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Abstract: In this presented research, a hybrid technique is proposed for solving fourth-order (3+1)-D
parabolic PDEs with time-fractional derivatives. For this purpose, we utilized the Elzaki integral
transform with the coupling of the homotopy perturbation method (HPM). From performing various
numerical experiments, we observed that the presented scheme is simple and accurate with very
small computational errors.
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1. Introduction

The topic of the numerical study of fractional differential equations has attracted
the attention of many researchers. Three-dimensional partial differential equations are
frequently employed in applied research and engineering. Due to the vast number of
applications, fractional calculus has emerged as a key mathematical tool in many fields
of engineering and sciences. Fractional-order problems have numerous applications in
scientific disciplines including chemistry, biology, diffusion, control theory, rheology,
and viscoelasticity and have attracted a lot of interest, as discussed in [1,2]. In order
to give more accurate representations of real-world phenomena, various definitions of
fractional derivatives have been proposed in the literature. Riemann–Liouville, modi-
fied Riemann–Liouville, Caputo, Hadmard, Erdelyi–Kober, Riesz, Grunwald–Letnikov,
Marchaud, and other fractional derivatives are examples of well-known fractional deriva-
tives (see [3]). A lie symmetry analysis of conformable differential equation has been
discussed in [4]. As the methodology for finding the approximate and accurate solutions
to the fourth-order partial differential equations is a crucial task, it constitutes a vigor-
ous research area for scientists and researchers. The partial differential equations are
frequently challenging to solve, and their fractional-order varieties are particularly chal-
lenging, as discussed in [5–9]. Several techniques have been developed to find the solutions
to some nonlinear fractional differential equations such as the homotopy perturbation
method [10–14], sub-ODE method [15,16], generalized tanh method [17], and residual
power series method [17,18]. Different integral transform (such as Elzaki, Laplace, and
Sumudu)-based efficient techniques have been presented in [19–24]. Various wavelet-based
techniques for solving differential and integral equations have been discussed in [25–27].
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Other classical and efficient techniques have been explained in [28–32]. Some physical
phenomena modeled by fourth-order partial differential equations include ice formation
(see [33,34]), fluids on lungs (see [35]), brain warping (see [36,37]), and designing special
curves on surfaces (see [36,38]). Some other problems related to waves have been discussed
in [39,40].

In this research, let us consider the general form of (3+1)-D fourth-order parabolic
PDEs with time-fractional derivatives:

∂2kw
∂t2k + f1(α, β, γ)

∂4w
∂α4 + f2(α, β, γ)

∂4w
∂β4 + f3(α, β, γ)

∂4w
∂γ4 = F(α, β, γ), (1)

in the domain bounded by c < {α, β, γ}〈d, t〉0, subject to the initial conditions

w(α, β, γ, 0) = F0(α, β, γ),
∂w
∂t

(α, β, γ, 0) = F1(α, β, γ).

Here, 0 < k < 1 and f1, f2, f3 are functions of α, β, γ.
This research paper is organized as: Sections 2 and 3 contain some basic definitions

related to fractional calculus and the Elzaki transform, respectively. The classical homotopy
perturbation method is discussed in Section 4. The proposed technique, which is the
coupling of the Elzaki transform and the homotopy perturbation method, is discussed
in Section 5. A convergence analysis of the proposed scheme is explained through some
statements of theorems in Section 6. Numerical examples are solved to illustrate the
accuracy and simplicity of the proposed scheme.

2. Some Basic Definitions

Definition 1. The general form of the Caputo fractional derivative of the function h(τ)is:

∂k

∂τk h(τ) = J(n−k) ∂n

∂τn h(τ) =
1

Γ(n− k)

τ∫
0

(τ −Ω)n−k−1hn(Ω)dΩ,

where h ∈ Sn
−1, n− 1〈k ≤ n, n ∈ N, τ〉0. Here, ∂k

∂τk represents the Caputo derivative operator and
Γ represents the gamma function.

Definition 2. The real function g(t) ∈ Sµ, t > 0, µ ∈ R if ∃ q ∈ R; (q > µ), s.t g(t) =

tqm1(t), where m1(t) ∈ C[0, ∞) and g(t) ∈ Sn
µ if g(n) ∈ Sµ, n ∈ N.

Definition 3. The basic definition of the Elzaki integral transform of any function of the form g1(t) is:

EL{g1(t)} = v
∞∫

0

g1(t)·dt, t > 0

Definition 4. For the two parameters a and b, the Mittag–Leffler function is written as:

Ea, b(τ) =
∞

∑
n=0

τn

Γ(an + b)
, a, b > 0
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3. Basic Properties

• The implementation of the Elzaki integral transform to the Caputo fractional derivative
of the function h(τ) is as follows:

EL

{
∂α

∂τα
h(τ)

}
=

EL{h(τ)}
vα

−
n−1

∑
k=0

vk−α+2hk(0), n− 1 < k ≤ n (2)

• The Elzaki integral transform of some of the partial derivatives is given below:

(a) EL

[
∂
∂t G(x, y, z, t)

]
= EL [G(x,y,z,t)]

v − v·G(x, y, z, 0),

(b) EL

[
∂2

∂t2 G(x, y, z, t)
]
= 1

v2 EL[G(x, y, z, t)]− G(x, y, z, 0)− v· ∂G
∂t (x, y, z, 0),

(c) EL

[
∂

∂x G(x, y, z, t)
]
= d

dx EL[G(x, y, z, t)],

(d) EL

[
∂2

∂x2 G(x, y, z, t)
]
= d2

dx2 EL[G(x, y, z, t)].

• The Elzaki transforms of some functions are listed here:

EL(1) = v2, EL(t) = v3, EL(tn) = n!vn+2, EL
(
eat) = v2

1− av
, EL(sin at) =

av3

1 + a2v2 (3)

4. Classical Homotopy Perturbation Method (HPM)

Consider a nonlinear differential equation

Γ(w) = B(r), r ∈ Ω (4)

Let the boundary condition be

Y
(

w,
∂w
∂x

)
= 0, r ∈ Λ

where Γ represents the general differential operator, Y represents the boundary operator,
B(r) represents any function in the R.H.S, and Λ represents the boundary. Split the operator
Γ into two portions P and Q. The part P denotes the linear operator, whereas the part Q
denotes the nonlinear one. Now write Equation (4) as follows:

P(w) + Q(w)− B(r) = 0

Now according to the homotopy technique, we need to establish a homotopy by
considering the following function w(r, e) : Ω× [0, 1]→ R which satisfies

H(w, e) = (1− e)[P(w)− P(w0)] + e[Γ(w)− B(r)] = 0, e ∈ [0, 1], r ∈ Ω

Or
P(w)− P(w0)− eP(w) + eP(w0) + e[P(w) + Q(w)− B(r)] = 0

This implies

H(w, e) = P(w)− P(w0) + eP(w0) + e[Q(w)− B(r)] = 0 (5)

where e is the embedding parameter in [0, 1] and the initial guess of (4) is w0, which will
satisfy the conditions at the boundary points. From (5), we obtain

H(w, 0) = P(w)− P(w0) = 0

and
H(w, 1) = Γ(w)− B(r) = 0
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There is no topology as e changes from zero to one; similarly, w(r, e) will change from
w0(r) to w(r), and this process is called deformation. The quantities P(w)− P(w0) and
Γ(w)− B(r) are known as homotopy. Suppose the solution of (4) can be presented as a
power series in terms of h:

w = w0 + ew1 + e2w2 + . . .

Letting e = 1, the solution of (4) is:

w = lim
e→1

w = w0 + w1 + w2 + . . .

5. Elzaki Transform Homotopy Perturbation Method (ETHPM)

Let us suppose the general form of (3+1)-dimensional fourth-order parabolic PDEs
with time-fractional derivatives as given in Equation (1). Using the Elzaki integral transform
in Equation (1), we obtain

EL

{
∂2kw
∂t2k + f1(α, β, γ)

∂4w
∂α4 + f2(α, β, γ)

∂4w
∂β4 + f3(α, β, γ)

∂4w
∂γ4 − F(α, β, γ)

}
= 0 (6)

Using Equation (2), we obtain

EL{w} =
n−1
∑

i=0
vi+2w(i)(α, β, γ, 0)

−v2kEL

{
f1(α, β, γ) ∂4w

∂α4 + f2(α, β, γ) ∂4w
∂β4 + f3(α, β, γ) ∂4w

∂γ4 − F(α, β, γ)
}

Using the inverse Elzaki transform, we obtain

w(α, β, γ, t) =
n−1

∑
i=0

ti

i!
w(i)(α, β, γ, 0)− EL

−1
{

v2kEL

{
f1

∂4w
∂α4 + f2

∂4w
∂β4 + f3

∂4w
∂γ4 − F(α, β, γ)

}}
(7)

Applying the HPM, we obtain

w(α, β, γ, t) =
∞

∑
n=0

enwn(α, β, γ, t) (8)

The decomposition of the nonlinear term can be as follows:

N[w(α, β, γ, t)] =
∞

∑
n=0

enHn(w) (9)

where Hn(w) is He’s polynomial and is given as:

Hn(w0, w1, w2, . . . , wn) =
1
n!

∂n

∂en

[(
∞

∑
j=0

ejwj

)]
e=0

, n = 0, 1, 2, 3, . . . (10)

From Equation (7),

∞

∑
n=0

enwn = w(α, β, γ, 0) + e

(
n−1

∑
i=1

ti

i!
w(i)(α, β, γ, 0)− EL

−1

{
v2kEL

{
∞

∑
n=0

en Hn(w)

}})
(11)

Comparing the like powers of e, we obtain

e0 : w0 = w(α, β, γ, 0),
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e1 : w1 =
n−1

∑
i=1

ti

i!
w(i)(α, β, γ, 0)− EL

−1
{

v2kEL(H0(w))
}

,

e2 : w2 = −EL
−1
{

v2kEL(H1(w))
}

,

e3 : w3 = −EL
−1
{

v2kEL(H2(w))
}

,

...

Therefore, the series solution is given by

w(α, β, γ, t) = lim
e→1

wn(α, β, γ, t)

w(α, β, γ, t) = w0 + w1 + w2 + w3 + ··· (12)

6. Convergence Analysis

This section contains some statements of theorems to demonstrate the convergence of
the proposed scheme:

Theorem 1. In a Banach space, we defined two functions w(α, β, γ, t) and wj(α, β, γ, t). The
solution given in terms of an infinite series

w(α, β, γ, t) =
∞

∑
j=0

ejwj(α, β, γ, t), (13)

will converge to the solution of Equation (1) if there exists ρ ∈ (0, 1), such that

||wj+1|| ≤ ||ρwj||

This condition was presented in [24,26].

Theorem 2. The truncation error of the series solution as given in Equation (13) is written as:∣∣∣∣∣w(α, β, γ, t)−
n

∑
j=0

wj(α, β, γ, t)

∣∣∣∣∣ ≤ ρj+1

1− ρ
||w0||.

7. Numerical Experiments

The numerical observations in this section serve to demonstrate the accuracy and
simplicity of the proposed method for solving (3+1)-D fourth-order parabolic PDEs with
time-dependent fractional derivatives. In all the diagrams, we let α = x, β = y and γ = z.

Example 1. Consider the following fourth-order (3+1)-D PDEs with time-fractional derivatives [32]

∂2kw
∂t2k +

(
β + γ

2 cos α
− 1
)

∂4w
∂α4 +

(
γ + α

2 cos β
− 1
)

∂4w
∂β4 +

(
α + β

2 cos γ
− 1
)

∂4w
∂γ4 = 0, (14)

where 0 < α, β, γ < π
3 , t > 0, 0 < k < 1, subject to the initial conditions

w(α, β, γ, 0) = (α + β + γ)− (cos α + cos β + cos γ)



Axioms 2023, 12, 347 6 of 13

and
∂w
∂t

(α, β, γ, 0) = (cos α + cos β + cos γ)− (α + β + γ).

Equation (14) can be written as:

∂2kw
∂t2k = −

(
β + γ

2 cos α
− 1
)

∂4w
∂α4 −

(
γ + α

2 cos β
− 1
)

∂4w
∂β4 −

(
α + β

2 cos γ
− 1
)

∂4w
∂γ4 ,

Using the Elzaki transform in the above equation, we obtain

EL

(
∂2kw
∂t2k

)
= −EL

{(
β + γ

2 cos α
− 1
)

∂4w
∂α4 +

(
γ + α

2 cos β
− 1
)

∂4w
∂β4 +

(
α + β

2 cos γ
− 1
)

∂4w
∂γ4

}
This implies

EL(w) =
n−1

∑
i=0

vi+2w(i)(α, β, γ, 0) + v2k·EL{N(w)},

After using the Elzaki inverse transform in the above equation, we obtain

w =
n−1

∑
i=0

ti

i!
w(i)(α, β, γ, 0) + E−1

L

(
v2k·EL{N(w)}

)
Using the homotopy perturbation method, we have

∞

∑
n=1

enwn = w(α, β, γ, 0) + e·
(

n−1

∑
i=1

ti

i!
w(i)(α, β, γ, 0) + E−1

L

(
v2k·EL

{
∞

∑
n=0

en·Hn(w)

}))
, (15)

where 

H0(w) = (α + β + γ)− (cos α + cos β + cos γ),
H1(w) = {(α + β + γ)− (cos α + cos β + cos γ)}·

(
−t + t2

2!

)
,

H2(w) = {(α + β + γ)− (cos α + cos β + cos γ)}·
(
− t3

3! +
t4

4!

)
,

...

(16)

From (15), we obtain

w0 = (α + β + γ)− (cos α + cos β + cos γ),
w1 = {(α + β + γ)− (cos α + cos β + cos γ)}·

(
−t + t2k

(2k)!

)
,

w2 = {(α + β + γ)− (cos α + cos β + cos γ)}·
(
− t2k+1

(2k+1)! +
t4k

(4k)!

)
...

(17)

The solution is
w = w0 + w1 + w2 + ···

It implies

w = ((α + β + γ)− (cos α + cos β + cos γ))·
(

1− t +
t2k

(2k)!
− t2k+1

(2k + 1)!
+

t4k

(4k)!
− ···

)
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For k = 1,

w0 = (α + β + γ)− (cos α + cos β + cos γ),
w1 = ((α + β + γ)− (cos α + cos β + cos γ))·

(
−t + t2

2!

)
,

w2 = ((α + β + γ)− (cos α + cos β + cos γ))·
(
− t3

3! +
t4

4!

)
,

...

(18)

The solution approaches

w = ((α + β + γ)− (cos α + cos β + cos γ))·e−t (19)

as n→ ∞ .
Figures 1 and 2 describe the physical interpretation of the solutions and the contour

diagram of the solutions of Example 1, respectively, for −8 ≤ α, β ≤ 8, and γ = 5 at t = 2.
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Example 2. Consider the following fourth-order (3+1)-D parabolic PDEs with time-fractional derivatives

3
∂2kw
∂t2k −

∂4w
∂α4 −

∂4w
∂β4 −

∂4w
∂γ4 = 0, t > 0 (20)

with the following initial conditions

w(α, β, γ, 0) = eα+β+γ,
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and
∂w
∂t

(α, β, γ, 0) = eα+β+γ.

Equation (20) can be written as:

3·∂
2kw

∂t2k =
∂4w
∂α4 +

∂4w
∂β4 +

∂4w
∂γ4 ,

Using the Elzaki integral transform, we obtain

EL

(
∂2kw
∂t2k

)
=

1
3
·EL

{
∂4w
∂α4 +

∂4w
∂β4 +

∂4w
∂γ4

}
This implies

EL(w) =
n−1

∑
i=0

vi+2w(i)(α, β, γ, 0) +
1
3
·v2k·EL{N(w)},

Applying the Elzaki inverse integral transform, we obtain

w =
n−1

∑
i=0

ti

i!
w(i)(α, β, γ, 0) +

1
3
·E−1

L

(
v2k·EL{N(w)}

)
Using the homotopy perturbation method, we have

∞

∑
n=1

enwn = w(α, β, γ, 0) + e·
(

t·∂w
∂t

(α, β, γ, 0) +
1
3
·E−1

L

(
v2k·EL

{
∞

∑
n=0

en·Hn(w)

}))
, (21)

where 

H0(w) = 3·eα+β+γ,
H1(w) = 3·eα+β+γ·

(
−t + t2

2!

)
,

H2(w) = 3·eα+β+γ·
(
− t3

3! +
t4

4!

)
,

...

(22)

From (21), we obtain 

w0 = eα+β+γ,
w1 = eα+β+γ·

(
−t + t2k

(2k)!

)
,

w2 = eα+β+γ·
(
− t2k+1

(2k+1)! +
t4k

(4k)!

)
,

...

(23)

The solution is
w = w0 + w1 + w2 + ···

It implies

w = eα+β+γ·
(

1− t +
t2k

(2k)!
− t2k+1

(2k + 1)!
+

t4k

(4k)!
− ···

)

For k = 1, as n→ ∞ , the solution approaches

w = eα+β+γ·e−t (24)
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Figures 3 and 4 describe the physical interpretation of the solutions and the contour
diagram of the solutions of Example 2, respectively, for −5 ≤ α, β ≤ 5, and γ = 5 at t = 2.
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Example 3. Consider the following three-dimensional fourth-order fractional partial differential
equation [32]

∂2kw
∂t2k +

1
4!
·
(

1
γ

∂4w
∂α4 +

1
α

∂4w
∂β4 +

1
β

∂4w
∂γ4

)
=

(
− α

β
− β

γ
− γ

α
+

1
α5 +

1
β5 +

1
γ5

)
cos t, (25)

with initial conditions
w(α, β, γ, 0) =

α

β
+

β

γ
+

γ

α

and
∂w
∂t

(α, β, γ, 0) = 0.

Particularly for k = 1, from Equation (25), we have

∂2w
∂t2 =

(
− α

β
− β

γ
− γ

α
+

1
α5 +

1
β5 +

1
γ5

)
cos t− 1

4!·γ
∂4w
∂α4 −

1
4!·α

∂4w
∂β4 −

1
4!·β

∂4w
∂γ4 ,

After applying the Elzaki transform in the above equation, we obtain

EL

(
∂2w
∂t2

)
= EL

{(
− α

β
− β

γ
− γ

α
+

1
α5 +

1
β5 +

1
γ5

)
cos t− 1

4!·γ
∂4w
∂α4 −

1
4!·α

∂4w
∂β4 −

1
4!·β

∂4w
∂γ4

}
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This implies

EL(w) = v2·w(α, β, γ, 0) + v3·∂w
∂t

(α, β, γ, 0) + v2·EL{N(w)},

Using the Elzaki inverse transform in the above equation, we obtain

w = w(α, β, γ, 0) + t·∂w
∂t

(α, β, γ, 0) + E−1
L

(
v2·EL{N(w)}

)
Using the homotopy perturbation method, we have

∞

∑
n=1

enwn = w(α, β, γ, 0) + e·
(

t·∂w
∂t

(α, β, γ, 0) + E−1
L

(
v2·EL

{
∞

∑
n=0

en·Hn(w)

}))
, (26)

where,

H0(w) =
(
− α

β −
β
γ −

γ
α + 1

α5 +
1
β5 +

1
γ5

)
cos t−

(
1
α5 +

1
β5 +

1
γ5

)
,

H1(w) =
(

1
α5 +

1
β5 +

1
γ5 − 70

α·β9 − 70
β·γ9 − 70

γ·α9

)
(1− cos t) + 70

(
1

α·β9 +
1

β·γ9 +
1

γ·α9

)
t2

2! ,

H2(w) = −70
(

1
α·β9 +

1
β·γ9 +

1
γ·α9

)(
cos t− 1 + t2

2!

)
+34650

(
1

α2·β13 +
1

β2·γ13 +
1

γ2·α13

)(
− cos t + 1− t2

2! +
t4

4!

)
+70

(
1

α·β5·γ9 +
1

β·γ5·α9 +
1

γ·β5·α9

)(
− cos t + 1− t2

2! +
t4

4!

)
and so on. From (26), we obtain

w0 =
(

α
β + β

γ + γ
α

)
,

w1 =
(

1
α5 +

1
β5 +

1
γ5

)(
− cos t + 1− t2

2!

)
+
(

α
β + β

γ + γ
α

)
(cos t− 1),

w2 =
(

1
α5 +

1
β5 +

1
γ5

)(
cos t− 1 + t2

2!

)
+ 70

(
1

α·β9 +
1

β·γ9 +
1

γ·α9

)(
− cos t + 1− t2

2! +
t4

4!

)
,

w3 = 70
(

1
α·β9 +

1
β·γ9 +

1
γ·α9

)(
cos t− 1 + t2

2! −
t4

4!

)
+34650

(
1

α2·β13 +
1

β2·γ13 +
1

γ2·α13

)(
− cos t + 1− t2

2! +
t4

4! −
t6

6!

)
+70

(
1

α·β5·γ9 +
1

β·γ5·α9 +
1

γ·β5·α9

)(
− cos t + 1− t2

2! +
t4

4! −
t6

6!

)
,

and so on. The solution is
w = w0 + w1 + w2 + . . .

This implies

w =
(

α
β + β

γ + γ
α

)
+
(

1
α5 +

1
β5 +

1
γ5

)(
− cos t + 1− t2

2!

)
+
(

α
β + β

γ + γ
α

)
(cos t− 1) +

((
1
α5 +

1
β5 +

1
γ5

))(
cos t− 1 + t2

2!

)
+70

(
1

α·β9 +
1

β·γ9 +
1

γ·α9

)(
− cos t + 1− t2

2! +
t4

4!

)
+ . . .

As n→ ∞ , the solution approaches

w =

(
α

β
+

β

γ
+

γ

α

)
cos t (27)

Figures 5 and 6 describe the physical interpretation of the solutions and the contour
diagram of the solutions of Example 3, respectively, for 0 ≤ α, β ≤ 20 and γ = 5 at t = 2.
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8. Conclusions

When k = 1, the EHPM solutions of the mentioned examples are in excellent agreement
with the exact solutions of their corresponding classical (nonfractional) form. The exact
solution of a linear, fourth-order, three-dimensional, time-fractional, partial differential
equation was successfully determined in this study using the coupling of the Elzaki integral
transform and the homotopy perturbation method. All of the examples demonstrate how
well the results of the proposed method match those of the exact solution. It is evident
that the Elzaki-integral-transform-based homotopy perturbation method is a very effective,
simple, and powerful technique for evaluating analytical solutions for a variety of time-
fractional linear problems.
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