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Abstract: The choice of an appropriate regression model for econometric modeling minimizes
information loss and also leads to sound inferences. In this study, we develop four quantile regression
models based on trigonometric extensions of the unit generalized half-normal distributions for the
modeling of a bounded response variable defined on the unit interval. The desirable shapes of these
distributions, such as left-skewed, right-skewed, reversed-J, approximately symmetric, and bathtub
shapes, make them competitive models for bounded responses with such traits. The maximum
likelihood method is used to estimate the parameters of the regression models, and Monte Carlo
simulation results confirm the efficiency of the method. We demonstrate the utility of our models by
investigating the relationship between OECD countries’ educational attainment levels, labor market
insecurity, and homicide rates. The diagnostics reveal that all our models provide a good fit to the
data because the residuals are well behaved. A comparative analysis of the trigonometric quantile
regression models with the unit generalized half-normal quantile regression model shows that the
trigonometric models are the best. However, the sine unit generalized half-normal (SUGHN) quantile
regression model is the best overall. It is observed that labor market insecurity and the homicide rate
have significant negative effects on the educational attainment values of the OECD countries.

Keywords: unit distributions; quantile regression models; trigonometric models; generalized half-
normal; residual analysis

1. Introduction

Regression analyses are very instrumental in the econometric modeling of the rela-
tionship between a response variable and a set of covariates or exogenous variables. The
regression models adopted for such analysis can either be parametric or non-parametric in
nature. However, when we are certain about the distribution of the response variable, the
parametric regression model is preferred over the non-parametric model. Due to this, the
development of parametric regression models using (statistical or probability) distributions
is on the rise.

Due to their applicability in the fields of psychology, environment, epidemiology,
finance, education, and economics, among others, numerous regression models for ex-
amining relationships between an endogenous variable defined on the unit interval and
exogenous variables have been developed more recently. Basically, they aim to model
the conditional mean of the response variable. Among them, the beta regression model
developed in [1] is the most utilized because of the easy interpretation of the estimated
coefficients. Despite the flexibility of the beta regression model, the literature has been
flooded with other regression models using distributions defined on the unit interval. They
include the Vasicek regression model [2], log-weighted exponential regression model [3],
log-Bilal regression model [4], unit improved second-degree Lindley regression model [5],
and the unit Lindley regression model [6], among others.
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When the bounded response variable is non-symmetric or contaminated with outliers,
the appropriateness of the regression model based on the conditional mean becomes
questionable. This is because the mean is not a robust measure of central tendency due
to its susceptibility to outliers. Thus, quantile regression models have been proposed as
alternatives; thanks to their robustness, they are suitable when the response variable is
skewed or contaminated by outliers. In light of this, many quantile regression models for
modeling the conditional quantile of the response variable defined on the unit interval
have been developed using bounded distributions. Examples include the Vasicek quantile
regression model [2], unit generalized half-normal (UGHN) quantile regression model [7],
unit exponentiated Fréchet quantile regression model [8], unit gamma/Gompertz quantile
regression model [9], generalized Topp-Leone median regression model [10], unit log-log
quantile regression model [11], and the new unit Burr XII quantile regression model [12].

Although several bounded quantile regression models exist in the literature, none can
be said to handle all the complex characteristics of data generated on a daily basis. As a
result, the ongoing creation of new models facilitates data analysis with little information
loss. In this study, we propose four new quantile regression models for the modeling of a
bounded response variable using trigonometric classes of distributions and the UGHN dis-
tribution. The choice of trigonometric classes for modifying the UGHN distribution before
developing the quantile regression model comes from the fact that they are parsimonious,
simple to handle, and provide excellent parametric fit (see [13,14]). On the other hand, the
UGHN distribution has proved itself as a flexible and adaptive distribution that can serve
to construct efficient fit and regression models (see [7,15]). The motivations behind com-
bining the functionalities of trigonometric classes with the UGHN distribution are thus to
provide parsimonious quantile regression models capable of modeling a bounded response
variable that exhibits left-skewed, right-skewed, approximately symmetric, reversed-J, J,
and bathtub probability density shapes, and also to offer a heavy-tailed quantile regression
model for modeling a bounded response.

The article is structured into eight sections. Section 2 describes the preliminary
knowledge. The trigonometric forms of the UGHN distribution are indicated in Section 3.
Section 4 develops the quantile densities of the trigonometric forms of the UGHN distri-
bution. Section 5 presents the proposed quantile regression models, parameter estimation
method and residual analysis. Section 6 is devoted to the Monte Carlo simulations. An
empirical illustration of the developed models is given in Section 7. The conclusion is
finally presented in Section 8.

2. Preliminary Knowledge
2.1. Trigonometric Classes of Distributions

Trigonometric classes of distributions have been useful in recent times for modifying
existing classical distributions. In a Ph.D. thesis in 2015, Souza [14] derived some simple and
novel trigonometric classes for changing the functional structure of standard distributions,
which were later refined in [16–19]. These include the sin-G, cos-G, tan-G, and sec-G
classes. For the purposes of this study, a mathematical presentation of these classes is
now presented. Let G(y; η) and g(y; η) denote the cumulative distribution function (CDF)
and probability density function (PDF) of a continuous distribution, respectively, and η
denotes a vector of parameters. According to [16], the CDF and PDF of the sin-G class are,
respectively, given by

F(y; η) = sin
[π

2
G(y; η)

]
, y ∈ R (1)

and

f (y; η) =
π

2
g(y; η) cos

[π

2
G(y; η)

]
. (2)
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According to [17], the CDF and PDF of the cos-G class are, respectively, defined as

F(y; η) = 1− cos
[π

2
G(y; η)

]
, y ∈ R (3)

and

f (y; η) =
π

2
g(y; η) sin

[π

2
G(y; η)

]
. (4)

With reference to [18] (or [20]), the CDF and PDF of the tan-G class are, respectively, given
by

F(y; η) = tan
[π

4
G(y; η)

]
, y ∈ R (5)

and

f (y; η) =
π

4
g(y; η) sec2

[π

4
G(y; η)

]
. (6)

Finally, Souza et al. [19] defined the CDF and PDF of the sec-G class as, respectively,

F(y; η) = sec
[π

3
G(y; η)

]
− 1, y ∈ R (7)

and

f (y; η) =
π

3
g(y; η) sec

[π

3
G(y; η)

]
tan
[π

3
G(y; η)

]
. (8)

The merits of these trigonometric classes are that there is no addition of parameters to the
baseline distribution; the trigonometric function confers an original oscillating feature to the
probability functions, mainly the PDF and hazard rate function; these functions are quite
simple from a mathematical viewpoint; and it projects a different modeling target than the
baseline distribution. To illustrate this last point, the sin-G class and its baseline distribution
have the following comprehensive first-order stochastic ordering: F(y, η) ≥ G(y, η) for any
y ∈ R. Further developments on trigonometric classes can be found in the survey of [21].
Some specific lifetime distributions based on these classes have been the subject of full
publications. See, for example, the sin-exponential distribution in [22], sin-Weibull, cos-
Weibull, and tan-Weibull distributions in [13], sin-Fréchet distribution in [23], sin-inverse
Rayleigh distribution in [24], and the sin-Nadarajah-Haghighi distribution in [25]. To the
best of our knowledge, in the context of these trigonometric classes, the consideration of
bounded baseline distributions and the construction of efficient quantile regression models
based on them have been unexplored.

2.2. UGHN Distribution

The mathematical foundations of the UGHN distribution, which were sketched in
the introduction, are presented in this section. To begin, the UGHN distribution is a unit
distribution created in [15]. In the functional aspect, it depends on two parameters, γ > 0
and β > 0, and corresponds to the distribution of Y = e−X, where X denotes a random
variable following the classical generalized half-normal distribution with parameters γ and
β (introduced in [26]). The CDF and PDF of Y are, respectively, given by

G(y; γ, β) = 2Φ

(
−
(
− log(y)

γ

)β
)

, 0 < y < 1 (9)
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and

g(y; γ, β) =

√
2
π

β

y(− log(y))

(
− log(y)

γ

)β

exp

[
−1

2

(
− log(y)

γ

)2β
]

, (10)

where Φ(·) is the CDF of the standard normal distribution. The UGHN distribution is
a flexible distribution with a thicker left tail than the Weibull, gamma, and lognormal
distributions. In addition, it can exhibit both left and right-skewness for given parameter
values. The UGHN distribution’s desirable properties have made it a viable candidate
for modeling lifetime data (see [15]). It is also desirable in the applied context of quantile
regression modeling (see [7]).

3. Trigonometric UGHN Distributions

In this section, based on the material presented in the above sections, we propose four
trigonometric distributions. These are the sin-UGHN (SUGHN), cos-UGHN (CUGHN),
tan-UGHN (TUGHN), and sec-UGHN (SCUGHN) distributions.

3.1. SUGHN Distribution

Combining Equations (1), (2), (9), and (10), the CDF and PDF of the SUGHN distribu-
tion are, respectively, given by

F(y; γ, β) = sin

[
πΦ

(
−
(
− log(y)

γ

)β
)]

, 0 < y < 1 (11)

and

f (y; γ, β) =

√
π

2
β

y(− log(y))

(
− log(y)

γ

)β

exp

[
−1

2

(
− log(y)

γ

)2β
]
×

cos

[
πΦ

(
−
(
− log(y)

γ

)β
)]

. (12)

The PDF plots of the SUGHN distribution for some selected values of the parameters
are shown in Figure 1. These plots display left-skewed, right-skewed, approximately
symmetric, reversed-J, and bathtub shapes. This makes the SUGHN distribution suitable
for modeling data with these traits.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

y

f(
y)

γ=1.3, β=2.1
γ=1.8, β=2.1
γ=0.5, β=1.6
γ=2.4, β=0.8
γ=0.8, β=3.4
γ=1.3, β=0.2

Figure 1. PDF plots of the SUGHN distribution.
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The quantile function (QF) (or the inverse CDF) is very useful when generating
random observations from the distribution and also for computing measures of shape and
dispersion. The QF of the SUGHN distribution is

Q(p; γ, β) = exp

[
−γ

(
−Φ−1

(
arcsin(p)

π

))1/β
]

, 0 < p < 1. (13)

3.2. CUGHN Distribution

The CDF and PDF of the CUGHN distribution are obtained by combining Equa-
tions (3), (4), (9), and (10). Thus, the CDF is given by

F(y; γ, β) = 1− cos

[
πΦ

(
−
(
− log(y)

γ

)β
)]

, 0 < y < 1. (14)

The corresponding PDF is given by

f (y; γ, β) =

√
π

2
β

y(− log(y))

(
− log(y)

γ

)β

exp

[
−1

2

(
− log(y)

γ

)2β
]
×

sin

[
πΦ

(
−
(
− log(y)

γ

)β
)]

. (15)

The PDF plots of the CUGHN distribution displayed in Figure 2 exhibit left-skewed, right-
skewed, reversed-J, and bathtub shapes. However, they do not display the approximately
symmetric shape shown by the SUGHN distribution. Hence, this distribution is capable of
modeling data with such characteristics.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

y

f(
y)

γ=3.1, β=2.1
γ=0.5, β=2.1
γ=19.5, β=0.2
γ=1, β=3.9
γ=3.4, β=0.8
γ=5.3, β=1

Figure 2. PDF plots of the CUGHN distribution.

The corresponding QF is

Q(p; γ, β) = exp

[
−γ

(
−Φ−1

(
arccos(1− p)

π

))1/β
]

, 0 < p < 1. (16)

3.3. TUGHN Distribution

The TUGHN distribution is developed using Equations (5), (6), (9), and (10). Hence,
the corresponding CDF and PDF are, respectively, given by

F(y; γ, β) = tan

[
π

2
Φ

(
−
(
− log(y)

γ

)β
)]

, 0 < y < 1 (17)
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and

f (y; γ, β) =

√
π

8
β

y(− log(y))

(
− log(y)

γ

)β

exp

[
−1

2

(
− log(y)

γ

)2β
]
×

sec2

[
π

2
Φ

(
−
(
− log(y)

γ

)β
)]

, (18)

respectively. The PDF plots of the TUGHN distribution in Figure 3 show left-skewed,
right-skewed, reversed-J, J, and bathtub shapes. Although the TUGHN distribution does
not show the approximate symmetric shape displayed by the SUGHN, it has an increasing
or J shape that is not exhibited by the SUGHN and CUGHN distributions. Hence, the
TUGHN distribution is a candidate for modeling bounded data with such characteristics.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

y

f(
y)

γ=2.4, β=3.1
γ=2.4, β=0.5
γ=0.2, β=0.5
γ=0.5, β=2.9
γ=6.3, β=1
γ=0.8, β=3.9

Figure 3. PDF plots of the TUGHN distribution.

The corresponding QF is

Q(p; γ, β) = exp

[
−γ

(
−Φ−1

(
2 arctan(p)

π

))1/β
]

, 0 < p < 1. (19)

3.4. SCUGHN Distribution

The CDF and PDF of the SCUGHN distribution are developed by substituting Equa-
tion (9) into (7) and, Equations (10) and (9) into (8). Therefore, the corresponding CDF is
given by

F(y; γ, β) = sec

[
2π

3
Φ

(
−
(
− log(y)

γ

)β
)]
− 1, 0 < y < 1. (20)

The associated PDF is

f (y; γ, β) =

√
2π

9
β

y(− log(y))

(
− log(y)

γ

)β

exp

[
−1

2

(
− log(y)

γ

)2β
]
×

sec

[
2π

3
Φ

(
−
(
− log(y)

γ

)β
)]

tan

[
2π

3
Φ

(
−
(
− log(y)

γ

)β
)]

. (21)

Figure 4 shows that the SCUGHN distribution can exhibit left-skewed, right-skewed,
reversed-J, and bathtub shapes for some given parameter values. The SCUGHN distribution
shows similar shapes to the CUGHN distribution.
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Figure 4. PDF plots of the SCUGHN distribution.

The corresponding QF is

Q(p; γ, β) = exp

[
−γ

(
−Φ−1

(
3 arcsec(p + 1)

2π

))1/β
]

, 0 < p < 1. (22)

4. Quantile PDFs of the Trigonometric Forms of the UGHN Distribution

In order to develop the quantile regression models for the SUGHN, CUGHN, TUGHN,
and SCUGHN distributions, it is essential to parametrize their PDF in terms of the
100 pth quantile, µ = Q(p; γ, β). To do this, we make γ the subject in the QFs of the
SUGHN, CUGHN, TUGHN, and SCUGHN distributions and substitute them in their
corresponding PDFs. To get the quantile PDF of the SUGHN distribution, we substitute
γ = − log(µ)(−Φ−1(arcsin(p)/π))−1/β into Equation (12). The quantile PDF is calculated
as follows:

f (y; µ, p, β) =

√
π

2
βΦ−1(arcsin(p)/π)

y log(y)

(
log(y)
log(µ)

)β

×

exp

[
−1

2

[
Φ−1

(
arcsin(p)

π

)]2( log(y)
log(µ)

)2β
]
×

cos

[
πΦ

(
Φ−1

(
arcsin(p)

π

)(
log(y)
log(µ)

)β
)]

, 0 < y < 1, (23)

where β > 0 is the shape parameter, µ is the quantile parameter, and p satisfies 0 < p < 1.
Similarly, the quantile PDF of the CUGHN distribution is obtained by substituting

γ = − log(µ)(−Φ−1(arccos(p)/π))−1/β into Equation (15). It is thus given by

f (y; µ, p, β) =

√
π

2
βΦ−1(arccos(1− p)/π)

y log(y)

(
log(y)
log(µ)

)β

×

exp

[
−1

2

[
Φ−1

(
arccos(1− p)

π

)]2( log(y)
log(µ)

)2β
]
×

sin

[
πΦ

(
Φ−1

(
arccos(1− p)

π

)(
log(y)
log(µ)

)β
)]

, 0 < y < 1. (24)

To obtain the quantile PDF of the TUGHN distribution, we substitute
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γ = − log(µ)(−Φ−1(2 arctan(p)/π))−1/β into Equation (18). This PDF is thus given
by

f (y; µ, p, β) =

√
π

8
βΦ−1(2 arctan(p)/π)

y log(y)

(
log(y)
log(µ)

)β

×

exp

[
−1

2

[
Φ−1

(
2 arctan(p)

π

)]2( log(y)
log(µ)

)2β
]
×

sec2

[
π

2
Φ

(
Φ−1

(
2 arctan(p)

π

)(
log(y)
log(µ)

)β
)]

, 0 < y < 1. (25)

Substituting γ = − log(µ)(−Φ−1(3 arcsec(p + 1)/2π))−1/β into Equation (21) yields the
quantile PDF of the SCUGHN distribution, which is given by

f (y; µ, p, β) =

√
2π

9
βΦ−1(3 arcsec(p + 1)/2π)

y log(y)

(
log(y)
log(µ)

)β

×

exp

[
−1

2

[
Φ−1

(
3 arcsec(p + 1)

2π

)]2( log(y)
log(µ)

)2β
]
×

sec

[
2π

3
Φ

(
Φ−1

(
3 arcsec(p + 1)

2π

)(
log(y)
log(µ)

)β
)]
×

tan

[
2π

3
Φ

(
Φ−1

(
3 arcsec(p + 1)

2π

)(
log(y)
log(µ)

)β
)]

, 0 < y < 1. (26)

The quantile PDFs given in Equations (23)–(26) form the basis of our quantile regression
models. Indeed, the SUGHN quantile regression model is obtained using Equation (23), the
CUGHN quantile regression model is obtained using Equation (24), the TUGHN quantile
regression model is obtained using Equation (25), and the SCUGHN quantile regression
model is obtained using Equation (26).

5. Quantile Regression Model, Estimation and Residual Analysis
5.1. Quantile Regression Model

This section presents the quantile regression model for the proposed trigonometric
distributions. Consider n independent realizations of a random variable Y that follows
the SUGHN, CUGHN, TUGHN, or SCUGHN distributions (depending on the context),
denoted by y1, y2, . . . , yn. The quantile regression models are developed using the logit
link function. Thus, for any i = 1, 2, . . . , n, we set

µi = h−1(xT
i ρ), (27)

where h(·) is the logit link function used to link the conditional quantile of the dependent
variable to the independent variables, ρ = (ρ0, ρ1, . . . , ρp)T is the vector of unknown
parameters, and xT

i = (1, xi1, xi2, . . . , xip) are the known i-th vector of independent vari-
ables. Although several link functions exist, we adopt the logit link function because of its
simplicity when interpreting the coefficients of the independent variables. As a result, the
model can be written as

logit(µi) = log
(

µi
1− µi

)
= ρ0 + ρ1xi1 + ρ2xi2 + . . . + ρpxip. (28)

It is important to note that, for j = 1, 2, . . . , p, when xij is continuous, a unit increase causes
100%× (eρj − 1) change in the conditional quantile of the dependent variable, while the
other independent variables remain constant. When xij is a categorical variable, a unit
increase results in a 100%× eρj change in the conditional quantile of the dependent variable
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from xij = 1 to xij = 0, while the other independent variables remain constant. Setting
p = 0.5 yields the median regression. See [2,7], [8], [9] and [11] for more information on the
formulation of quantile regression models with bounded distributions.

5.2. Parameter Estimation

This section describes the parameter estimation method and inference conducted using
the classical maximum likelihood estimation approach. Consider n independent realizations
of a random variable Y that follows the SUGHN, CUGHN, TUGHN, or SCUGHN distribu-
tions (depending on the context), denoted by y1, y2, . . . , yn and the vector of the involved
parameters, denoted by ϕ = (µ, p, β)T. Then, the log-likelihood function is given by

`(ϕ|y) =
n

∑
i=1

log f (yi; µi, p, β), (29)

where f (·) is the corresponding quantile PDF and y = (y1, y2, . . . , yn). The maximum
likelihood estimates are obtained by maximizing the function

ϕ̂ = arg

[
sup
ϕ∈Ω

`(ϕ|y)
]

, (30)

where Ω is the parameter space of ϕ. For the models in Equations (23)–(26), it is not possible
to obtain closed form solutions for the maximum likelihood estimates of parameters. Thus,
numerical solutions are employed using the BFGS algorithm in the R software [27]. The
standard errors of the estimates of the parameters are determined using the large sample
property of the maximum likelihood method (see [28]). The observed Fisher information
matrix used to estimate standard errors for the parameters is given by

I(ϕ̂) = − ∂`(ϕ|y)
∂ϕT∂ϕT

∣∣∣∣
ϕ=ϕ̂

.

5.3. Residual Analysis

To examine the adequacy of a fitted quantile regression model, it is important to
investigate the behavior of its residuals. In this study, we adopt the randomized quantile
residuals developed in [29]. They are defined as

ri = Φ−1[F(yi; ϕ̂)], i = 1, 2, . . . , n,

where F(·) is the corresponding estimated quantile CDF and Φ−1(·) is the quantile of the
standard normal distribution. If the model fits the data well, then it is expected that the
randomized quantile residuals will follow the standard normal distribution.

6. Monte Carlo Simulations

In this section, Monte Carlo simulation experiments are performed to investigate the
properties of the maximum likelihood estimates. We take p = 2 and the experiments are
repeated N = 5000 times using sample sizes of n = 25, 50, 100, 150, and 200. The following
two parameter combinations are used in the experiment: (ρ0, ρ1, ρ2, β) = (0.2, 0.1, 0.8, 0.3)
and (ρ0, ρ1, ρ2, β) = (0.1, 0.7, 0.4, 0.5). For each parameter combination, the following
regression structure is employed during the simulation:

log
(

µi
1− µi

)
= ρ0 + ρ1xi1 + ρ2xi2,

where xi1 is a realization from a standard uniform distribution and xi2 is a realization from
a four-degree-of-freedom student distribution. The independent variables remain fixed
throughout the simulations. The observations for the response variable for a given quantile
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regression model are obtained using its corresponding distribution. Hence, for the various
quantile regression models proposed, the response variable observations are generated
using the following:

• For the SUGHN distribution, for any i = 1, 2, . . . , n, we consider

yi = exp

[
−γi

(
−Φ−1

(
arcsin(ui)

π

))1/β
]

,

where γi = − log(µi)(−Φ−1(arcsin(p)/π))−1/β and ui is an observation from the
standard uniform distribution.

• For the CUGHN distribution, we consider

yi = exp

[
−γi

(
−Φ−1

(
arccos(1− ui)

π

))1/β
]

,

where γi = − log(µi)(−Φ−1(arccos(p)/π))−1/β.
• For the TUGHN distribution, we consider

yi = exp

[
−γi

(
−Φ−1

(
2 arctan(ui)

π

))1/β
]

,

where γi = − log(µi)(−Φ−1(2 arctan(p)/π))−1/β.
• For the SCUGHN distribution, we consider

yi = exp

[
−γi

(
−Φ−1

(
3 arcsec(ui + 1)

2π

))1/β
]

,

where γi = − log(µi)(−Φ−1(3 arcsec(p + 1)/2π))−1/β.

The simulation is carried out using the median regression by setting p = 0.5. The perfor-
mance of the estimates is examined using the absolute bias (AB) and root mean square
error (RMSE), which are, respectively, given by

AB =
1
N

N

∑
i=1
|ϕ̂i − ϕ|

and

RMSE =

√√√√ 1
N

N

∑
i=1

(ϕ̂i − ϕ)2,

where ϕ = ρ0, ρ1, ρ2 or β. We also compute the average estimates (AEs) of the parameters.
According to Tables 1 and 2, the AEs approach the true parameter values as the sample size
increases. The ABs and RMSEs decrease as the sample size increases. The results from our
Monte Carlo simulation agree with the large sample property of the maximum likelihood
method. Thus, the estimates of the parameters are consistent.
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Table 1. Simulations results for (ρ0, ρ1, ρ2, β) = (0.2, 0.1, 0.8, 0.3).

Parameter n
SUGHN CUGHN TUGHN SCUGHN

AE AB RMSE AE AB RMSE AE AB RMSE AE AB RMSE

ρ0

25 0.2199 0.2611 0.3371 0.3131 0.3391 0.4645 0.3413 0.3645 0.5001 0.3646 0.3725 0.5218
50 0.1989 0.2272 0.2814 0.2482 0.2758 0.3674 0.2708 0.2933 0.3970 0.2907 0.2874 0.4122

100 0.1813 0.1928 0.2306 0.1938 0.2265 0.2812 0.2061 0.2349 0.3012 0.2186 0.2093 0.2938
150 0.1771 0.1734 0.2034 0.1844 0.2093 0.2559 0.1943 0.2188 0.2752 0.2080 0.1795 0.2630
200 0.1692 0.1578 0.1827 0.1834 0.1930 0.2310 0.1908 0.1978 0.2446 0.2006 0.1501 0.2209

ρ1

25 0.3508 0.3667 0.5715 0.3840 0.4076 0.6396 0.4060 0.4269 0.6664 0.4106 0.4256 0.6736
50 0.2804 0.2949 0.4585 0.3486 0.3661 0.5738 0.3656 0.3837 0.6017 0.3580 0.3645 0.5953

100 0.2476 0.2531 0.3785 0.2495 0.2705 0.4263 0.2606 0.2798 0.4505 0.2471 0.2483 0.4411
150 0.2033 0.2109 0.3118 0.2584 0.2647 0.3990 0.2700 0.2774 0.4254 0.2434 0.2279 0.4028
200 0.2059 0.2043 0.2857 0.2345 0.2352 0.3498 0.2448 0.2433 0.3737 0.2203 0.1909 0.3470

ρ2

25 0.8129 0.3233 0.3976 0.7769 0.4018 0.4743 0.7753 0.4297 0.4997 0.7407 0.4393 0.5159
50 0.8129 0.2259 0.2860 0.8055 0.3024 0.3780 0.8027 0.3289 0.4062 0.7692 0.3292 0.4198

100 0.8002 0.1564 0.1994 0.8148 0.2081 0.2654 0.8109 0.2234 0.2893 0.7841 0.2120 0.2959
150 0.8069 0.1234 0.1572 0.8096 0.1679 0.2141 0.8083 0.1811 0.2325 0.7784 0.1603 0.2305
200 0.8027 0.1093 0.1388 0.8085 0.1417 0.1830 0.8040 0.1499 0.1976 0.7808 0.1263 0.1930

β

25 0.3193 0.0398 0.0539 0.3139 0.0376 0.0491 0.3132 0.0351 0.0460 0.3158 0.0340 0.0461
50 0.3100 0.0271 0.0346 0.3057 0.0257 0.0328 0.3052 0.0240 0.0307 0.3075 0.0218 0.0297

100 0.3041 0.0184 0.0232 0.3027 0.0177 0.0229 0.3025 0.0163 0.0213 0.3043 0.0137 0.0197
150 0.3031 0.0147 0.0186 0.3030 0.0147 0.0188 0.3027 0.0135 0.0174 0.3041 0.0105 0.0155
200 0.3021 0.0128 0.0162 0.3006 0.0119 0.0153 0.3005 0.0109 0.0142 0.3017 0.0080 0.0121

Table 2. Simulations results for (ρ0, ρ1, ρ2, β) = (0.1, 0.7, 0.4, 0.5).

Parameter n
SUGHN CUGHN TUGHN SCUGHN

AE AB RMSE AE AB RMSE AE AB RMSE AE AB RMSE

ρ0

25 0.2137 0.2103 0.2969 0.2794 0.2745 0.4073 0.3413 0.3645 0.5001 0.3184 0.3132 0.4681
50 0.1847 0.1801 0.2462 0.2291 0.2270 0.3259 0.2708 0.2933 0.3970 0.2586 0.2540 0.3716

100 0.1686 0.1529 0.2014 0.1917 0.1871 0.2561 0.2061 0.2349 0.3012 0.2127 0.2079 0.2920
150 0.1500 0.1318 0.1721 0.1651 0.1605 0.2184 0.1943 0.2188 0.2752 0.1866 0.1840 0.2564
200 0.1413 0.1230 0.1588 0.1567 0.1487 0.1973 0.1908 0.1978 0.2446 0.1765 0.1704 0.2306

ρ1

25 0.5507 0.4727 0.5355 0.5327 0.5480 0.5967 0.4060 0.4269 0.6664 0.5299 0.5809 0.6226
50 0.5957 0.3815 0.4511 0.5811 0.4636 0.5254 0.3656 0.3837 0.6017 0.5679 0.5148 0.5681

100 0.6046 0.2842 0.3542 0.5524 0.3841 0.4512 0.2606 0.2798 0.4505 0.5270 0.4443 0.5069
150 0.6383 0.2454 0.3067 0.6230 0.3082 0.3767 0.2700 0.2774 0.4254 0.6001 0.3691 0.4372
200 0.6409 0.2132 0.2729 0.6362 0.2741 0.3402 0.2448 0.2433 0.3737 0.6165 0.3300 0.4002

ρ2

25 0.4228 0.1988 0.2529 0.4197 0.2505 0.3123 0.7753 0.4297 0.4997 0.4357 0.3033 0.3744
50 0.4044 0.1340 0.1701 0.4161 0.1796 0.2308 0.8027 0.3289 0.4062 0.4259 0.2258 0.2875

100 0.3985 0.0890 0.1122 0.4094 0.1191 0.1519 0.8109 0.2234 0.2893 0.4127 0.1527 0.1934
150 0.4008 0.0684 0.0868 0.4067 0.0943 0.1210 0.8083 0.1811 0.2325 0.4084 0.1216 0.1557
200 0.4008 0.0606 0.0769 0.4055 0.0814 0.1042 0.8040 0.1499 0.1976 0.4065 0.1049 0.1345

β

25 0.5426 0.0735 0.0971 0.5363 0.0716 0.0932 0.3132 0.0351 0.0460 0.5344 0.0664 0.0869
50 0.5190 0.0469 0.0617 0.5163 0.0470 0.0603 0.3052 0.0240 0.0307 0.5162 0.0438 0.0564

100 0.5107 0.0317 0.0401 0.5093 0.0326 0.0425 0.3025 0.0163 0.0213 0.5090 0.0303 0.0394
150 0.5061 0.0252 0.0320 0.5074 0.0263 0.0335 0.3027 0.0135 0.0174 0.5074 0.0245 0.0312
200 0.5045 0.0220 0.0282 0.5024 0.0212 0.0271 0.3005 0.0109 0.0142 0.5025 0.0197 0.0251
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7. Empirical Application

Educational attainment value is essential in the formulation of national policy. Hence,
empirical application of the proposed models is illustrated in this section by investigating
the effect of labour market insecurity (LMI) and homicide rate (HR) on educational attain-
ment value (EAV) in OECD countries. The EAV is measured in percentages. These data
were investigated in [3,7], and they are available in [7]. In this study, a regression structure
of the form

log
(

µi
1− µi

)
= ρ0 + ρ1LMIi + ρ2HRi, i = 1, 2, . . . , 37

is utilized to assess the impact of LMI and HR on EAV. We fit the SUGHN, CUGHN,
TUGHN, and SCUGHN quantile regression models using the conditional quantiles
p = 0.1, 0.25, 0.5, 0.75 and 0.9. The performances of the models are compared using the
−2× log− likelihood (−2`), Akaike information criterion (AIC), and Bayesian informa-
tion criterion (BIC). The model with the lowest values of the −2`, AIC, and BIC is the
best. It is worth noting that, in [3], the beta regression model is fitted with the results
AIC = −59.6000 and BIC = −53.0.490, and the log-weighted exponential mean regression
model is fitted with the results AIC = −65.2580 and BIC = −58.7070. Before fitting our
regression models, we perform an exploratory analysis of the EAV. As seen in Figure 5, the
variable is left-skewed and contains some extreme data points. This is an indication that a
mean regression model may not be appropriate. However, after fitting the UGHN quantile
regression model to the data, the study in [7] discovered that the 0.1 conditional quantile
provided the best fit, with AIC = −62.8264 and BIC = −56.2761.
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Figure 5. Boxplot, violin, and kernel density plots.

Table 3 provides the estimates, standard errors, and p-values of the parameters of
our fitted models for the various conditional quantiles. The estimated parameters were all
significant at the 5% level of significance. This is an indication that the LMI and HR have a
significant impact on the EAV for all the conditional quantiles. Looking at the signs of the
LMI and HR, it is observed that they have a negative impact on the EAV.

Table 4 presents the model selection criteria for our fitted models, and it can be seen
that for all the models, the 0.1 conditional quantile provided the best fit to the data. As
the difference between their AICs and ours is greater than 2, all of our fitted models
outperformed the models proposed in [3,7] at the 0.1 conditional quantile. In addition,
comparing the various quantiles, our models outperform the UGHN quantile regression
model. The SUGHN quantile regression model is the best for all the conditional quantiles.
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Table 3. Estimates of parameters, standard errors, and p-values for some quantiles.

p Model ρ̂0 ρ̂1 ρ̂2 β̂

0.1

Estimates 1.6257 −0.1656 −0.0643 1.0807
SUGHN Standard error 0.2160 0.0422 0.0214 0.1330

p-value <0.0001 <0.0001 0.0026 <0.0001

Estimates 1.7212 −0.1865 −0.0688 1.5740
CUGHN Standard error 0.2086 0.0427 0.0203 0.2028

p-value <0.0001 <0.0001 <0.0001 <0.0001

Estimates 1.7408 −0.1964 −0.0680 1.7576
TUGHN Standard error 0.2180 0.0447 0.0193 0.2181

p-value <0.0001 <0.0001 <0.0001 <0.0001

Estimates 1.6884 −0.1860 −0.0652 1.9640
SCUGHN Standard error 0.2292 0.0449 0.0198 0.2349

p-value <0.0001 <0.0001 0.0010 <0.0001

0.25

Estimates 1.8765 −0.1540 −0.0607 1.0766
SUGHN Standard error 0.2038 0.0398 0.0198 0.1327

p-value <0.0001 0.0001 0.0022 <0.0001

Estimates 1.9474 −0.1760 −0.0652 1.5688
CUGHN Standard error 0.1999 0.0411 0.0189 0.2023

p-value <0.0001 <0.0001 0.0006 <0.0001

Estimates 1.9661 −0.1849 −0.0644 1.7500
TUGHN Standard error 0.2106 0.0433 0.0180 0.2176

p-value <0.0001 <0.0001 <0.0001 <0.0001

Estimates 1.9274 −0.1737 −0.0615 1.9543
SCUGHN Standard error 0.2195 0.0431 0.0184 0.2342

p-value <0.0001 <0.0001 0.0008 <0.0001

0.5

Estimates 2.2111 −0.1418 −0.0571 1.0714
SUGHN Standard error 0.1966 0.0373 0.0183 0.1324

p-value <0.0001 0.0001 0.0018 <0.0001

Estimates 2.2820 −0.1636 −0.0612 1.5611
CUGHN Standard error 0.1967 0.0391 0.0175 0.2016

p-value <0.0001 <0.0001 0.0004 <0.0001

Estimates 2.3123 −0.1706 −0.0603 1.7382
TUGHN Standard error 0.2083 0.0415 0.0165 0.2167

p-value <0.0001 <0.0001 0.0003 <0.0001

Estimates 2.2705 −0.1593 −0.0576 1.9403
SCUGHN Standard error 0.2140 0.0412 0.0170 0.2330

p-value <0.0001 0.0001 0.0007 <0.0001

0.75

Estimates 2.6239 −0.1302 −0.0540 1.0652
SUGHN Standard error 0.2019 0.0349 0.0170 0.1319

p-value <0.0001 0.0002 0.0015 <0.0001

Estimates 2.7527 −0.1506 −0.0576 1.5494
CUGHN Standard error 0.2105 0.0370 0.0161 0.2005

p-value <0.0001 <0.0001 0.0004 <0.0001

Estimates 2.7884 −0.1556 −0.0566 1.7210
TUGHN Standard error 0.2216 0.0396 0.0153 0.2151

p-value <0.0001 <0.0001 0.0002 <0.0001

Estimates 2.7154 −0.1450 −0.0542 1.9211
SCUGHN Standard error 0.2208 0.0391 0.0158 0.2312

p-value <0.0001 0.0002 0.0006 <0.0001
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Table 3. Cont.

p Model ρ̂0 ρ̂1 ρ̂2 β̂

0.9

Estimates 3.0927 −0.1205 −0.0517 1.0573
SUGHN Standard error 0.2249 0.0327 0.0161 0.1314

p-value <0.0001 0.0002 0.0013 <0.0001

Estimates 3.3459 −0.1390 −0.0547 1.5332
CUGHN Standard error 0.2518 0.0350 0.0152 0.1991

p-value <0.0001 <0.0001 0.0003 <0.0001

Estimates 3.3563 −0.1425 −0.0539 1.6997
TUGHN Standard error 0.2577 0.0375 0.0145 0.2129

p-value <0.0001 0.0001 0.0002 <0.0001

Estimates 3.2286 −0.1328 −0.0517 1.9007
SCUGHN Standard error 0.2458 0.0369 0.0150 0.2291

p-value <0.0001 0.0003 0.0006 <0.0001

Table 4. Statistical criteria.

p Model −2` AIC BIC

0.1

SUGHN −75.7186 −67.7186 −61.1682
CUGHN −73.9665 −65.9665 −59.4161
TUGHN −73.6949 −65.6949 −59.1445
SCUGHN −74.6806 −66.6806 −60.1303

0.25

SUGHN −75.3022 −67.3022 −60.7519
CUGHN −73.5322 −65.5322 −58.9819
TUGHN −73.2110 −65.2110 −58.6606
SCUGHN −74.1924 −66.1924 −59.6421

0.5

SUGHN −74.7427 −66.7427 −60.1924
CUGHN −72.8930 −64.8930 −58.3426
TUGHN −72.4684 −64.4684 −57.918
SCUGHN −73.4922 −65.4922 −58.9419

0.75

SUGHN −74.1041 −66.1041 −59.5537
CUGHN −72.0697 −64.0697 −57.5193
TUGHN −71.5349 −63.5349 −56.9846
SCUGHN −72.6694 −64.6694 −58.1190

0.9

SUGHN −73.5121 −65.5121 −58.9618
CUGHN −71.2425 −63.2425 −56.6921
TUGHN −70.6513 −62.6513 −56.1010
SCUGHN −71.9129 −63.9129 −57.3625

We perform diagnostic checks on the model residuals to examine how adequate the
fitted models are. The probability–probability (P–P) plots of the randomized quantile
residuals shown in Figures 6 and 7 suggest that the residuals of the SUGHN, CUGHN,
TUGHN, and SCUGHN quantile regression models follow the standard normal distribution
as the plots cluster along the diagonal.

Further, the randomized quantile residuals are examined using the half-normal plots
with the simulated envelope proposed in [30]. Figures 8 and 9 clearly show that the fitted
models are adequate since all the observations are inside the simulated envelope.
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Figure 6. P–P plots of randomized quantile residuals of the SUGHN and CUGHN regression models.
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Figure 7. P–P plots of randomized quantile residuals of the TUGHN and SCUGHN regression
models.
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Figure 8. Half-normal plots of randomized quantile residuals of the SUGHN and CUGHN regression
models.
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Figure 9. Half-normal plots of randomized quantile residuals of the TUGHN and SCUGHN regres-
sion models.

8. Conclusions

In this study, we developed four trigonometric extensions of the UGHN distribution.
These are the SUGHN, CUGHN, TUGHN, and SCUGHN distributions. Their PDFs exhibit
desirable shapes, such as left-skewed, right-skewed, approximately symmetric, reversed-J,
J, and bathtub shapes, making the new distributions suitable candidate models for data
with these characteristics. Given the flexibility of the proposed distributions, we developed
four quantile regression models for studying the relationship between a response variable
and a set of independent variables. The maximum likelihood method was used to estimate
the parameters of the regression model, and the Monte Carlo simulation performed showed
that the method is able to estimate the parameters well. An empirical illustration of the
model using educational data from OECD countries demonstrated that the models provided
a good fit, as evidenced by the residual diagnostics. From the application of the model, we
observed that the LMI and HR have significant negative effects on the EAV. Thus, to ensure
good EAV, issues of LMI and HR need to be addressed with all seriousness.
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