 Next Article in Journal
Homogeneity Test of Many-to-One Relative Risk Ratios in Unilateral and Bilateral Data with Multiple Groups
Next Article in Special Issue
Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

# Logarithmic Coefficients for Some Classes Defined by Subordination

1
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood P.O. Box 316-36155, Iran
2
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
3
Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(4), 332; https://doi.org/10.3390/axioms12040332
Received: 9 March 2023 / Revised: 24 March 2023 / Accepted: 27 March 2023 / Published: 29 March 2023

## Abstract

:
In this paper, we obtain the sharp and accurate bounds for the logarithmic coefficients of some subclasses of analytic functions defined and studied in earlier works. Furthermore, we obtain the bounds of the second Hankel determinant of logarithmic coefficients for a class defined by subordination, such as the class of starlike functions $S * ( φ )$. Some applications of our results, which are extensions of those reported in earlier papers are given here as special cases. In addition, the results given can be used for other popular subclasses.
MSC:
30C45; 30C50; 30C55

## 1. Introduction

Let $A$ be a class of analytic functions in the open unit disk $D : = { z ∈ C : z < 1 }$ of the form
$f ( z ) = z + ∑ n = 2 + ∞ a n z n , z ∈ D ,$
and let $S$ be the class of functions $f ∈ A$, which are univalent in $D$.
For $q , n ∈ N : = { 1 , 2 , 3 , … }$, the q-th Hankel determinant of a function $f ∈ A$ having the form (1) is defined by
$H q ( n ) : = a n a n + 1 … a n + q − 1 a n + 1 a n + 2 … a n + q ⋮ ⋮ ⋮ ⋮ a n + q − 1 a n + q … a n + 2 q − 2 with a 1 : = 1 .$
More results for Hankel determinants of any degree with their applications can be seen in [1,2], and we emphasize that these papers contain some of the first main results for the different studies in this direction. Moreover, many problems in this field have been argued by many authors (see, for example, [3,4,5]), such as the bounds of the Hankel determinant for strongly starlike functions of some orders and estimations of the Hankel determinant for a class of bi-close-to-convex functions and for a certain subclass of bi-univalent functions.
Using the principle of subordination, Ma and Minda  introduced the class $S * ( φ )$, and we make here weaker assumptions on the function $φ$. They considered that $φ$ is univalent in the unit disk $D$, it has positive real in $D$ and satisfies the condition $φ ( 0 ) = 1$.
They considered the above-mentioned class defined by
$S * ( φ ) : = f ∈ A : z f ′ ( z ) f ( z ) ≺ φ ( z ) ,$
where the symbol “≺” stands for the usual subordination. It is well-known that $S * ( φ ) ⊂ S$, and we emphasize that some special subclasses of the class $S * ( φ )$ play a significant role in geometric function theory due to many interesting geometric reasons.
For example, taking $φ ( z ) = ( 1 + A z ) / ( 1 + B z )$, where $A ∈ C$$− 1 ≤ B ≤ 0$ and $A ≠ B$, we obtain the classes $S * [ A , B ]$. These classes with the restriction $− 1 ≤ B < A ≤ 1$ reduce to the popular Janowski starlike functions. Certainly, for $B = − 1$ and $A = e i α e i α − 2 β cos α$, where $β ∈ [ 0 , 1 )$ and $α ∈ − π / 2 , π / 2$, the class $S * [ A , B ]$ reduces to the well-known class of $α$-spiral-like functions of order $β$ defined by
$S α ( β ) : = f ∈ A : Re e − i α z f ′ ( z ) f ( z ) > β cos α , z ∈ D .$
The functions belonging to $S α ( β )$ are univalent in $D$ (see ). Furthermore, $S α ( β ) ⊂ S α ( 0 ) ⊂ S$ for $β ∈ [ 0 , 1 )$, where the members of $S α ( 0 )$ (see ) are called $α$-spiral-like functions; however, they do not necessarily belong to the class of starlike functions $S *$. Moreover, $S 0 ( β ) = : S * ( β )$ is the usual class of starlike functions of order $β$, and $S * : = S * ( 0 )$.
Raina and Sokół  considered the class $S ☾ * : = S * ( h )$, where
$h ( z ) = z + 1 + z 2 = 1 + ∑ n = 1 + ∞ B n z n = 1 + z + z 2 2 − z 4 8 + … , z ∈ D .$
They proved that $f ∈ S ☾ *$ if and only if $z f ′ ( z ) / f ( z ) ∈ R$, where
$R : = z ∈ C : w 2 − 1 < 2 | w | .$
Furthermore, the function
$H n ( z ) = z exp ∫ 0 z h t n − 1 − 1 t d t = z + z n n − 1 + ( n + 1 ) z 2 n − 1 4 ( n − 1 ) 2 + … , z ∈ D , n ∈ N \ { 1 } ,$
plays the role of extremal functions for various problems in the class for the class $S ☾ *$.
Lately, in , the authors studied the new Ma–Minda-type function class $S T L ( s )$ defined by
$S T L ( s ) : = f ∈ A : z f ′ ( z ) f ( z ) ≺ L s ( z ) : = ( 1 + s z ) 2 , 0 < s ≤ 1 2$
and investigated some outcomes regarding the behavior of the functions of this class.
In , the authors investigated another Ma–Minda-type function class $S Ne *$ and obtained some characteristic properties of this class defined by
$S Ne * = : f ∈ A : z f ′ ( z ) f ( z ) ≺ φ Ne ( z ) : = 1 + z − z 3 3 .$
Further, we mention that the functions
$Φ s , n ( z ) : = z exp ∫ 0 z L s ( t n ) − 1 t d t = z + 2 s n z n + 1 + ( n + 4 ) s 2 2 n 2 z 2 n + 1 + … , n = 1 , 2 , … , z ∈ D ,$
and
$Ω n ( z ) : = z exp ∫ 0 z φ Ne t n − 1 − 1 t d t = z + z n n − 1 + z 2 n − 1 2 ( n − 1 ) 2 + … , n = 2 , 3 , … , z ∈ D ,$
play the role of an extremal functions for several problems for the categories $S T L ( s )$ and $S Ne *$, respectively.
The logarithmic coefficients $γ n$ of the function $f ∈ S$ are defined with the aid of the following power series expansion
$F f ( z ) : = log f ( z ) z = 2 ∑ n = 1 + ∞ γ n ( f ) z n , z ∈ D , where log 1 = 0 .$
These coefficients play an important role for different estimates in the theory of univalent functions, and we use $γ n$ instead of $γ n ( f )$; in this regard, see [12,13] and  (Chapter 2).
The logarithmic coefficients $γ n$ of an arbitrary function $f ∈ S$ (see  (Theorem 4)) satisfy the inequality
$∑ n = 1 + ∞ | γ n | 2 ≤ π 2 6 ,$
and the equality is obtained for the Koebe function. For $f ∈ S *$, the inequality $| γ n | ≤ 1 / n$ holds but it is not true for the whole class $S$, even in order of magnitude (see  (Theorem 8.4)). However, the problem of the best upper bounds for the logarithmic coefficients of univalent functions for $n ≥ 3$ is presumably still a concern.
Some authors have recently investigated the issues respecting the logarithmic coefficients and related problems, including [17,18,19,20,21,22,23,24,25,26]. In , the researchers obtained the (non-sharp) estimates for the logarithmic coefficients for the functions belonging to $S T L ( s )$ and $S Ne *$ as follows:
Theorem 1
( (Theorem 5)). If the function $f ∈ S T L ( s )$, then
$| γ n | ≤ s , n ∈ N .$
This inequality is sharp for $n = 1$ for the function $Φ s , 1$.
Theorem 2
( (Theorem 6)). If the function $f ∈ S Ne *$, then
$| γ n | ≤ 1 2 , n ∈ N .$
This inequality is sharp for $n = 1$ for the function $Ω 2$.
If f is given by (1), then, by equating the coefficients of $z n$ in (3) for $n = 1 , 2 , 3$, it follows that
$2 γ 1 = a 2 , 2 γ 2 = a 3 − 1 2 a 2 2 , 2 γ 3 = a 4 − a 2 a 3 + 1 3 a 2 3 .$
The importance of the studies related to the logarithmic coefficients consists also in the fact that many studies have attempted to develop new and interesting methods for investigation that helped the researchers to obtain significant results in geometric function theory (GFT). Thus, in recent years, many studies related to logarithmic coefficients have been connected with bounded turning functions whose derivative is subordinated to the “three-leaf-shaped” function , to “with petal-shaped function”  or to starlike functions associated with the sine function  and other related topics.
The importance of these studies in GFT, among others, consist of the fact that the images of some usual expressions (such as the derivatives and starlikeness fraction) are subordinated to functions with a well-known range of the open unit disk, while the methods of the proofs are very elaborated. Further, due to the significant importance of the study of the logarithmic coefficients, in recent years, the problem of obtaining the sharp bounds of the second Hankel determinant of the logarithmic coefficients—that is, $H 2 , 1 ( F f / 2 )$—was reported in the papers [31,32,33] for some subclasses of analytic functions, where the second Hankel determinant for $F f / 2$, by using the relations (4), is
$H 2 , 1 ( F f / 2 ) = γ 1 γ 3 − γ 2 2 = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 .$
Note that $H 2 , 1 ( F f / 2 )$ is invariant under rotations (see ).
The main purpose of this paper is to obtain the sharp bounds for the logarithmic coefficients of the functions belonging to $S T L ( s )$ and $S Ne *$ and to find an upper bound of $H 2 , 1 ( F f / 2 )$ for the subclass $S * ( φ )$ of the starlike functions. The applications of our results, which are extensions of those reported in earlier papers, are given here as special results.

## 2. Main Results

First, we obtain the sharp bounds of the logarithmic coefficients for the functions belonging to the classes $S T L ( s )$ and $S Ne *$, which are improvements of the results reported in Theorems A and B.
The first main result of the paper gives us the sharp bounds for the modules of the logarithmic coefficients for the function classes $S T L ( s )$ as follows:
Theorem 3.
If the function $f ∈ S T L ( s )$ with $0 < s ≤ 1 2$, then
$| γ n | ≤ s n , n ∈ N .$
For a fixed $n 0 ∈ N$, the above inequality is sharp for $n 0$ if $f = Φ s , n 0$, that is $γ n 0 = s n 0$ for $f = Φ s , n 0$.
Proof.
Supposing that $f ∈ S T L ( s )$, then, by the definition of $S T L ( s )$, it follows that
$z d d z log f ( z ) z = z f ′ ( z ) f ( z ) − 1 ≺ 2 s z + s 2 z 2 ,$
which, regarding to the logarithmic coefficients $γ n$ of f given by (3), leads to
$∑ n = 1 + ∞ 2 n γ n z n ≺ 2 s z + s 2 z 2 .$
For $k ≥ 1$, the sequence $A 1 = 2 s$$A 2 = s 2$ and $A k = 0$ for $k ≥ 3$ is non-negative, non-increasing and convex; thus, $A k − A k + 1 ≥ 0$, and $A k − 2 A k + 1 + A k + 2 ≥ 0$ for $k ≥ 1$. Therefore, from  (Theorem VII (i)), we find
$2 n | γ n | ≤ A 1 = 2 s , n ∈ N ,$
and our result is proven.
Since, for a fixed $n 0 ∈ N$, we have
$log Φ s , n 0 ( z ) z = 2 ∑ k = 1 + ∞ γ k ( Φ s , n 0 ) z k = 2 s n 0 z n 0 + … , z ∈ D ,$
it follows that the bound is sharp for $n 0$ if $f = Φ s , n 0$, that is $γ n 0 = s n 0$ for $f = Φ s , n 0$. □
In the next theorem, we give the sharp bounds for the modules of the logarithmic coefficients for the function classes $S Ne *$:
Theorem 4.
If the function $f ∈ S Ne *$, then
$| γ n | ≤ 1 2 n , n ∈ N .$
For a fixed $n 0 ∈ N$, the above inequality is sharp for $n 0$ if $f = Ω n 0 + 1$, that is $γ n 0 = s 2 n 0$ for $f = Ω n 0 + 1$.
Proof.
If $f ∈ S Ne *$, from the definition of $S Ne *$, it follows that
$z d d z log f ( z ) z = z f ′ ( z ) f ( z ) − 1 ≺ z − z 3 3 ,$
and using the logarithmic coefficients $γ n$ of f given by (3), we find
$∑ n = 1 + ∞ 2 n γ n z n ≺ z − z 3 3 .$
Now, we set in  (Theorem VI (i)) the sequence $A 1 = 1$$A 2 = 0$$A 3 = − 1 3$$A n = 0$ for all $n ≥ 4$, and $B k = 0$ for all $k ≥ n + 1$, and then the function $F 1$ given by  ((1.10.1) p. 62) becomes
$F 1 ( z ) = 1 2 − z 2 3 .$
Since $A 1 = 1 > 0$, the function $F 1$ is analytic in $D$ and satisfies $Re F 1 ( z ) > 0$$z ∈ D$; hence, all the assumptions of  (Theorem VI (i)) are satisfied. Therefore, we find
$2 n | γ n | ≤ A 1 = 1 , n ∈ N ,$
which represents our result.
Since, for a fixed $n 0 ∈ N$, we have
$log Ω n 0 + 1 ( z ) z = 2 ∑ k = 1 + ∞ γ k ( Ω n 0 + 1 ) z k = 1 n 0 z n 0 + … , z ∈ D ,$
it follows that the bound is sharp for $n 0$ if $f = Ω n 0 + 1$, that is $γ n 0 = 1 2 n 0$ for $f = Ω n 0 + 1$. □
In order to obtain the upper bound of $H 2 , 1 ( F f / 2 )$ for the class of starlike functions $S * ( φ )$, we need the following definition and lemma.
Let $Ω$ represent the category of all analytic functions $ψ$ in $D$ that satisfy the requirements $ψ ( 0 ) = 0$ and $| ψ ( z ) | < 1$ for all $z ∈ D$.
Lemma 1
( (Lemma 2.1)). If $ψ ( z ) = ∑ n = 1 + ∞ ψ n z n ∈ Ω$, then
$ψ 2 = x 1 − ψ 1 2 , ψ 3 = 1 − ψ 1 2 1 − | x | 2 s − ψ 1 1 − ψ 1 2 x 2 ,$
for some x, s, with $x ≤ 1$ and $s ≤ 1$.
The following theorem represents our result related to the upper bound of $H 2 , 1 ( F f / 2 )$ for the class $S * ( φ )$:
Theorem 5.
If the function f belongs to the class $S * ( φ )$, then
$H 2 , 1 ( F f / 2 ) ≤ | B 1 | 48 · 4 P R − Q 2 4 P , i f P < 0 a n d P ≤ − Q 2 ≤ 0 , max R ; P + Q + R , o t h e r w i s e ,$
where
$P : = 4 B 3 − 3 B 2 2 B 1 − 2 | B 2 | − | B 1 | , Q : = 2 | B 2 | − | B 1 | , R : = 3 | B 1 | .$
Proof.
If $f ∈ S * ( φ )$, then by the definition of the subordination there exists a function $ω ∈ Ω$, with $ω ( z ) = ∑ n = 1 + ∞ c n z n$$z ∈ D$, such that
$z f ′ ( z ) f ( z ) = φ ( ω ( z ) ) = 1 + B 1 c 1 z + B 1 c 2 + B 2 c 1 2 z 2 + B 1 c 3 + 2 c 1 c 2 B 2 + B 3 c 1 3 z 3 + … , z ∈ D ,$
where $φ ( z ) = 1 + ∑ n = 1 + ∞ B n z n$$z ∈ D$. Furthermore, since $φ$ is univalent in $D$, it follows that $B 1 = φ ′ ( 0 ) ≠ 0$.
The function $f ∈ S * ( φ )$ has the power expansion series of the form (1), and by equating the coefficients of $z n$ in (7) for $n = 1 , 2 , 3$, we obtain
$a 2 = B 1 c 1 , 2 a 3 − a 2 2 = B 1 c 2 + B 2 c 1 2 , 3 a 4 − 3 a 2 a 3 + a 2 3 = B 1 c 3 + 2 c 1 c 2 B 2 + B 3 c 1 3 ,$
and from these relations, it follows that
$a 2 = B 1 c 1 , 2 a 3 = B 1 c 2 + ( B 2 + B 1 2 ) c 1 2 , 3 a 4 = B 1 c 3 + 3 2 B 1 + 2 B 2 B 1 c 1 c 2 + 3 2 B 2 + 1 2 B 1 2 + B 3 B 1 c 1 3 .$
Therefore, after replacing the above values in (5), we obtain
$H 2 , 1 ( F f / 2 ) = 1 4 | B 1 B 3 3 − B 2 2 4 c 1 4 + B 1 B 2 6 c 1 2 c 2 + B 1 2 3 c 1 c 3 − B 1 2 4 c 2 2 | .$
Using Lemma 1 for some x, s, with $x ≤ 1$ and $s ≤ 1$, from the above relation, it follows that
$H 2 , 1 ( F f / 2 ) = B 1 4 | 4 B 3 − 3 B 2 2 B 1 12 c 1 4 + B 2 6 x c 1 2 1 − c 1 2 + − B 1 ( 1 − c 1 2 ) 4 − B 1 3 c 1 2 x 2 1 − c 1 2 + B 1 3 c 1 1 − c 1 2 1 − | x | 2 s | .$
Since it is well-known that $| c 1 | ≤ 1$ and as $H 2 , 1 ( F f / 2 )$ and $ω ( z )$ are invariant under the rotations (see also ); therefore, to simplify the calculation, we may assume that $c : = c 1 ∈ [ 0 , 1 ]$ (similar to the proof of  (Theorem 3. p. 80)). Hence, we have
$H 2 , 1 ( F f / 2 ) = | B 1 | 4 | 4 B 3 − 3 B 2 2 B 1 12 c 4 + B 2 6 x c 2 1 − c 2 + − B 1 ( 1 − c 2 ) 4 − B 1 3 c 2 x 2 1 − c 2 + B 1 3 c 1 1 − c 1 2 1 − | x | 2 s | ≤ | B 1 | 4 [ 4 B 3 − 3 B 2 2 B 1 12 c 4 + | B 2 | 6 | x | c 2 1 − c 2 + | B 1 | ( 1 − c 2 ) 4 + | B 1 | 3 c 2 | x | 2 1 − c 2 + | B 1 | 3 c 1 − c 2 1 − | x | 2 ] = | B 1 | 48 [ 4 B 3 − 3 B 2 2 B 1 c 4 + 2 | B 2 | c 2 1 − c 2 | x | + | B 1 | ( 1 − c ) ( 3 − c ) 1 − c 2 | x | 2 + 4 | B 1 | c 1 − c 2 ] = : F c ( λ ) ,$
where $λ : = x ∈ [ 0 , 1 ]$. A simple study shows that $F c$ is an increasing function of $λ$, and so it attains its maximum at $λ = 1$, which is
$max F c ( λ ) : λ ∈ [ 0 , 1 ] = F c ( 1 ) = : G ( c ) ,$
where
$G ( c ) = | B 1 | 48 4 B 3 − 3 B 2 2 B 1 − 2 | B 2 | − | B 1 | c 4 + 2 | B 2 | − | B 1 | c 2 + 3 | B 1 | .$
For simplicity, if we denote $u : = c 2 ∈ [ 0 , 1 ]$ and set the values of P, Q and R, such as in (6), then
$G ( u ) = | B 1 | 48 P u 2 + Q u + R , u ∈ [ 0 , 1 ] .$
It is easy to show that
$max P u 2 + Q u + R : u ∈ [ 0 , 1 ] = 4 P R − Q 2 4 P , if P < 0 and P ≤ − Q 2 ≤ 0 , max R ; P + Q + R , otherwise ;$
hence, we conclude
$H 2 , 1 ( F f / 2 ) ≤ | B 1 | 48 · 4 P R − Q 2 4 P , if P < 0 and P ≤ − Q 2 ≤ 0 , max R ; P + Q + R , otherwise ,$
where P, Q and R are given by (6). □
Next, we emphasize some special cases of the previous main result by specializing the function $φ$ with a few ones widely used in many other previous papers.
As a particular case, if we take, in Theorem 5, the function
$φ ( z ) : = 1 + e i α ( e i α − 2 β cos α ) z 1 − z = 1 + 2 z ( 1 − β ) e i α cos α + 2 z 2 ( 1 − β ) e i α cos α + 2 z 3 ( 1 − β ) e i α cos α + … , z ∈ D ,$
where $β ∈ [ 0 , 1 )$ and $α ∈ ( − π / 2 , π / 2 )$, since $P = − 4 ( 1 − β ) cos α < 0$ and $P ≤ − Q 2 = 0 ≤ 0$ from the first part of the theorem, then we obtain the following corollary:
Corollary 1
( (Theorem 3.1)). If the function f belongs to the class $S α ( β )$, then
$H 2 , 1 ( F f / 2 ) ≤ ( 1 − β ) 2 cos 2 α 4 .$
Equality holds for the rotation of the function
$f * ( z ) = z 1 − z 2 ( 1 − β ) e i α cos α = z + ( 1 − β ) z 3 e i α cos α + ( 1 − β ) e i α cos α 1 + ( 1 − β ) e i α cos α 2 z 5 + … , z ∈ D .$
Proof.
To prove the second part of the corollary, a simple computation shows that
$Re e − i α z f * ′ ( z ) f * ( z ) = 1 + 2 ( 1 − β ) Re z 2 1 − z 2 cos α , z ∈ D ,$
and because
$Re z 2 1 − z 2 > − 1 2 , z ∈ D ,$
it follows that
$Re e − i α z f * ′ ( z ) f * ( z ) > β cos α , z ∈ D ,$
that is $f * ∈ S α ( β )$.
It is easy to check that $f * ( z ) = z + a 2 z 2 + a 3 z 3 + …$$z ∈ D$, with $a 2 = a 4 = 0$ and $a 3 = ( 1 − β ) e i α cos α$; hence,
$| H 2 , 1 ( F f * / 2 ) | = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 = 1 4 a 3 2 = ( 1 − β ) 2 cos 2 α 4 ,$
which shows that our estimation is sharp. □
Remark 1.
For $α = 0$, Corollary 1 reduces to Theorem 2.1 from . Moreover, taking $α = β = 0$ in Corollary 1, we obtain Theorem 2.1 from .
Another special case can be obtained by taking, in Theorem 5, the function
$φ α ( z ) : = 1 + z 1 − z α = 1 + 2 α z + 2 α 2 z 2 + 4 3 α 3 + 2 3 α z 3 + … , z ∈ D , 0 < α ≤ 1 ,$
because $− Q 2 ≰ 0$ for $α ∈ ( 0 , 1 )$ and $P = − 6 ≤ − Q 2 = 0 ≤ 0$ for $α = 1$; thus, we obtain the following corollary:
Corollary 2.
Let us denote by,
$S ˜ * ( α ) : = f ∈ A : arg z f ′ ( z ) f ( z ) < α π 2 , z ∈ D , 0 < α ≤ 1 ,$
the class of strongly starlike functions of order α. If the function $f ∈ S ˜ * ( α )$, then
$H 2 , 1 ( F f / 2 ) ≤ α 2 4 ,$
while the equality holds for the function $f α ∈ A$ given by
$z f α ′ ( z ) f α ( z ) = 1 + z 2 1 − z 2 α .$
Proof.
To prove the second part of our result, we easily see that there exists a function $f α ∈ A$ that satisfies the differential Equation (8), and it is given by
$f α ( z ) = z exp ∫ 0 z φ α ( t 2 ) − 1 t d t .$
On the other hand, since
$1 + z 2 1 − z 2 α = 1 + 2 α z 2 + 2 α 2 z 4 + … , z ∈ D ,$
from (8), we have
$∑ n = 1 + ∞ 2 n γ n z n = z d d z log f α ( z ) z = z f α ′ ( z ) f α ( z ) − 1 = 2 α z 2 + 2 α 2 z 4 + … , z ∈ D .$
Therefore, $2 γ 1 = 0$$4 γ 2 = 2 α$, and $6 γ 3 = 0$; thus, $γ 1 = γ 3 = 0$, and $γ 2 = α 2$. Consequently,
$H 2 , 1 ( F f α / 2 ) = γ 1 γ 3 − γ 2 2 = γ 2 2 = α 2 4 ;$
hence, the estimation is sharp. □
Setting, in Theorem 5, the function
$φ ( z ) : = G ( z ) = 2 1 + e − z = 1 + 1 2 z − 1 24 z 3 + 1 240 z 5 + … , z ∈ D ,$
because $− Q 2 = 1 2 ≰ 0$, and $P + Q < 0$, we obtain the following result:
Corollary 3.
Let $S S G *$ be the class defined in  by
$S S G * = : f ∈ A : z f ′ ( z ) f ( z ) ≺ G ( z ) : = 2 1 + e − z .$
If $f ∈ S S G *$, then
$H 2 , 1 ( F f / 2 ) ≤ 1 64 ,$
and the equality holds for the function
$Ω 3 ( z ) = z exp ∫ 0 z G ( t 2 ) − 1 t d t = z + z 3 4 + z 5 32 + … z ∈ D .$
Proof.
In order to prove the second part of this corollary, since the function $Ω 3 ( z ) = z + a 2 z 2 + a 3 z 3 + …$$z ∈ D$ belongs to the class $S S G *$ (see ) with $a 2 = a 4 = 0$ and $a 3 = 1 4$, it follows that
$H 2 , 1 ( F Ω 3 / 2 ) = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 = 1 4 a 3 2 = 1 64 ,$
and the sharpness of our estimation is proven. □
If we take, in Theorem 5, the function
$φ ( z ) : = q s ( z ) = 1 ( 1 − z ) s = e s log ( 1 − z ) = 1 + s z + s ( s + 1 ) 2 z 2 + s ( s + 1 ) ( s + 2 ) 6 z 3 + … , z ∈ D ,$
because $− Q 2 = s ( 1 − s ) 2 ≰ 0$ for $s ∈ ( 0 , 1 )$ with $P + Q + R < R$ and $P = − 2 ≤ − Q 2 = 0 ≤ 0$ for $s = 1$, we obtain the following special case:
Corollary 4.
Let $S T h p l ( s )$ be the class defined in  by
$S T h p l ( s ) = : f ∈ A : z f ′ ( z ) f ( z ) ≺ q s ( z ) : = 1 ( 1 − z ) s , 0 < s ≤ 1 .$
If the function $f ∈ S T h p l ( s )$, then
$H 2 , 1 ( F f / 2 ) ≤ s 2 16 ,$
and equality holds for the function
$Φ s , 2 ( z ) = z exp ∫ 0 z q s ( t 2 ) − 1 t d t = z + s 2 z 3 + 4 s 2 + 2 s 16 z 5 + … , z ∈ D .$
Proof.
The sharpness of our result follows easily because the function $Φ s , 2 ( z ) = z + a 2 z 2 + a 3 z 3 + …$$z ∈ D$ belongs to $S T h p l ( s )$ (see ) with $a 2 = a 4 = 0$ and $a 3 = s 2$. Hence, we obtain
$H 2 , 1 ( F Φ s , 2 / 2 ) = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 = 1 4 a 3 2 = s 2 16 ,$
and consequently the given estimation is sharp. □
Considering, in Theorem 5, the particular case
$φ ( z ) : = h ( z ) = z + 1 + z 2 = 1 + z + z 2 2 − z 4 8 + … , z ∈ D ,$
because $− Q 2 = 1 2 ≰ 0$ with $P + Q < 0$, we obtain the following outcome:
Corollary 5.
If the function $f ∈ S ☾ *$, then
$H 2 , 1 ( F f / 2 ) ≤ 1 16 ,$
and the equality holds for the function
$H 3 ( z ) = z exp ∫ 0 z h t 2 − 1 t d t = z + z 3 2 + z 5 4 + … , z ∈ D .$
Proof.
The second part can be easily proven because the function $H 3 ( z ) = z + a 2 z 2 + a 3 z 3 + …$$z ∈ D$ belongs to the class $S ☾ *$ (see ) with $a 2 = a 4 = 0$ and $a 3 = 1 2$. Therefore,
$H 2 , 1 ( F H 3 / 2 ) = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 = 1 4 a 3 2 = 1 16 .$
Hence, the estimation is sharp. □
If we set, in Theorem 5, the function
$φ ( z ) : = φ Ne ( z ) = 1 + z − z 3 3 , z ∈ D ,$
because $− Q 2 = 1 ≰ 0$ with $P + Q < 0$, we obtain the following particular case:
Corollary 6.
If the function $f ∈ S Ne *$, then
$H 2 , 1 ( F f / 2 ) ≤ 1 16 ,$
and the equality holds for the function
$Ω 3 ( z ) : = z exp ∫ 0 z φ Ne t 2 − 1 t d t = z + z 3 2 + z 5 8 + … , z ∈ D .$
Proof.
For proving the sharpness of the above result, we see that the function $Ω 3 ( z ) = z + a 2 z 2 + a 3 z 3 + …$$z ∈ D$ belongs to the class $S Ne *$ (see ) with $a 2 = a 4 = 0$ and $a 3 = 1 2$. Hence,
$H 2 , 1 ( F Ω 3 / 2 ) = 1 4 a 2 a 4 − a 3 2 + 1 12 a 2 4 = 1 4 a 3 2 = 1 16 ,$
which proves the sharpness of our estimation. □

## 3. Conclusions

In the final section, we emphasize that all the bounds of logarithmic coefficients for the classes $S T L ( s )$ and $S Ne *$ that we obtained were sharp. Moreover, by Theorem 5, we obtained sharp bounds of the second Hankel determinant of logarithmic coefficients for many well-known subclasses (known or new) as consequences. In addition, the result given in Theorem 5 can be used for determining the upper bound of $H 2 , 1 ( F f / 2 )$ for other popular subclasses.
We also mention that, as a new direction in this area, in the recent article , the authors posed a question that can be interpreted as “an inverse Fekete–Szegő problem”, and this was linked to the so-called filtration of infinitesimal generators. The authors first defined new filtration classes using the non-linear differential operator, and then they obtained certain properties of these classes. Sharp upper bounds of the modulus of the Fekete–Szegő functional over some filtration classes were found, and some open problems for further study concluded the work.

## Author Contributions

Conceptualization, E.A.A., A.M., T.B. and N.E.C.; methodology, E.A.A., A.M., T.B. and N.E.C.; software, E.A.A. and T.B.; validation, E.A.A., A.M., T.B. and N.E.C.; formal analysis, E.A.A., A.M., T.B. and N.E.C.; investigation, E.A.A., A.M., T.B. and N.E.C.; resources, E.A.A., A.M., E.A.A., T.B. and N.E.C.; data curation, E.A.A., A.M., T.B. and N.E.C.; writing—original draft preparation, E.A.A. and T.B.; writing—review and editing, E.A.A. and T.B.; visualization, E.A.A. and T.B.; supervision, E.A.A., A.M., T.B. and N.E.C.; project administration, E.A.A., A.M., T.B. and N.E.C. All authors have read and agreed to the published version of the manuscript.

## Funding

This research received no external funding.

## Data Availability Statement

Our manuscript has no associated data.

## Acknowledgments

The authors are grateful to the reviewers of this article that gave valuable remarks, comments and advices in order to improve the quality of the paper.

## Conflicts of Interest

The authors declare no conflict of interest.

## References

1. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
2. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
3. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel detrminant for strongly starlike functions of order alpha. J. Math. Ineq. 2017, 11, 429–439. [Google Scholar] [CrossRef][Green Version]
4. Cho, N.E.; Adegani, E.A.; Bulut, S.; Motamednezhad, A. The second Hankel determinant problem for a class of bi-close-to-convex functions. Mathematics 2019, 7, 986. [Google Scholar] [CrossRef][Green Version]
5. Salehian, S.; Motamednezhad, A. Second Hankel determinant for certain subclass of bi-univalent functions. Filomat 2021, 35, 2129–2140. [Google Scholar] [CrossRef]
6. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
7. Libera, R.J. Univalent α-spiral functions. Canad. J. Math. 1967, 19, 449–456. [Google Scholar] [CrossRef]
8. Špaček, L. Contribution á la théorie des fonctions univalentes. Časop Pěst. Mat.-Fys. 1933, 62, 12–19. (In Czech) [Google Scholar] [CrossRef]
9. Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. C. R. Acad. Sci. Paris Ser. I 2015, 353, 973–978. [Google Scholar] [CrossRef]
10. Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
11. Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
12. Milin, I.M. On a property of the logarithmic coefficients of univalent functions. In Metric Questions in the Theory of Functions; Naukova Dumka: Kiev, Ukraine, 1980; pp. 86–90. (In Russian) [Google Scholar]
13. Milin, I.M. On a conjecture for the logarithmic coefficients of univalent functions. Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 1983, 125, 135–143. (In Russian) [Google Scholar] [CrossRef]
14. Milin, I.M. Univalent Functions and Orthonormal Systems; AMS Translations of Mathematical Monographs: Proovidence, RI, USA, 1977; Volume 49. [Google Scholar]
15. Duren, P.L.; Leung, Y.J. Logarithmic coefficients of univalent functions. J. Anal. Math. 1979, 36, 36–43. [Google Scholar] [CrossRef]
16. Duren, P.L. Univalent Functions; Springer: Amsterdam, The Netherlands, 1983. [Google Scholar]
17. Adegani, E.A.; Cho, N.E.; Jafari, M. Logarithmic coefficients for univalent functions defined by subordination. Mathematics 2019, 7, 408. [Google Scholar] [CrossRef][Green Version]
18. Alimohammadi, D.; Adegani, E.A.; Bulboacă, T.; Cho, N.E. Logarithmic coefficients for classes related to convex functions. Bull. Malays. Math. Sci. Soc. 2021, 44, 2659–2673. [Google Scholar] [CrossRef]
19. Alimohammadi, D.; Adegani, E.A.; Bulboacă, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
20. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 52. [Google Scholar] [CrossRef][Green Version]
21. Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 324, 742–746. [Google Scholar] [CrossRef][Green Version]
22. Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Amer. Math. Soc. 2011, 363, 2467–2479. [Google Scholar]
23. Obradović, M.; Ponnusamy, S.; Wirths, K.-J. Logarithmic coeffcients and a coefficient conjecture for univalent functions. Monatsh. Math. 2018, 185, 489–501. [Google Scholar] [CrossRef][Green Version]
24. Thomas, D.K. On logarithmic coefficients of close to convex functions. Proc. Amer. Math. Soc. 2016, 144, 1681–1687. [Google Scholar] [CrossRef][Green Version]
25. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
26. Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
27. Ebadian, A.; Mohammed, N.H.; Adegani, E.A.; Bulboacă, T. New results for some generalizations of starlike and convex functions. J. Funct. Spaces 2020, 2020, 7428648. [Google Scholar] [CrossRef]
28. Shi, L.; Arif, M.; Raza, M.; Abbas, M. Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three-leaf-shaped domain. eMathematics 2022, 10, 2924. [Google Scholar] [CrossRef]
29. Shi, L.; Arif, M.; Rafiq, A.; Abbas, M.; Iqbal, J. Sharp bounds of Hankel determinant on logarithmic coefficients for functions of bounded turning associated with petal-shaped domain. Mathematics 2022, 10, 1939. [Google Scholar] [CrossRef]
30. Khan, B.; Aldawish, I.; Araci, S.; Ghaffar Khan, M. Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
31. Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2021, 45, 727–740. [Google Scholar] [CrossRef]
32. Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2021, 105, 458–467. [Google Scholar] [CrossRef]
33. Allu, V.; Arora, V. Second Hankel determinant of logarithmic coefficients of certain analytic functions. arXiv 2021, arXiv:2110.05161. [Google Scholar]
34. Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1945, 48, 48–82. [Google Scholar] [CrossRef]
35. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
36. Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
37. Goel, P.; Sivaprasad Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
38. Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 128. [Google Scholar] [CrossRef]
39. Kanas, S.; Masih, V.S.; Ebadian, A. Relations of a planar domains bounded by hyperbolas with families of holomorphic functions. J. Inequal. Appl. 2019, 2019, 246. [Google Scholar] [CrossRef][Green Version]
40. Elin, M.; Jacobzon, F.; Tuneski, N. The Fekete-Szegő functional and filtration of generators. Rend. Circ. Mat. Palermo II Ser. 2022. [Google Scholar] [CrossRef]
 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

## Share and Cite

MDPI and ACS Style

Analouei Adegani, E.; Motamednezhad, A.; Bulboacă, T.; Cho, N.E. Logarithmic Coefficients for Some Classes Defined by Subordination. Axioms 2023, 12, 332. https://doi.org/10.3390/axioms12040332

AMA Style

Analouei Adegani E, Motamednezhad A, Bulboacă T, Cho NE. Logarithmic Coefficients for Some Classes Defined by Subordination. Axioms. 2023; 12(4):332. https://doi.org/10.3390/axioms12040332

Chicago/Turabian Style

Analouei Adegani, Ebrahim, Ahmad Motamednezhad, Teodor Bulboacă, and Nak Eun Cho. 2023. "Logarithmic Coefficients for Some Classes Defined by Subordination" Axioms 12, no. 4: 332. https://doi.org/10.3390/axioms12040332

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.