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Abstract: Following the celebrated postulates of quantum mechanics, we write the quantum me-
chanical wavefunction as a convergent series of suitably selected complete square-integrable basis
functions in configuration space. The expansion coefficients of the series are energy orthogonal
polynomials that contain all spectral information about the system. We exploit the properties of these
polynomials to introduce physical systems with rich and highly nontrivial energy spectra. In this
approach, no reference is made at all to the usual potential energy function. We consider, in this new
approach, a few representative problems at the level of undergraduate students who took at least
two courses in quantum mechanics and are familiar with the basics of orthogonal polynomials. Our
aim is to expose students to quantum systems with rich energy spectra that goes beyond the very
limited textbook examples of systems with very simple energy spectra (e.g., the harmonic oscillator,
Coulomb, Morse, Pöschl–Teller, etc.) illustrating the physical significance of these energy polynomials
in the description of a quantum system. To assist students, partial solutions are given in an appendix
as tables and figures.

Keywords: spectral problem; continuous and discrete spectrum; orthogonal polynomials; recursion
relation; zeros and roots; energy bands; no potential function
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1. Introduction

According to the basic postulates of quantum mechanics, a quantum system is fully
determined by its space–time wavefunction Ψ(t,

→
r ) and its Hamiltonian operator H. The

wavefunction carries all information needed to calculate the expectation values of operators
that represent physical observables. The Hamiltonian, on the other hand, generates the
dynamics of the system through the famous Schrödinger equation: i} ∂

∂t Ψ = HΨ [1].
The Hamiltonian operator is the most vital among all observables and its eigenfunction
Φ, defined by HΦ = EΦ, has a special place in quantum mechanics. Note that we
designated the eigenvalue (measurement of H) as E because the physical unit of H is energy.
Combining this eigenvalue equation with the Schrödinger equation gives the corresponding
wavefunction for this measurement as Ψ = e−iEt/}Φ. Therefore, performing all such energy
measurements on the system will give its full energy content, called the spectrum {E}.
It also gives its total wavefunction as a linear combination (discrete and/or continuous)
of all such energy components

{
e−iEt/}Φ

}
. Due to the extensive physical studies of the

energy content of a countless number of quantum mechanical systems and due to parallel
extensive mathematical studies of the spectrum of Hermitian operators in Hilbert spaces,
people over time have understood very well the nature of the energy spectra. Generally
speaking, the energy spectrum of a physical system consists of continuous and discrete
parts. The continuous part is usually made up of several disconnected but continuous
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energy intervals called “energy bands,” which we designate here by the symbol Ω. The
discrete part, on the other hand, consists of either a finite or countably infinite set of discrete
energy values {Ek}. In general, these two sets do not overlap. However, recently the topic
of bound states imbedded in the continuum emerged in condensed matter physics [2].

Our starting point in this approach is to represent the total space–time wavefunction
Ψ(t,

→
r ), which gives full information about the physical system at a given time, by writing

its general Fourier expansion over the entire energy spectrum as follows:

Ψ(t,
→
r ) =

∫
Ω

e−iEt/}ψ(
→
r , E)dE + ∑

k
e−iEkt/}ψk(

→
r ). (1)

Therefore, we assume that the system is fully determined if we can write down its
continuous and discrete Fourier components ψ(

→
r , E) and ψk(

→
r ). From this point onward,

we adopt the atomic units } = M = 1 and assume that the quantum mechanical system
exists in a one-dimensional configuration space with coordinates x− ≤ x ≤ x+, where x±
are the boundaries of the space.

In the traditional formulation of quantum mechanics, the continuous and discrete parts of
the energy spectrum are determined by solving the stationary Schrödinger wave equation. The
Hamiltonian operator for a single particle is defined by H = T +V(x) = − 1

2
d2

dx2 +V(x), where
V(x) is the potential function that models the system. In this formulation, the Hamiltonian
expression is analogous from the Hamiltonian formulation of classical mechanics where the
momentum and position are promoted to operators as per first canonical quantization rules.
Hence, the concept of a potential energy is deeply rooted in the Hamiltonian formulation
of classical mechanics according to which the energy of a particle can always be expressed
as the sum of its kinetic energy and potential energy. Since the potential energy of a particle
depends on its position, then the potential becomes a function in configuration space and,
by construction, it is the only Hamiltonian component that can be related to the classical
force concept. For example, the potential function of a massive particle attached to a
linear massless spring of constant k is 1

2 kx2 and the spring force is F = − dV
dx = −kx. The

potential function of a particle of mass M moving in the gravitational field of a point mass
is −MG/r (G being the gravitational constant and r the radial distance to the point mass)
and the gravitational force is F = − dV(r)

dr =−GM/r2, etc. More sophisticated potential
functions were also proposed to describe complex systems such as the generalized Morse
potential V(x) = D(e−2µx − 2αe−µx) that describes the molecular vibrations of a diatomic
molecule with D, α, and µ being physical parameters. This makes it clear that the concept
of potential function was carried over from classical to quantum mechanics, through the
construction of the system Hamiltonian, despite the fact that none of the postulates of the
quantum theory requires it. However, the Aharonov–Bohm (AB) quantum effect defied
this general consensus that particle dynamics are solely due to fields at their locations [3].
In particular, the AB effect has shown through a neat double-slit interference experiment
that the electromagnetic field can vanish everywhere that the electron moves, but that the
electron motion is strongly affected by the electromagnetic interaction. In quantum theory,
the AB effect can be explained without the notion of potential function. Thus, one could
conclude that the potential function in quantum mechanics might just be a useful auxiliary
mathematical tool that can be disposed of after all.

Going back to the main quantum mechanical ingredient, which is the particle wave-
function, we notice that almost all wavefunctions of systems with known exact solutions of
the wave equation (e.g., the Coulomb, oscillator, Morse, Pöschl–Teller, etc.) are written in
terms of classic hypergeometric orthogonal polynomials in configurations space (such as,
Hermite, Laguerre, and Jacobi polynomials). However, an alternative approach to quantum
mechanics was recently proposed with the premise that the class of analytically realizable
systems is much larger than the exactly solvable class in the conventional potential function
formulation [4,5]. This vision proved right and successful as demonstrated in several recent
studies [6–9]. In this alternative approach adopted in the present work, no mention is
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ever made of a potential function. Consequently, the Hamiltonian operator is not written
as the sum H = T + V. Nonetheless, the sacred Fourier expansion in the energy of the
wavefunction given in (1) is still maintained. In this approach, the continuous and discrete
Fourier energy components are written as the following pointwise convergent series:

ψ(x, E) =
∞

∑
n=0

fn(E)φn(x), (2a)

ψk(x) =
∞

∑
n=0

gn(Ek)φn(x), (2b)

where {φn(x)}∞
n=0 is a complete set of square-integrable functions, to be suitably selected

shortly, and { fn, gn} are proper expansion coefficients. The wavefunction (2a) associated
with the continuous spectrum is characterized by bounded oscillations that do not vanish all
the way to the boundaries of space. However, the wavefunction (2b) associated with bound
states is characterized by a finite number of oscillatory-like behavior (with a number of
nodes that equals the bound state excitation level k) that vanishes rapidly at the boundaries.
On the other hand, attempting to evaluate the wavefunction at an energy that does not
belong to the spectrum will only result in a diverging series. That is, the result is non-stable
endless oscillations that grow without bound all over space as the number of terms in the
sum increases. Numerically, this is a signature of a nonphysical forbidden value of the
selected energy.

We need to stress that in our present approach, we are not trying to reinvent quantum
mechanics or propose a new theory. In fact, we are following the celebrated postulates
of quantum mechanics exactly. The major novelty in our approach is that we expressed
the quantum mechanical wavefunction as a convergent series of a suitably selected com-
plete square integrable basis functions in configuration space that ensure a tridiagonal
representation of our Hamiltonian. That is, in our present approach, we impose by con-
struction that the action of the Hamiltonian operator on the basis set will have the following
tridiagonal form:

Hφn(x) = anφn(x) + bn−1φn−1(x) + bnφn+1(x), (3)

where an and bn are real constants such that bn 6= 0 for all n. The structure of the off-
diagonal elements reflects the Hermitian nature of the Hamiltonian. Therefore, substituting
(2a) and (2b) in the Schrödinger wave equation, i ∂

∂t Ψ(t, x) = HΨ(t, x), gives the following
algebraic equation for the wavefunction expansion coefficients:

E fn(E) = an fn(E) + bn−1 fn−1(E) + bn fn+1(E), (4a)

Ek gn(Ek) = angn(Ek) + bn−1gn−1(Ek) + bngn+1(Ek). (4b)

We should note that so far, the Hamiltonian operator is not assumed to take any
specific form such as H = T + V. Note also that the expansion coefficient, an and bn, are in-
dependent of E, as this is obvious from Equation (3); they just represent the matrix elements
of H in the basis set {φn(x)}∞

n=0 (if it happens to be an orthonormal set; see Equation (8)
below). Generally, the solution of Equation (4a,b) is a polynomial in E, modulo an overall
multiplicative arbitrary function of E. Therefore, if we factorize this overall multiplicative
function by writing fn(E) = f0(E)Pn(E) and gn(Ek) = g0(Ek)Pn(Ek), then Pn(E) will be
a polynomial of degree n in E with P0(E) = 1. Equations (4a,b) become collectively the
following symmetric three-term recursion relation for the energy polynomials {Pn(E)}∞

n=0

E Pn(E) = anPn(E) + bn−1Pn−1(E) + bnPn+1(E), (5)
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where E is an element of the total energy spectrum (continuous and discrete). Hence,
in this approach, the Schrödinger wave equation in the standard quantum mechani-
cal formulation is replaced by the above three-term recursion relation of the energy
orthogonal polynomials.

2. The Energy Polynomials

These polynomials are solutions of the three-term recursion relation (5) for
n = 0, 1, 2, . . . with the two initial seed values P−1(E) = 0 and P0(E) = 1. The spectral
theorem of orthogonal polynomials (also known as the Favard theorem) [10,11] guarantees
that with these initial values and the condition bn 6= 0, they form a complete sequence of
orthogonal polynomials satisfying the following general orthogonality relation:∫

Ω

ρ(E)Pn(E)Pm(E)dE + ∑
k

ωkPn(Ek)Pm(Ek) = δn,m, (6)

where ρ(E) and ωk are the continuous and discrete components of the weight function, re-
spectively (One can write the orthogonality (6) in a compact form as∫ +∞
−∞ ξ(E)Pn(E)Pm(E)dE = δn,m, where ξ(E) = ∑

j
ρ(E)θ(E, E±j ) + ∑

k
ωkδ(E− Ek)

and θ(E, E±j ) =

{
1 , E−j ≤ E ≤ E+

j
0 , otherwise

). One can show that ρ(E) = f 2
0 (E) and

ωk = g2
0(Ek) [4–9]. The zeros (roots) of these polynomials play a crucial role in deter-

mining some of the most important physical properties of the system, such as the allowed
energy bands, density of states, bound state energies, etc. One way to find these zeros is as
follows. Construct the following finite n× n tridiagonal symmetric matrix:

R =



a0 b0
b0 a1 b1

b1 a2 b2
× × ×
× × ×

bn−3 an−2 bn−2
bn−2 an−1


. (7)

Then, one can easily show that the zeros of Pn(E) are the eigenvalues of R. Moreover,
due to the special conditions on the recursion coefficients, all these zeros are distinct, in
complete agreement with the fact that the 1D Schrödinger equation has no degeneracy.
Additionally, the zeros of Pn(E) interlace within those of Pn+1(E). Finally, what is left for
determining the wavefunction in (1) and (2a,b) is only to know the basis set {φn(x)}∞

n=0.
However, all physical characteristics of the system are contained in the energy polyno-
mials, whereas the basis elements are used only to facilitate realization of the system in
configuration space. Moreover, the parameters in the basis elements (if any) are either
derived from the physical parameters in the energy polynomials or they are non-physical
and could be used to improve computations. Thus, in this approach to quantum me-
chanics, a physical model is defined not by any potential function but by giving the pair
{Pn(E), φn(x)}. Moreover, one may specify the set {an, bn}∞

n=0 as alternative to {Pn(E)}∞
n=0.

Note, that if we adopt the potential picture and write H = T + V, then for a given set
{an, bn}∞

n=0, the solution of Equation (3) for proper boundary conditions will determine
the basis set {φn(x)}∞

n=0. However, in this alternative approach to quantum mechanics,
Equation (3) which is equivalent to the recursion relation (5), is considered as an algebraic
definition of the Hamiltonian in place of H = T + V. In fact, if the basis set is orthonor-
mal (i.e., 〈φn|φm〉 = δn,m), then Equation (3) gives the following matrix representation of
the Hamiltonian:

Hn,m = 〈φn|H|φm〉 = anδn,m + bn−1δn,m+1 + bnδn,m−1. (8)
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That is, the tridiagonal symmetric matrix (7) is a finite n × n submatrix represen-
tation of H. In the absence of any explicit constraint on the basis functions {φn(x)}∞

n=0
(aside from square-integrability and completeness), we write them in a general form as
φn(x) = W(y)Qn(y), where y = y(x) is a coordinate transformation, Qn(y) is a classic
polynomial of degree n in y, and W(y) is a positive weight function designed to satisfy
W(y±) = 0, where y± = y(x±). Usually, y(x) takes us from the physical configuration
space to the desirable finite or semi-infinite domains compatible with those of the polyno-
mials Qn(y).

In Sections 3 and 4, we propose several problems within this approach to quantum
mechanics. These are aimed at undergraduate students who took at least two courses
of quantum mechanics and are familiar with the basics of orthogonal polynomials. To
avoid any remarkable prerequisites in advanced quantum mechanics and/or mathematical
analysis, the problems were designed with emphasis on the numerical aspect rather than
the analytical aspect of the solution. For example, we provide an equivalent description
of the orthogonal energy polynomials by giving their three-term recursion relation vis-
à-vis the recursion coefficients {an, bn}. Consequently, we just stress the importance of
the structure of the recursion coefficients {an, bn} in the three-term recursion relation (5).
That is, we define the orthogonal energy polynomials through their recursion relation and
initial values rather than through their analytic properties (e.g., weight function, generating
function, Rodrigues formula, etc.). By doing so, we avoid mentioning the explicit form
of these energy polynomials and their associated analytical properties which go beyond
undergraduate level. Therefore, we use the three-term recursion relation and its coefficients
as a defining tool for the associated energy polynomials. In particular, we want the students
to become familiar with the key role played by the recursion coefficients {an, bn} and how
their asymptotic behavior affects the corresponding energy spectrum. Not only that, but
the same coefficients are sufficient in determining important physical properties such as
the density of states, a property that describes how closely packed energy levels are in a
given system, which plays a pivotal role in computing transport properties of physical
systems [12].

In the illustrative examples considered in this work, the configuration space is either
the whole real line (Section 3) or only the non-negative part of the real line (Section 4) where
we give a suitable square integrable basis set for each situation. Partial solutions for these
examples are given in Appendix A in the form of figures and tables. Since the proposed
problems are aimed at undergraduate students, we assume general rather than specialized
knowledge of orthogonal polynomials.

Before we embark on computations related to specific problems, it is instructive at
this point to digress on the numerical computations of the bound state energies. These
are located outside the continuous energy bands and can be defined using any one of the
following prescriptions:

i. The set of energies {Ek} that satisfy: lim
n→∞

Pn(Ek) = 0. That is, Ek is an asymptotic

zero for all energy polynomials in the limit of infinite (large enough) degrees (If for a
particular value of the energy, Pn(Ê) = 0 for all n (not only asymptotically) then Ê is
not the energy of a bound state. In fact, this property makes the energy polynomials
non-orthogonal. If we remove this zero by defining Pn(E) = (E− Ê)Qn−1(E) then the
polynomials {Qn(E)} will form a true orthogonal sequence of energy polynomials).

ii. The set of eigenvalues of the tridiagonal matrix (7) that lie outside the energy bands
and do not change significantly (within the desired accuracy) if we vary the size of
the matrix around a large enough size N × N. (It may happen that an eigenvalue Ê of
the matrix (7), which lies isolated outside the energy bands or in an energy gap, does
not correspond to a bound state. It is advisable that one evaluates the polynomial at
all such eigenvalues and performs the test lim

n→∞
Pn(Ê) = 0).

iii. The set of energies that make the asymptotic limit ( n→ ∞ ) of the polynomial Pn(E) van-
ish (Typically, these asymptotics take the form Pn(E)→ 1

nα
√

ρ(E)
cos
[
nβ ϕ(E) + δ(E)

]
,
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where α and β are positive real parameters, ρ(E) is the weight function, ϕ(E) is an
entire function, and δ(E) is the scattering phase shift. If β→ 0 then nβ → ln(n) . As
an illustration, we plot Pn(E) as a function of n for a fixed E from within the bands
in Problem II and verify the oscillatory behavior of the asymptotics (we take, for
example, E = λ2{1.9,−0.5}). We also show that the asymptotics in fact vanishes at
the energy E = λ2/2).

However, since this manuscript is mainly addressed to undergraduate students, we
have opted to use mainly the simple computational scheme (ii) based on matrix eigenvalues,
which is a very much familiar problem to undergraduate students. Nevertheless, sometimes
scheme (ii) produces erroneous results. Thus, if in doubt, one needs to double-check and
independently verify the viability of the bound states using the asymptotic schemes (i) or
(iii) (see, for example, problem III and Figure A12).

As it is now evident from the discussion above, the energy polynomials are totally
determined if the recursion coefficients {an, bn} and the two initial values {P−1(E), P0(E)}
are given because then a unique polynomial solution of the three-term recursion relation (5)
is obtained. The large n asymptotic values of {an, bn} play an important role in determining
the allowed energy intervals that the system can occupy (called “energy bands”). Moreover,
these asymptotic values uniquely determine the boundaries of these energy bands. In fact,
if this asymptotic limit is multivalued, that is lim

n→∞
{an, bn} =

{
Aj, Bj

}J
j=1 with J being a

positive integer number, then the continuous energy spectrum consists of J disconnected
but continuous energy bands with J − 1 gaps in between. Under these conditions, the
infinite version of the matrix (7), which represents the Hamiltonian matrix, will have a tail
consisting of identical J × J tridiagonal block matrices (with As on the diagonal and Bs
on the off-diagonal) that repeats forever. If one or more of the asymptotic values

{
Aj, Bj

}
is/are infinite, then the size of some or all of the bands is also infinite. All points within the
bands correspond to energies within the continuous scattering energy states. Bound states
(if they exist) have energies that correspond to discrete points located outside the energy
bands (inside the gaps or beyond the bands). We refer advanced readers to reference [13]
for all necessary mathematical details related to the computations of the asymptotic lim-
its lim

n→∞
{an, bn} =

{
Aj, Bj

}J
j=1 and how they are used to define the boundaries of the

energy bands.

3. Problems in the Infinite Domain

For the first set of problems, the configuration space is considered to be the whole
real line where x± = ±∞. Under such circumstances, we select the following suitable
basis elements:

φn(x) =

√
λ/
√

π

2nn!
e−λ2x2/2Hn(λx) ; x ∈]−∞,+∞[, (9)

where Hn(λx) is the Hermite polynomial of degree n and λ is a real positive parameter of
inverse length dimension which represents an extra free parameter that helps in improving
the convergence of the numerical computations once judiciously chosen. These basis
elements are orthonormal since 〈φn|φm〉 =

∫ +∞
−∞ φn(x)φm(x)dx = δn,m. In the traditional

potential formulation of quantum mechanics, the functions (9) are typically associated with
the eigenfunctions of the one-dimensional harmonic oscillator whose energy spectrum
is discrete, infinite, and bounded from below. However, in our present context, they are
considered as elements of a complete basis set suitable for a wider range of analytical
problems that may have discrete as well as continuous energy spectra.

3.1. Problem I

As stated above, if the coefficient of the recursion relation (5) has a single finite
asymptotic limit, lim

n→∞
an = A and lim

n→∞
bn = B, then it can be shown that the continuous
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energy spectrum of the corresponding Hamiltonian will consist of a single energy band
with Ω ∈ [A − 2B, A + 2B]. Take, for instance, an = 0 and bn = λ2/2, which gives
Ω ∈ [−λ2,+λ2]. Calculate the zeros of PN(E) for large-enough N which are just the
eigenvalues of the tridiagonal matrix (7) and show that the zeros do, in fact, lie within this
energy band (shown in Table A1). The un-normalized wavefunction at an energy E is

ψ̃(x, E) :=
N

∑
n=0

Pn(E)φn(x). (10)

Plots of this function at the energies E = 0, E = ±λ2/2 and E = ±λ2 are shown in
Figures A2–A5. Figure A1 shows the zeros of the energy polynomial PN(E) in units of
λ2 for N = 100 and Table A1 shows the edges of the allowed energy band as we increase
the degree of the polynomial N. If one tries to plot the wave function at |E| > λ2, that
is outside the energy band, then the wavefunction will blow up—an indication that it
is a forbidden energy state of the system as shown in Figure A6 for E = 3λ2/2. For
completeness, we would like to mention that the orthogonal energy polynomial associated
with these recursion coefficients is the normalized version of the Chebyshev polynomial.
Moreover, the initial values P−1(E) = 0 and P0(E) = 1 make it the Chebyshev polynomial
of the second kind Un(E) [14].

3.2. Problem II

We consider the orthogonal polynomial defined by the following recursion coefficients:

an = λ2/2, b2n = λ2

2

√(
n + 1

2

)
/(n + 2) and b2n+1 = λ2. In this case, the continuous energy

spectrum will consist of two energy bands since lim
n→∞

bn = λ2
{

1
2 , 1
}

, where the limits in the

parentheses are for even and odd n, respectively. The zeros of PN(E) for large-enough N
and the associated four boundaries of these two bands are shown explicitly in Figure A7
for N = 100 while the edges of the allowed energy bands are computed in Table A2 for
different values of the degree of the polynomial. You will notice, however, that one of
the zeros is isolated inside the energy gap between the two bands (in fact, it is located
at the middle of the energy gap). This energy is associated with a bound state; let us
call this energy E and plot ψ̃(x, E), as shown in Figure A8. This should be a remarkable
observation by the students: the basis (9), which is normally associated with the harmonic
oscillator whose energy spectrum consists of an infinite number of discrete bound states,
is now associated with this system that has only one bound state and two continuous
energy bands.

We plot ψ̃(x, E) for an energy from within the left band and another from the right
band as shown in Figures A9 and A10, respectively. We also evaluate the wavefunction
ψ̃(x, E) at an energy from within the forbidden gap but not equal to the bound state energy
E as shown in Figure A11, which shows extremely large unbounded oscillation all over
the space due to the forbidden nature of the selected energy, E = λ2/4, within the energy
gap region.

3.3. Problem III

In this problem, we generalize Problem II by parametrizing the recursion coefficients
{an, bn} as follows:

a2n = αλ2, a2n+1 = (1− α)λ2, (11a)

b2n =
λ2

2
β
√
(n + γ−1)/(n + γ), b2n+1 =

λ2

2
γ
√
(n + β)/(n + β−1). (11b)

Problem II corresponds to α = 1
2 , β = 1 and γ = 2. Note that the asymptotic limits of an

and bn are multi-valued. In fact, lim
n→∞

an = λ2{α, 1− α} and lim
n→∞

bn = 1
2 λ2{β, γ}. Therefore,

as stated at the end of Section 2 above, we expect the continuous energy spectrum to consist
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of two energy bands of finite size. In fact, one can show that the four boundaries of the two
energy bands are as follows:

λ2

2

[
1±

√
(2α− 1)2 + (β + γ)2

]
,

λ2

2

[
1±

√
(2α− 1)2 + (β− γ)2

]
. (12)

This result is verified numerically in Table A3 by taking large-enough N. The zeros
of this polynomial are shown in Figure A12 for N = 100 and the wavefunction ψ̃(x, E) is
shown in Figure A13 for the bound state at E = 3λ2/2 and for N = 100. The corresponding
quantum mechanical system is parameterized by the four physical parameters {λ, α, β, γ}.
These parameters could be adjusted to fit experimental measurements of the desired system
that can be modeled by these energy polynomials.

3.4. Problem IV

Let us construct another two-energy-band system as follows:

a2n = αλ2, a2n+1 = (1− α)λ2, b2n = αλ2√2n + β, b2n+1 = αλ2
√

2n + γ. (13)

Note that the large degree asymptotic ( n→ ∞ ) limit of bn goes to infinity as
√

n.
Consequently, the two energy bands will have infinite sizes whereas the two boundaries of
the energy gap are set at λ2

2 (1± |2α− 1|); this is verified numerically in Table A4. The zeros
of PN(E) in units of λ2 are shown in Figure A14 for α = 3 and N = 200, which shows that
the energy bands extend to infinity and the gap is located in the interval −2λ2 < E < +3λ2

with no bound states.

4. Problems in the Semi-Infinite Domain

For the second set of problems, the configuration space is considered to be the non-
negative part of the real line, x− = 0 and x+ → ∞ . This situation will, in particular, be
suitable for the radial part of the Schrödinger equation in three dimensions with spherical
symmetry. Under such circumstances, we select the following orthonormal basis elements:

φn(r) =

√
2λ Γ(n + 1)
Γ(n + ν + 1)

(λr)ν+ 1
2 e−λ2r2/2Lν

n(λ
2r2), (14)

where Lν
n(z) is the Laguerre polynomial and the parameters {ν, λ} are to be chosen such

that ν > −1. This basis forms an orthonormal set since
∫ ∞

0 φn(r)φm(r)dr = δn,m. Again,
we note that in the traditional formulation of quantum mechanics and with ν = `+ 1

2 , the
functions (14) are typically associated with the eigenfunctions of the radial Schrödinger
equation of a spherically symmetric harmonic oscillator (isotropic oscillator) whose energy
spectrum is discrete, infinite, and bounded from below. If ν = 2`+ 1 and λ2r2 7→ λr , then
the basis (14) becomes associated with the Coulomb potential for the hydrogen atom whose
energy spectrum consists of a combination of a single infinite continuous band with E ≥ 0
and an infinite set of discrete energies bounded from below at E = −|E0| and from above
at E∞ = 0. However, in our present context, these eigenfunctions are taken as the basis
set for a wider range of analytical problems that may have discrete as well as continuous
energy spectra and may be bounded or unbounded.

4.1. Problem V

We start by reproducing the results associated with the isotropic oscillator problem in
this alternative approach to quantum mechanics. For that, the recursion coefficients of the
associated orthogonal energy polynomial are chosen as follows:

an =
2ω

tanhθ
(n + µ), bn = − ω

sinhθ

√
(n + 1)(n + 2µ), (15)
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where ω is the oscillator frequency and 2µ = `+ 3
2 . The angular parameter θ, being real

and positive, is arbitrary but chosen to improve conversion of the calculation. We verify
that the zeros are, in fact, discrete (see, Figure A15) and for large-enough N they converge
to the isotropic oscillator energy spectrum:

Ek = ω

(
2k + `+

3
2

)
. (16)

Figure A16 shows that the difference between two consecutive states is constant and
equal to 2ω. However, it diverges quickly due to numerical errors, but it becomes more
accurate as the value of θ increases. Moreover, the linear dependence of Ek on k is shown in
Figure A17, and it exhibits the same divergence behavior. Theoretically, the proper choice

for this parameter is given by cosh θ = ω2+(λ/2)4

ω2−(λ/2)4 with λ < 2
√

ω. By the way, the orthogonal

energy polynomial whose recursion coefficients are given by (15) for this problem with
discrete spectrum is the Meixner polynomial Mµ

n(zk; θ), with zk = Ek/2ω [14].

4.2. Problem VI

For this problem, we would like to construct an energy spectrum that consists of a
semi-infinite continuous band (E ≥ 0) and a finite set of discrete negative energies {Ek}. To
that end, we take the recursion coefficients as follows:

an = λ2
[
(n + µ + γ)2 + n(n + 2γ− 1)− µ2

]
, (17a)

bn = −λ2(n + µ + γ)
√
(n + 1)(n + 2γ), (17b)

where µ < 0 and γ > −µ. We verify for γ = 10, µ = −9.5 that, indeed, the energy spectrum
consists of an infinite continuous positive energy band with E ≥ 0 (as shown in Figure A18)
and a finite number of negative discrete energies (as shown in Figure A19). In addition,
the number of the discrete bound state energies is b−µc, where bxc stands for the largest
integer less than or equal to x. In the large degree N limit, we verify in Figure A20 that for
E < 0, these discrete energies approach the following values:

Ek = −λ2(k + µ)2, (18)

where k = 0, 1, . . . , b−µc. Some un-normalized wavefunction ψ̃(r, Ek) are shown in
Figure A21 for different k values. These wavefunctions are physically acceptable; that
is, they have k nodes and vanish rapidly at the boundaries (r = 0 and r → ∞ ). The
un-normalized wavefunction ψ̃(r, E) for E > 0 is shown in Figure A22 and verified to
represents a continuous scattering state; that is, bounded oscillations that extends to infinity.
By the way, the orthogonal energy polynomial whose recursion coefficients are given by
(17a,b) is a special case of the continuous dual Hahn polynomial Sµ

n(E; γ, γ) [14].

5. Conclusions

From the outset, we like to reiterate and ascertain that we are not reinventing quantum
mechanics or proposing a new theory. We are, in fact, following exactly the celebrated pos-
tulates of quantum mechanics with the objective of exposing the undergraduate student of
quantum mechanics to a larger class of problems with rich energy spectra that goes beyond
the simple textbook examples. The major novelty in our approach is that we expressed the
quantum mechanical wavefunction as a convergent series of a suitably selected complete
square integrable basis functions in configuration space. The expansion coefficients of
the series were designed to be orthogonal polynomials in the energy domain and were
found to contain all spectral information about the system. For the implementation of
our approach, we suitably selected two basis sets that are appropriate for infinite and
semi-infinite domains along with a variety of recursion coefficients and showed how the
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asymptotic behavior of these coefficients play a crucial role in determining the nature of
the system energy spectrum. We stressed throughout the manuscript the fact that in the
present approach, no reference is made at all to the usual potential energy function. We
have demonstrated the validity of this quantum mechanical approach and its power to
generate a wide span of rich energy spectra illustrating the physical significance of these
energy polynomials in the description of quantum systems. For clarity, we have inves-
tigated few representative models that gave rise to a variety of discrete and continuous
energy spectra. However, to keep the manuscript at the undergraduate level, all along
our manuscript we have avoided talking about the analytical properties of the associated
orthogonal polynomials but rather considered their equivalent representation in terms
of recursion coefficients {an, bn} and initial values. We also alluded to the fact that the
computation of the system density of states is very easy to handle in the new approach
since any three-term recursion relation can be easily written in term of continued fractions,
which can be directly related to the DOS.
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Appendix A. Partial Solutions

Appendix A.1. Problem I

Figure A1. The zeros of PN(E) in units of λ2 for N = 100.

Table A1. The left and right boundaries of the energy band in units of λ2 for different values of N.
The exact values are ±λ2.

N Left Boundary Right Boundary

10 −0.959493 0.959493
20 −0.988831 0.988831
50 −0.998103 0.998103

100 −0.999516 0.999516
200 −0.999878 0.999878
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Figure A2. The un-normalized wavefunction ψ̃(x, E) for E = 0 at the middle of the band. The
horizontal x-axis is in units of λ−1. We took N = 100.

Figure A3. The un-normalized wavefunction ψ̃(x, E) for E = +λ2/2. We took N = 100.

Figure A4. The un-normalized wavefunction ψ̃(x, E) for E = −λ2/2. We took N = 100.

Figure A5. The un-normalized wavefunction ψ̃(x, E) for E = λ2, which is at the right edge of the
energy band. We took N = 100.
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Figure A6. The un-normalized wavefunction ψ̃(x, E) for E = 3λ2/2, which is a forbidden energy
outside the band. We took N = 100. Note the unbounded oscillations everywhere.

Appendix A.2. Problem II

Figure A7. The zeros of PN(E) in units of λ2 for N = 100.

Table A2. The boundaries of the left and right energy bands in units of λ2 for different values of N.
The exact values are −λ2, 0, λ2, and 2λ2.

N Left Boundaries Right Boundaries

20 −0.926138 −0.105799 1.105799 1.926138
50 −0.973840 −0.034724 1.034724 1.97384

100 −0.988118 −0.014908 1.014908 1.988118
200 −0.994550 −0.006517 1.006517 1.99455
400 −0.997467 −0.002915 1.002915 1.997467

Figure A8. The un-normalized wavefunction ψ̃(x, E ) for the bound state in the middle of the energy
gap with E = 1

2 λ2. The horizontal x-axis is in units of λ−1. We took N = 100.
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Figure A9. The un-normalized wavefunction ψ̃(x, E) for E = 3λ2/2 in the right energy band. We
took N = 100.

Figure A10. The un-normalized wavefunction ψ̃(x, E) for E = −λ2/2 in the left energy band. We
took N = 100.

Figure A11. The un-normalized wavefunction ψ̃(x, E) for E = λ2/4, which is a forbidden energy in
the gap. We took N = 100. Note the unbounded oscillations everywhere.

Appendix A.3. Problem III

Figure A12. The zeros of PN(E) in units of λ2 for N = 100. We took α = 1.5, β = 2.3 and γ = 3.7.
Out of the six isolated eigenvalues (shown with red circles) only E = 3λ2/2 pass the asymptotic test
(2.iii) and corresponds to a bound state.
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Table A3. The left and right boundaries of the left and right energy bands in units of λ2 for different
values of N. The exact values are in (12).

N Left Boundaries Right Boundaries

20 −2.61667 −1.02433 2.02433 3.61667
50 −2.65286 −0.81445 1.81445 3.65286

100 −2.65775 −0.760255 1.76026 3.65775
200 −2.6601 −0.737958 1.73796 3.6601
300 −2.6609 −0.731469 1.73147 3.6609

Exact −2.66228 −0.720656 1.72066 3.66228

Figure A13. The un-normalized wavefunction ψ̃(x, E) for the bound state inside the energy gap with
E = 3λ2/2. The horizontal x-axis is in units of λ−1. We took N = 100.

Appendix A.4. Problem IV

Figure A14. The zeros of PN(E) in units of λ2 for N = 200. We took α = 3, β = 2 and γ = 1. The
energy bands extend to infinity and the gap is located in the interval −2λ2 < E < +3λ2. The system
has no bound states.

Table A4. The left and right boundaries energy gap in units of λ2 for different values of N. We took
α = 3, β = 2 and γ = 1. The exact values are λ2

2 (1± |2α− 1|).

N Gap Boundaries

20 −2.54592 3.54592
50 −2.25155 3.25155

100 −2.13357 3.13357
200 −2.06917 3.06917
300 −2.04672 3.04672

Exact −2.00000 3.00000
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Appendix A.5. Problem V

Figure A15. The zeros of PN(E) in units of λ2 for different values of N. We took ω = 3/2, µ = 5/4,
and θ = π. The energies are found to converge to a discrete equally spaced spectrum.

Figure A16. The difference between consecutive zeros of PN(E) for N = 200. We took ω = 1,
µ = 5, for different values of θ. The difference is constant, which matches the theoretical value of 2ω.
However, we get better convergence as θ increases.
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Figure A17. The kth zero of PN(E) vs k for N = 200. We took ω = 1, µ = 5, for different values of θ.
This shows how the plot have better convergence as θ increases.

Appendix A.6. Problem VI

Figure A18. The zeros of PN(E) in units of λ2 for N = 200. We took γ = 10 and µ = −9.5. The
energy bands for E ≥ 0 extend to infinity.

Figure A19. The zeros of PN(E) in units of λ2 for different values of N. The energy bands for E < 0
are found to converge to a discrete linearly spaced spectrum.
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Figure A20. The kth zero of PN(E) vs k for N = 500. We took γ = 10 and µ = −9.5. When E < 0, the
zeros of PN(E) agrees with Equation (18) up to k = b−µc.

Figure A21. The un-normalized wavefunction ψ̃(r, Ek) for different values of k. The horizontal r-axis
is in units of λ−1. We took µ = −15, γ = 16, and ν = 1. We can observe each wavefunction having k
nodes, and vanishes at the boundaries.

Figure A22. The un-normalized wavefunction ψ̃(r, E) for N = 100. We took E = 150λ2, for
µ = −15, γ = 16, and ν = 2. We can see the bounded oscillations that extends to infinity.
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