ(uv), where v ∈ V(Q) \ {u}. Hence, rc(G) ≥ 4.
Allocate a rainbow coloring θ′ with four colors to G as follows: θ′(u1u2) = 1, θ′(u2u3) = 2,
θ′(u2u) = 3, and color all edges of E(Q) with 4. Thus, rc(G) = 4. Suppose dQ(u2) ≥ 2,
and say u, v ∈ NQ(u2). The following edge-coloring θ with three colors makes G rainbow-
connected: θ(u1u2) = θ(u2u) = 1, θ(u2u3) = θ(u2v) = 2, and color the remaining edges
with 3. Hence, rc(G) = 3.

Assume that min{dQ(u1), dQ(u3)} = 0 and max{dQ(u1), dQ(u3)} ≥ 1. Without a loss
of generality, let dQ(u3) = 0 and dQ(u1) ≥ 1. Since diam(G) = 3, we have dQ(u2) ≥ 1.
Define an edge-coloring θ of G with three colors as follows: θ(u1u2) = 1, θ(u2u3) = 2,
and color all edges of E[V(F), V(Q)] with 1 and all edges of E(Q) with 3. We can check
that G is rainbow-connected with the above edge-coloring, and so rc(G) = 3.

Assume that dQ(u1) ≥ 1 and dQ(u3) ≥ 1. Since diam(G) = 3, it follows that dQ(u2) =
0 and NQ(u1) ∪ NQ(u3) 6= V(Q). The following edge-coloring θ with three colors makes
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G rainbow-connected: θ(u1u2) = 1, θ(u2u3) = 2, assign 3 to all edges of E(Q), assign 2
to the edges of E[V(F), V(Q)] which are incident with u1, and assign 1 to the edges of
E[V(F), V(Q)] which are incident with u3. Thus, rc(G) = 3.

Subcase 1.3. F ∼= K2 + K1, where u1u2 ∈ E(G). Since G is connected, we obtain
dQ(u3) ≥ 1 and max{dQ(u1), dQ(u2)} ≥ 1. Without a loss of generality, let dQ(u1) ≥ 1.

Assume that dQ(u2) = 0. Since diam(G) = 3, we have NQ(u1)∩ NQ(u3) 6= ∅, and say
u ∈ NQ(u1) ∩ NQ(u3). Suppose dQ(u1) = dQ(u3) = 1. If there exists a rainbow coloring θ
of G with three colors, then θ(u2u1) 6= θ(u1u) 6= θ(uu3). Without a loss of generality, let
θ(u2u1) = 1, θ(u1u) = 2 and θ(uu3) = 3. In order to have a rainbow path connecting u2 and
v for any v ∈ V(Q) \ {u}, let θ(uv) = 3. There is no rainbow path between u3 and v, which
is a contradiction. Thus, rc(G) ≥ 4. On the other hand, the following edge-coloring θ′ with
four colors makes G rainbow-connected: θ′(u2u1) = 1, θ′(u1u) = 2, θ′(uu3) = 3, and color
all edges of E(Q) with 4. Hence, rc(G) = 4. Suppose max{dQ(u1), dQ(u3)} ≥ 2. We first
consider dQ(u1) ≥ 2, and say v ∈ NQ(u1) \ {u}. Assign an edge-coloring θ with three colors
to G as follows: θ(u2u1) = 1, θ(u1u) = 2, θ(u3u) = θ(u1v) = 3, and color the remaining
edges with 2. It is obvious that G is rainbow-connected with the above edge-coloring,
and so rc(G) = 3. Next, we consider dQ(u3) ≥ 2, and say w ∈ NQ(u3) \ {u}. Define
a rainbow coloring θ of G with three colors as follows: θ(u2u1) = 1, θ(u1u) = θ(u3w) = 2,
θ(u3u) = 3, and color all edges of E(Q) with 3 and the remaining edges with 2. Thus,
rc(G) = 3.

Assume that dQ(u2) ≥ 1. Since diam(G) = 3, we obtain min{|NQ(u1) ∩ NQ(u3)|, |NQ
(u2)∩NQ(u3)|} = 0. Suppose max{|NQ(u1)∩NQ(u3)|, |NQ(u2)∩NQ(u3)|} ≥ 1. Without
a loss of generality, let |NQ(u1) ∩ NQ(u3)| ≥ 1 and |NQ(u2) ∩ NQ(u3)| = 0. Let u ∈
NQ(u1) ∩ NQ(u3) and v ∈ NQ(u2). The following edge-coloring θ with three colors makes
G rainbow-connected: θ(u1u) = θ(u2v) = 1, θ(u3u) = 2, and color the remaining edges
with 3. Hence, rc(G) = 3. Suppose max{|NQ(u1) ∩ NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} = 0. Let
w ∈ NQ(u1), v ∈ NQ(u2) and u ∈ NQ(u3), where w = v is possible. Allocate an edge-
coloring θ with three colors to G: θ(u1u2) = θ(u3u) = 1, θ(u1w) = θ(u2v) = 2, and color
the remaining edges with 3. We can verify that G is rainbow-connected with the above
edge-coloring, and so rc(G) = 3.

Subcase 1.4. F ∼= 3K1. Since diam(G) = 3, it follows that min{|NQ(u1)∩NQ(u2)|, |NQ
(u1)∩NQ(u3)|, |NQ(u2)∩NQ(u3)|} = 0. Assume that max{|NQ(u1)∩NQ(u2)|, |NQ(u1)∩
NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} = 0. Let u ∈ NQ(u1), v ∈ NQ(u2) and w ∈ NQ(u3). The fol-
lowing edge-coloring θ with three colors makes G rainbow-connected: θ(u1u) = θ(vw) =
θ(vz) = 1; θ(uv) = θ(u3w) = θ(uz) = 2; θ(u2v) = θ(uw) = θ(wz) = 3 for any
z ∈ V(Q) \ {u, v, w}; and color the remaining edges with 1. Thus, rc(G) = 3.

Assume that max{|NQ(u1) ∩ NQ(u2)|, |NQ(u1) ∩ NQ(u3)|, |NQ(u2) ∩ NQ(u3)|} ≥ 1.
Without a loss of generality, let |NQ(u1) ∩ NQ(u2)| ≥ 1, and say u ∈ NQ(u1) ∩ NQ(u2).
Suppose dQ(u1) = dQ(u2) = dQ(u3) = 1. If an edge-coloring θ is a rainbow coloring
of G, then θ(u1u) 6= θ(u2u) 6= θ(uv) 6= θ(u3v), where {v} = NQ(u3). Thus, rc(G) ≥ 4.
On the other hand, we define a rainbow coloring θ′ of G with four colors as follows:
θ′(u1u) = 1, θ′(u2u) = 2, θ′(u3v) = 3, and color all edges of E(Q) with 4. Hence, rc(G) = 4.
Suppose max{dQ(u1), dQ(u2)} ≥ 2. Without a loss of generality, let dQ(u1) ≥ 2, and say
w ∈ NQ(u1) \ {u}. Assign an edge-coloring θ with three colors to G: θ(u1u) = θ(u2u) = 1;
θ(u1w) = θ(u3v) = 2, where v ∈ NQ(u3) and v = w is possible; and color the remaining
edges with 3. Obviously, the edge-coloring θ is a rainbow coloring of G, and so rc(G) = 3.
Suppose dQ(u3) ≥ 2, and say v1, v2 ∈ NQ(u3). The following edge-coloring θ with
three colors makes G rainbow-connected: θ(u1u) = θ(u3v1) = 1, θ(u2u) = θ(u3v2) = 2,
and color the remaining edges with 3. Thus, rc(G) = 3.

Case 2. diam(G) ≥ 4. We obtain rc(G) ≥ diam(G) ≥ 4. Since diam(G) ≥ 4, it follows
that F ∼= P3 or F ∼= K2 + K1. Assume that F ∼= P3, where u1u2, u2u3 ∈ E(G). Since
diam(G) ≥ 4, we have min{dQ(u1), dQ(u3)} = 0, max{dQ(u1), dQ(u3)} ≥ 1, and dQ(u2) =
0. Without a loss of generality, let dQ(u1) ≥ 1 and dQ(u2) = dQ(u3) = 0. Allocate a rainbow
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coloring θ with four colors to G as follows: color u1u2 with 2 and u2u3 with 1, and color all
edges of E[V(F), V(Q)] with 3 and all edges of E(Q) with 4. Therefore, rc(G) = 4.

Assume that F ∼= K2 + K1, where u1u2 ∈ E(G). Since diam(G) ≥ 4, it follows that
min{dQ(u1), dQ(u2)} = 0, max{dQ(u1), dQ(u2)} ≥ 1, and dQ(u3) ≥ 1. Without a loss of
generality, let dQ(u1) ≥ 1, dQ(u2) = 0, and NQ(u1) ∩ NQ(u3) = ∅. The following edge-
coloring θ with four colors makes G rainbow-connected: θ(u1u2) = 1, θ(u1u) = 2, and
θ(u3v) = 3, where u ∈ NQ(u1) and v ∈ NQ(u3), and color the remaining edges with 4.
Hence, rc(G) = 4.
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