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Abstract: On any strictly pseudoconvex CR manifold M, of CR dimension n, equipped with a
positively oriented contact form θ, we consider natural ε-contractions, i.e., contractions gM

ε of the
Levi form Gθ , such that the norm of the Reeb vector field T of (M, θ) is of order O(ε−1). We study
isopseudohermitian (i.e., f ∗Θ = θ) Cauchy–Riemann immersions f : M→ (A, Θ) between strictly
pseudoconvex CR manifolds M and A, where Θ is a contact form on A. For every contraction gA

ε

of the Levi form GΘ, we write the embedding equations for the immersion f : M →
(

A, gA
ε

)
. A

pseudohermitan version of the Gauss equation for an isopseudohermitian C-R immersion is obtained
by an elementary asymptotic analysis as ε→ 0+. For every isopseudohermitian immersion f : M→
S2N+1 into a sphere S2N+1 ⊂ CN+1, we show that Webster’s pseudohermitian scalar curvature R of
(M, θ) satisfies the inequality R ≤ 2n

[
( f ∗gΘ)(T, T) + n+ 1

]
+ 1

2
{∥∥H( f )

∥∥2
g f

Θ
+
∥∥traceGθ

ΠH(M)

(
∇>−

∇
)∥∥2

f ∗gΘ

}
with equality if and only if B( f ) = 0 and ∇> = ∇ on H(M) ⊗ H(M). This gives a

pseudohermitian analog to a classical result by S-S. Chern on minimal isometric immersions into
space forms.

Keywords: Levi form; contact form; Tanaka–Webster connection; pseudohermitian scalar curvature;
sublaplacian; CR immersion; isopseudohermitian immersion; sub-Riemannian structure; ε-contraction;
pseudohermitan second fundamental form; pseudohermitian Gauss equation

MSC: 32V05; 32V30; 53C17; 53C40; 53C42; 53C43

1. Introduction

The present paper has two main purposes: a general one, which looks at certain
problems originating in complex analysis from the point of view of pseudohermitian ge-
ometry, and a more specific purpose, which is contributing to the study of CR immersions
between strictly pseudoconvex CR manifolds, from a differential geometric viewpoint.
Pseudohermitian geometry was brought into mathematical practice by S.M. Webster [1] and
N. Tanaka [2], and the term pseudohermitian structure was coined by S.M. Webster himself
(see op. cit.). Pseudohermitian geometry soon became a popular research area, and its devel-
opment up to 2006 is reported in the monographs by S. Dragomir and G. Tomassini [3] and
by E. Barletta, S. Dragomir, and K.L. Duggal [4]. The further growth of the theory, though
confined to the topic of subelliptic harmonic maps and vector fields on pseudohermitian
manifolds, is reported in the monograph by S. Dragomir and D. Perrone [5]. The part added
to the theory of CR immersions by the present paper, which is deriving a pseudohermitian
analog to the Gauss equation (of an isometric immersion between Riemannian manifolds),
aims to contribute applications to rigidity theory. The remainder of the Introduction is
devoted to a brief parallel between rigidity within Riemannian geometry on one hand
and complex analysis on the other, and to a glimpse into the main results. The authors
benefit from the (partial) embedding (described in detail in [6] and adopted there for dif-
ferent purposes, i.e., the study of the geometry of Jacobi fields on Sasakian manifolds) of
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pseudohermitian geometry into sub-Riemannian geometry, and the main novelty from a
methodological viewpoint is the use of methods in sub-Riemannian geometry (see [7,8]).

Rigidity in differential geometry has a long history, perhaps starting with rigidity of
regular curves α : I → R3 of curvature k(s) > 0 and torsion τ(s) (s ∈ I): any other regular
curve α : I → R3 with the same curvature k(s) and torsion τ(s) differs from α by a rigid
motion i.e., α(s) = ρ

[
α(s)

]
+ c for some orthogonal linear map ρ : R3 → R3 and some

vector c ∈ R3. See M.P. Do Carmo [9], p. 19.
As a step further, one knows about the rigidity of real hypersurfaces in Euclidean

space Rn+1, i.e., if f : M → Rn+1 and f : M → Rn+1 are two isometric immersions of
an n-dimensional orientable Riemannian manifold M, whose second fundamental forms
coincide on M, then f = τ ◦ f for some isometry τ : Rn+1 → Rn+1. See Theorem 6.4 in
S. Kobayashi and K Nomizu [10], Volume II, p. 45.

A close analog to rigidity in the above sense, occurring in complex analysis of functions
of several complex variables, is that of rigidity of CR immersions, and our starting point is
S.M. Webster’s legacy; see [11]. A CR immersion is a map f : M→ A of CR manifolds M and
A such that: (i) f is a C∞ immersion, and (ii) f is a CR map; i.e., it maps the CR structure
T1,0(M) onto T1,0(A). Let (M, T1,0(M)) be a (2n + 1)-dimensional CR manifold, of CR
dimension n. M is a CR hypersurface of the sphere S2n+3 if M ⊂ S2n+3 is a (codimension
two) submanifold and the inclusion ι : M→ S2n+3 is a CR immersion. A CR hypersurface
M is rigid in S2n+3 if for any other CR hypersurface M′ ⊂ S2n+3, every CR isomorphism
φ : M → M′ extends to a CR automorphism Φ ∈ AutCR

(
S2n+3). By a classical result of

S.M. Webster (see [11]), if n ≥ 3, every CR hypersurface M ⊂ S2n+3 is rigid.
The proof (see [10], Volume II, pp. 45–46) of rigidity of real hypersurfaces in Euclidean

space relies on the analysis of the Gauss–Codazzi equations for a given isometric immersion,
and the treatment of rigidity of CR hypersurfaces in S2n+3 exploits (again see [11]) in a
rather similar manner CR, or more precisely pseudohermitian, analogs to Gauss–Codazzi
equations, where the ambient and intrinsic Levi–Civita connections (at work within the
geometry of isometric immersions between Riemannian manifolds) are replaced by the
Tanaka–Webster connections. The Tanaka–Webster connection is a canonical connection
(similar to the Levi–Civita connection in Riemannian geometry, and to the Chern connection
in Hermitian geometry) occurring on any nondegenerate CR manifold, on which a contact
form has been fixed (see [1,2]). The Tanaka–Webster connection is also due to S.M. Webster
(see [1]), yet was independently discovered by N. Tanaka in a monograph (see [2]) that
remained little known to Western scientists up to the end of the 1980s. The pseudohermitian
analog to the Gauss equation in Webster’s theory (see [11]) is stated as:

Sβαρσ = −bβρ bα σ − 1
(n+1)(n+2)

[
gβα gρσ + gρα gβσ

]
bµνbµν

+ 1
n+2

[
gβα bρµ bµ

, σ + gρα bβµ bµ
, σ + bβµ bµ

, α gρσ + bρµ bµ
, α gβσ

]
.

(1)

Insufficient computational details are furnished in [11], and the derivation of (1) remains
rather obscure.

A more recent tentative approach to the (CR analog to) the Gauss–Codazzi–Ricci equa-
tions was taken up by P. Ebenfelt, X-J. Huang, and D. Zaitsev (see [12]). They introduced
and made use of a CR analog to the second fundamental form (of an isometric immersion),
which is naturally associated with a given CR immersion and springs from work in complex
analysis by B. Lamel (see [13,14]). Their pseudohermitian (analog to) the Gauss equation

RA(X, Y, Z, W) = R(X, Y, Z, V) + 〈Π(X, Z), Π(Y, V)〉,

X, Y, Z, V ∈ T1,0(M),

for a given CR immersion f : M→ A depends on a particular choice of contact forms θ and
Θ, respectively, on the submanifold M and on the ambient space A, such that: (i) f ∗Θ = θ,
and (ii) f (M) is tangent to the ambient Reeb vector field TA (the globally defined nowhere
zero tangent vector field on A, transverse to the Levi distribution, uniquely determined by
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Θ(TA) = 1 and TA cΘ = 0). However, the proof of the existence of such θ and Θ is purely
local and, in general, global contact forms on M and A such that f is isopseudohermitian,
and T⊥A = 0 might not exist at all.

The class of isopseudohermitian immersions between strictly pseudoconvex CR mani-
folds enjoying the property T⊥A = 0 was studied independently by S. Dragomir (see [15]).
As it turns out, any CR immersion in the class is also isometric with respect to the Webster
metrics, i.e., f ∗gΘ = gθ , and then a pseudohermitian (analog to the) geometry of the second
fundamental form (of an isometric immersion) may be built by closely following its Rieman-
nian counterpart, in a rather trivial manner. Despite the enthusiastic review by K. Spallek
(see [16]) and the later development (by S. Dragomir and A. Minor [17,18]) relating the
geometry of the second fundamental form (of a CR immersion in the class above) to the
Fefferman metrics of (M, θ) and (N, Θ), the built theory of CR immersions is not general
enough: it does not suggest a path towards a theory of CR immersions not belonging to the
class, within which one may hope to recover Webster’s mysterious “Gauss equation” (1). It
is our purpose, within the present paper, to adopt an entirely new approach to building a
“second fundamental form” based theory of CR immersions, using methods coming from
sub-Riemannian geometry (e.g., in the sense of R.S. Strichartz [8]).

That CR geometry (partially) embeds into sub-Riemannian geometry is a rather well-
known fact: given a strictly pseudoconvex CR manifold M, endowed with a positively
oriented contact form θ, the pair (H(M), Gθ), consisting of the Levi distribution H(M) =
Re
{

T1,0(M)⊕ T0,1(M)
}

and the Levi form Gθ(X, Y) = (dθ)(X, JY), X, Y ∈ H(M), is a sub-
Riemannian structure on M, and the Webster metric gθ is a contraction of Gθ (see [6–8,19]).

We adopt the additional assumption that the given CR immersion f : M → A
(between the strictly pseudoconvex CR manifolds M and A) is isopseudohermitian, i.e.,
f ∗Θ = θ for some choice of contact forms θ and Θ on M and A, respectively, yet we
refrain from assuming that f (M) is tangent to the Reeb vector field of the ambient space
(A, Θ); rather, TA will be, relative to f (M), always oblique. f (M) may be looked at as a
submanifold in the Riemannian manifold (A, gΘ), yet, by our assumption T⊥A 6= 0, the first
fundamental form (i.e., the pullback f ∗gΘ to M of the ambient Webster metric gΘ) of the
given immersion f : M→ (A, gΘ) does not coincide with the intrinsic Webster metric gθ .
That is, f : (M, gθ)→ (A, gΘ) is not an isometric immersion, and the well-established and
powerful apparatus based on the Gauss–Codazzi–Mainnardi–Ricci equations cannot be a
priori applied to f .

To circumnavigate this obstacle, one endows A with the Riemannian metric gA
ε , the

contraction of the Levi form GΘ associated with each 0 < ε < 1, given by

gA
ε = gΘ +

(
1
ε2 − 1

)
Θ⊗Θ. (2)

Our strategy will be to regard f (M) as a submanifold of the Riemannian manifold (A, gA
ε )

and derive the Gauss–Weingarten and Gauss–Ricci–Codazzi equations of the immersion
f : M → (A, gA

ε ). In the end, these will lead, as ε → 0+, to the seek after pseudohermi-
tian analogs to the embedding equations. To illustrate the expected results, we state the
pseudohermitian Gauss equation of a CR immersion into a sphere.

Corollary 1. Let M be a strictly pseudoconvex CR manifold, of CR dimension n, equipped with
the positively oriented contact form θ ∈ P+(M). Let f : M → S2(n+k)+1, k ≥ 1, be a CR
immersion of M into the standard sphere S2(n+k)+1 carrying the CR structure induced by the
complex structure of Cn+k+1. Let Θ = i

2
(
∂− ∂

)
|Z|2 be the canonical contact form on S2(n+k)+1.

If f is isopseudohermitian (i.e., f ∗Θ = θ), then
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gθ

(
R∇(X, Y)Z, W) = gθ(Y, Z) gθ(X, W)− gθ(X, Z) gθ(Y, W)

+g f
Θ
(

B( f )(X, W), B( f )(Y, Z)
)
− g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)

+(2λ− 1)
{

Ω(X, W)Ω(Y, Z)−Ω(Y, W)Ω(X, Z)
}
− 2λ Ω(X, Y)Ω(Z, W)

−Ω(Y, Z) A(X, W)−Ω(X, W) A(Y, Z) + Ω(X, Z) A(Y, W) + Ω(Y, W) A(X, Z)

+
(

f ∗gΘ
)(

U( f )(X, W), U( f )(Y, Z)
)
−
(

f ∗gΘ
)(

U( f )(Y, W), U( f )(X, Z)
)

−Ω(Y, Z)
(

f ∗gΘ
)(

U( f )(X, W), T
)
−Ω(X, W)

(
f ∗gΘ

)(
U( f )(Y, Z), T

)
+Ω(X, Z)

(
f ∗gΘ

)(
U( f )(Y, W), T

)
+ Ω(Y, W)

(
f ∗gΘ

)(
U( f )(X, Z), T

)
.

(3)

for any X, Y, Z, W ∈ H(M).

Here, R∇ is the curvature tensor field of the Tanaka–Webster connection ∇ of (M, θ),
and B( f ) is the pseudohermitian second fundamental form of the given immersion f : M→
S2(n+k)+1. A brief inspection of (3) reveals a strong formal analogy to the ordinary Gauss
equation in Riemannian geometry; see B-Y. Chen [20]. At the same time, all obstructions
springing from the geometric structure at hand (which is pseudohermitian, rather than
Riemannian) are inbuilt in Equation (3). For instance, Equation (3) contains the (eventually
nonzero) pseudohermitian torsion tensor field A of (M, θ). Additionally, (3) contains the
(1, 2) tensor field U( f ) expressing the difference between the induced connection ∇> and
the Tanaka–Webster connection ∇ (the non-uniqueness of the canonical connection on
M is of course tied to the failure of f : (M, gθ) → (S2(n+k)+1 , gΘ) to be isometric). Our
expectation is that an analysis of the pseudohermitian Gauss–Codazzi equations will lead to
rigidity theorems for isopseudohermitian CR immersions f : M→ S2n+3 and, in particular,
f : M→ S5 (focusing on the case M = S3).

The certitude that Riemannian objects on (A, gA
ε ) (and their tangential and normal

components, relative to f (M)) will give, in the limit as ε → 0+, the “correct” pseudo-
hermitian analogs to the (Riemannian) embedding equations is already acquired from
the following early observations: let (M, θ) be endowed with the contraction of Gθ given
by gε = gθ +

(
ε−2 − 1

)
θ ⊗ θ, and let ∇ε and ∆ε be respectively the gradient and Laplace–

Beltrami operators (on functions) of the Riemannian manifold (M, gε). Then,

∇εu = ∇Hu + ε2 θ(∇u) T, u ∈ C1(M),

∆εu = ∆bu− ε2 T2(u), u ∈ C2(M),

showing that∇εu tends, in the limit as ε→ 0+, to the horizontal gradient∇Hu (familiar in
subelliptic theory; see, e.g., [19]), while ∆ε tends (in an appropriate Banach space topology,
where second order elliptic operators such as ∆ε form an open set, one of whose boundary
points is ∆b) to the sublaplacian ∆b of (M, θ).

As an application of the pseudohermitian Gauss Equation (3) in Corollary 2, we shall
establish the following result.

Theorem 1. Let M be a strictly pseudoconvex CR manifold, of CR dimension n, equipped with the
contact form θ ∈ P+(M). Let f : M→ S2(n+k)+1 be an isopseudohermitian immersion of (M, θ)
into the sphere j : S2(n+k)+1 ↪→ Cn+k+1, endowed with the contact form Θ = j∗

[ i
2
(
∂− ∂

)
|Z|2

]
.

Then, the pseudohermitian scalar curvature R = gαβ Rαβ of (M, θ) satisfies the inequality

R ≤ 2n
[(

f ∗gΘ)(T, T) + n + 1
]
+

1
2

{∥∥H( f )
∥∥

g f
Θ
+
∥∥traceGθ

ΠH(M) U( f )
∥∥

f ∗gΘ

}
with equality if and only if B( f ) = 0 and ∇> = ∇ on H(M)⊗ H(M).

Here, H( f ) = traceGθ
ΠH(M) B( f ). Theorem 1 generalizes a classical result by S-

S. Chern (see [21]) on isometric immersions of Riemannian manifolds into a space form (to
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the case of isopseudohermitian immersions of strictly pseudoconvex CR manifolds into
a sphere).

The definitions of objects used in the present Introduction can be found in Section 2 of
the present paper.

2. Sub-Riemannian Techniques in CR Geometry

All basic notions and results used through the paper are described in detail in Section 2,
following the monograph by S. Dragomir and G. Tomassini [3]. Specifically, in Section 2.1,
we recall the necessary material in Cauchy–Riemann (CR) and pseudohermitian geometry
by essentially following monograph [3]. CR geometry is known to (partially) embed into
sub-Riemannian geometry, in the sense of R. Strichartz [8]. We therefore recall the basics
of sub-Riemannian geometry, at work in the present paper, in Section 2.2 by following
J.P. D’Angelo and J.T. Tyson (see [7]) and [6,19], and of course [8].

2.1. CR Structures and Pseudohermitian Geometry

Let M be an orientable real (2n + 1)-dimensional C∞ differentiable manifold, and let
T(M) be the (total space of the) tangent bundle over M.

Definition 1 ([3], pp. 3–4). A CR structure is a complex rank n complex subbundle T1,0(M) ⊂
T(M)⊗C of the complexified tangent bundle such that

T1,0(M)x ∩ T0,1(M)x = (0), x ∈ M,

Z, W ∈ C∞(U, T1,0(M)) =⇒ [Z, W] ∈ C∞(U, T1,0(M))

for any open set U ⊂ M. A pair (M, T1,0(M)) consisting of a (2n + 1)-dimensional C∞

manifold M and a CR structure T1,0(M) on M is a CR manifold. The integer n is the CR
dimension.

Here, T0,1(M) = T1,0(M) (an overbar denotes complex conjugation). Every real
hypersurface M ⊂ Cn+1 may be organized (see e.g., formula 1.12 in [3], p. 5) as a CR
manifold of CR dimension n, with the CR structure

T1,0(M)x =
[
Tx(M)⊗R C

]
∩ T′(Cn+1)x , x ∈ M,

induced by the complex structure of the ambient space. Here, T′(Cn+1) denotes the
holomorphic tangent bundle over Cn+1, i.e., the span of {∂/∂zj : 1 ≤ j ≤ n + 1} where
(z1 , · · · , zn+1) are the Cartesian complex coordinates on Cn+1.

Definition 2 ([3], p. 4). The real rank 2n (hyperplane) distribution

H(M) = Re{T1,0(M)⊕ T0,1(M)}

is the Levi (or maximally complex) distribution.

H(M) carries the complex structure

J = JM : H(M)→ H(M), J(Z + Z) = i(Z− Z), Z ∈ T1,0(M).

Definition 3 ([3], p. 4). A C∞ map f : M → A of the CR manifold (M, T1,0(M)) into the
CR manifold (A, T1,0(A)) is a CR map if

(dx f )T1,0(M) ⊂ T1,0(A) f (x) , x ∈ M.

Equivalently, a CR map f : M→ A is characterized by the properties

(dx f ) H(M)x ⊂ H(A) f (x) , (dx f ) ◦ JM, x = JA, f (x) ◦ (dx f ),
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for any x ∈ M; see formulas 1.10 and 1.11 in [3], p. 4.

Definition 4 ([3], p. 5). A CR isomorphism is a C∞ diffeomorphism and a CR map. A CR
automorphism of the CR manifold M is a CR isomorphism of M into itself.

For every CR manifold M, let AutCR(M) be the group of all CR automorphisms of M.

Definition 5 ([3], p. 5). The conormal bundle is the real line bundle R→ H(M)⊥ → M given
by

H(M)⊥x = {ω ∈ T∗x (M) : Ker(ω) ⊃ H(M)x}, x ∈ M.

As M is orientable, and H(M) is oriented by its complex structure, the quotient
bundle T(M)/H(M) is orientable. Moreover, there is a (non-canonical) vector bundle
isomorphism H(M)⊥ ≈ T(M)/H(M), hence H(M)⊥ is orientable as well. Any orientable
real line bundle over a connected manifold is trivial (see, e.g., Remark 11.3 in [22], p. 115).
Hence, H(M)⊥ ≈ M × R (a vector bundle isomorphism). Therefore, H(M)⊥ admits
globally defined nowhere zero sections.

Definition 6 ([3], p. 5). A global section θ ∈ C∞(H(M)⊥) such that θx 6= 0 for every x ∈ M
is called a pseudohermitian structure on M.

A pseudohermitian structure is a real valued differential 1-form θ on M such that
Ker(θ) = H(M) (and in particular θx 6= 0 for any x ∈ M).

Definition 7. A pair (M, θ) consisting of a CR manifold M and a pseudohermitian structure
θ on M is a pseudohermitian manifold.

Let P = P(M) be the set of all pseudohermitian structures on M.

Definition 8 ([3], pp. 5–6). Given θ ∈ P , the Levi form is

Gθ(X, Y) = (dθ)(X, JY), X, Y ∈ H(M).

Definition 9 ([3], p. 6). The CR structure T1,0(M) is nondegenerate if the (symmetric bilinear)
form Gθ is nondegenerate for some θ ∈ P .

Any other pseudohermitian structure θ̂ ∈ P is related to θ by θ̂ = λ θ for some C∞

function λ : M→ R \ {0}. Then,

dθ̂ = dλ ∧ θ + λ dθ ,

hence the corresponding Levi forms Gθ and Gθ̂ are related by Gθ̂ = λ Gθ . Consequently, if
Gθ is nondegenerate for some θ ∈ P , it is nondegenerate for all. That is, nondegeneracy
is a CR invariant notion; it does not depend on the choice of pseudohermitian structure.
Strictly speaking:

Definition 10. A geometric object, or a notion, on a CR manifold M is CR invariant if it is
invariant with respect to the action of AutCR(M).

The signature of the Levi form Gθ of a nondegenerate CR manifold M is a CR invariant.

Definition 11 ([3], p. 43). A differential 1-form θ ∈ Ω1(M) is a contact form if θ ∧ (dθ)n is a
volume form on M.

If T1,0(M) is nondegenerate, then each θ ∈ P is a contact form; see, e.g., Proposition
1.9 in [3], pp. 43–44.
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For any nondegenerate CR manifold, on which a contact form θ ∈ P has been fixed,
there is a unique globally defined nowhere zero tangent vector field T = TM ∈ X(M),
transverse to the Levi distribution, determined by the requirements

θ(T) = 1, T c dθ = 0.

See Proposition 1.2 in [3], pp. 8–9.

Definition 12. T is called the Reeb vector field of (M, θ).

Let θ ∈ P be a contact form on M, and let us define the (0, 2) tensor field gθ on M
by setting

gθ(X, Y) = Gθ(X, Y), gθ(X, T) = 0, gθ(T, T) = 1,

for any X, Y ∈ H(M). gθ is a semi-Riemannian metric on M; see [3], p. 9.

Definition 13 ([3], p. 9). gθ is called the Webster metric of (M, θ).

Definition 14 ([3], p. 6). A CR structure T1,0(M) is strictly pseudoconvex (and the pair
(M, T1,0(M)) is a strictly pseudoconvex CR manifold) if the Levi form Gθ is positive definite
for some θ ∈ P .

Let P+ = P+(M) be the set of all θ ∈ P such that Gθ is positive definite. If M is strictly
pseudoconvex, then P+ 6= ∅. Any strictly pseudoconvex CR manifold is nondegenerate. If
θ ∈ P+, then the Webster metric gθ is a Riemannian metric on M.

Definition 15. A contact form θ ∈ P+ is said to be positively oriented.

Quadrics Qn = {(z, ζ) ∈ Cn ×C :
1
2i
(
ζ − ζ

)
= |z|2

}
and odd dimensional spheres

S2N+1 ⊂ CN+1 are organized as CR manifolds, with the CR structures naturally induced by
the ambient complex structure. AutCR

(
S2n+1) consists of all fractional linear, or projective,

transformations preserving S2n+1; see, e.g., [23].

Definition 16 ([3], p. 11). The Heisenberg group is the non-commutative Lie group Hn =
Cn ×R ≈ R2n+1, with the group law

(z, t) · (w, s) =
(
z + w, t + s + 2 Im〈z, w〉

)
,

z, w ∈ Cn , t, s ∈ R, 〈z, w〉 = δjk zj wk .

The Heisenberg group Hn is organized as a CR manifold with the CR structure
spanned by

Lα ≡
∂

∂zα
+ i zα ∂

∂t
, 1 ≤ α ≤ n.

See formula (1.24) in [3], p. 12.

Definition 17 ([3], p. 12, and [24]). When n = 1, the first order differential operator L1 is
the Lewy operator.

The mapping

f : Hn → Qn , f (z, t) = t + i |z|2 , (z, t) ∈ Hn

is a CR isomorphism. Let us set
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θ0 = dt + i
n

∑
α=1

{
zα dzα − zα dzα

}
, Θ =

i
2
(
∂− ∂

)
|Z|2 ,

with |Z|2 = ∑N
A=0 ZAZA, Z = (Z0 , · · · , ZN). Both Hn and S2N+1 are strictly pseudocon-

vex, and θ0 ∈ P+(Hn), Θ ∈ P+(S2N+1).
For any nondegenerate CR manifold M on which a contact form θ ∈ P has been

fixed, there is a unique linear connection ∇ on M satisfying the following requirements: (i)
H(M) is parallel with respect to ∇, i.e., X ∈ X(M) and Y ∈ H(M) =⇒ ∇XY ∈ H(M); (ii)
∇gθ = 0 and ∇J = 0; and (iii) the torsion T∇ of ∇ is pure, i.e.,

τ ◦ J + J ◦ τ = 0, T∇(Z, W) = 0, T∇(Z, W) = 2iGθ(Z, W),

for any Z, W ∈ T1,0(M). Here, τ(X) = T∇(T, X) for any X ∈ X(M). See Theorem 1.3 in [3],
p. 25.

Definition 18 ([3], p. 26). ∇ is the Tanaka–Webster connection of (M, θ). The vector-valued
1-form τ on M is the pseudohermitian torsion of ∇.

As a consequence of axioms (i)–(ii) τ[T1,0(M)] ⊂ T0,1(M). In particular, the pseudo-
hermitian torsion is trace-less; i.e., trace(τ) = 0. Moreover, if A(X, Y) = gθ(X, τY), then A
is symmetric, i.e., A(X, Y) = A(Y, X); see Lemma 1.4 in [3], pp. 38–40.

Definition 19. For every C1 function u : M→ R, the horizontal gradient of u is

∇Hu = ΠH∇u.

Here, ΠH : T(M) → H(M) is the projection associated with the direct sum decom-
position T(M) = H(M)⊕RT. Additionally, ∇u is the gradient of u with respect to the
Webster metric, i.e.,

gθ

(
∇u, X

)
= X(u), X ∈ X(M).

Definition 20. For every C1 vector field X on M, the divergence of X is its divergence div(X)
with respect to the contact form Ψθ = θ ∧ (dθ)n, i.e.,

LXΨθ = div(X)Ψθ .

Here, LX is the Lie derivative at the direction X.

Definition 21 ([3], p. 111). Let θ ∈ P+. The sublaplacian of (M, θ) is the second order
differential operator ∆b given by

∆bu = −div
(
∇Hu

)
for every C2 function u : M→ R.

∆b is a formally self-adjoint, degenerate elliptic operator (formally similar to the
Laplace–Beltrami operator of a Riemannian manifold) naturally occurring on a strictly
pseudoconvex CR manifold M, on which a positively oriented contact form θ has been
fixed. While ∆b is not elliptic (ellipticity degenerates in the cotangent directions spanned by
θ; see [25]), ∆b is subelliptic of order 1/2, and hence it is hypoelliptic; see [3], pp. 114–116,
and L. Hörmander [26].

We end the section by briefly recalling a few elements of curvature theory on a
nondegenerate CR manifold M, endowed with a contact form θ. Let R∇ be the curvature
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tensor field of the Tanaka–Webster connection∇ of (M, θ). Let {Tα : 1 ≤ α ≤ n} be a local
frame of T1,0(M), defined on the open set U ⊂ M, and let Tα ≡ Tα. Then,{

TA : A ∈ {0, 1, · · · , n, 1, · · · , n}
}
≡ {T, Tα , Tα : 1 ≤ α ≤ n}, T0 = T

is a local frame of T(M)⊗C on U. For all local calculations, one sets

gαβ = g
(
Tα , Tβ

)
,
[
gαβ
]
=
[
gαβ

]−1 .

Let us consider the C∞ functions RC
D

AB : U → C determined by

R∇(TA , TB)TC = RC
D

AB TD .

Definition 22. The Ricci tensor is

Ric∇(X, Y) = Trace
{

Z 7→ R∇(Z, Y)X
}

.

The pseudohermitian Ricci tensor is Rαβ = Ric∇(Tα , Tβ).

Then Rαβ = Rα
γ

γβ; see [3], p. 50.

Definition 23. The pseudohermitian scalar curvature is R = gαβ Rαβ.

A pseudohermitian analog to the holomorphic sectional curvature (of a Kählerian
manifold) was introduced by S.M. Webster [1] and studied in some detail by E. Barletta [27].

2.2. Sub-Riemannian Geometry

Let (M, T1,0(M)) be a CR manifold. Let S : x ∈ M 7→ Sx ⊂ Tx(M) be a C∞ distribution
on M.

Definition 24 ([8] p. 224 and [19] p. 124). S is bracket generating if the C∞ sections in S,
together with their commutators, span Tx(M) at each point x ∈ M.

Given v ∈ Sx, let X ∈ C∞(S) such that Xx = v. Let Sx +
[
v, Sx

]
⊂ Tx(M) be the

subspace spanned by
Sx ∪

{
[X, Y]x : Y ∈ C∞(S)

}
.

Next, let us inductively define the spaces Dk(v) ⊂ Tx(M) by setting

D2(v) = Sx +
[
v, Sx

]
, Dk(v) = Sx +

[
Dk−1 , Sx

]
, k ≥ 3.

Definition 25 ([8,19]). A tangent vector v ∈ Sx is a k-step bracket generator ifDk(v) = Tx(M).
The distribution S is said to satisfy the strong bracket generating hypothesis if, for arbitrary
x ∈ M, each v ∈ Sx is a 2-step bracket generator.

Let S be a bracket generating distribution on M.

Definition 26 ([8,19]). A sub-Riemannian metric on S is a Riemannian bundle metric on
S, i.e., a C∞ positive definite section Q ∈ C∞(S∗ ⊗ S∗

)
. A pair (S, Q) consisting of a

bracket generating distribution S on M and a sub-Riemannian metric Q on S is called a
sub-Riemannian structure on M.

Definition 27 ([8], p. 229 and [7,19]). A piecewise C1 curve γ : I → M (where I ⊂ R is an
interval) is horizontal if γ̇(t) ∈ H(M)γ(t) for all values of the parameter t (for which γ̇(t)
makes sense).
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Assume M to be strictly pseudoconvex. Let θ ∈ P+ be a positively oriented contact
form on M. Then, (H(M), Gθ) is a sub-Riemannian structure on M; see [19], p. 125.

Definition 28. The sub-Riemannian length of a horizontal curve γ : I → M is

`(γ) =
∫

I
Gθ

(
γ̇(t) , γ̇(t)

)1/2 dt.

A piecewise C1 curve γ : I → M joins the points x, y ∈ M if I = [a, b], γ(a) = x, and
γ(b) = y. Let Ω(x, y) (,respectively, ΩH(x, y)) be the set of all piecewise C1 (respectively
horizontal) curves joining x and y. Let d(x, y) (respectively, dH(x, y)) be the distance
between x, y ∈ M induced by the Riemannian metric gθ (respectively, the greatest lower
bound of {`(γ) : γ ∈ ΩH(x, y)}). dH : M × M → [0,+∞) is a distance function on M;
see [8], p. 230.

Definition 29. dH is the Carnot–Carthéodory distance function on M, induced by the sub-
Riemannian structure (H(M), Gθ).

Definition 30 ([8], p. 230). A Riemannian metric g on M is said to be a contraction of the
sub-Riemannian metric Gθ if the distance function ρ : M×M→ [0,+∞) associated with g
satisfies ρ(x, y) ≤ dH(x, y) for any x, y ∈ M.

As ΩH(x, y) ⊂ Ω(x, y) (a strict inclusion), one has d(x, y) ≤ dH(x, y) for any x, y ∈ M.
Hence, the Webster metric gθ is a contraction of the Levi form Gθ . The construction of a
contraction of Gθ by the requirement that the norm of the Reeb vector T be 1, appearing as
quite natural a priori, proves to be rather restrictive later on; i.e., the Riemannian geometry
of (M, gθ) turns out to be insufficiently related to the CR and pseudohermitian geometry
on (M, θ). As shown by J. Jost and C-J. Xu (see [28]), the requirement that the norm of T be
O(ε−1) is far reaching (and related to the notion of homogeneous space in PDEs theory;
see [28]). In the next section, we adopt a version of the construction in [28], referred to in
the sequel as an ε-contraction of Gθ .

2.3. ε-Contractions

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold, and let θ ∈ P+(M) be a
positively oriented contact form on M. Let T ∈ X(M) be the Reeb vector field of (M, θ).
Let 0 < ε < 1, and let gε = gM

ε be the (0, 2) tensor field on M defined by

gε(T, T) = ε−2 , (4)

gε(X, Y) = Gθ(X, Y), gε(X, T) = 0, (5)

for any X, Y ∈ H(M). gε is a Riemannian metric on M and a contraction of Gθ . The direct
sum decomposition

T(M) = H(M)⊕RT (6)

together with (4) and (5) yields

gε = gθ +
( 1

ε2 − 1
)

θ ⊗ θ. (7)

Definition 31. gε is called the ε-contraction of Gθ .

The contraction gε is built such that the gε norm of T is O(ε−1), a property of crucial
importance in the further asymptotic analysis as ε→ 0+. For every 0 < ε < 1, we consider
the contact form θε = ε−1θ. The Reeb vector field Tε ∈ X(M) of (M, θε) is given by
Tε = εT.
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Lemma 1. The Webster metric gθε
and the ε-contraction gε of Gθ are related by

gθε
(X, Y) = ε−1 gε(X, Y), (8)

gθε
(X, T) = gε(X, T) = 0, (9)

gθε
(T, T) = gε(T, T) = ε−2 , (10)

for any X, Y ∈ H(M). Summing up:

gθε
= ε−1 gε + ε−2(1− ε−1) θ ⊗ θ. (11)

In particular, none of the metrics {gε : ε > 0} is a Webster metric; i.e., there is no uε ∈ C∞(M,R)
such that gε = gexp(uε) θ .

The proof of Lemma 1 is straightforward.

Lemma 2. The Levi–Civita connection ∇ε of the Riemannian manifold (M, gε) and the Tanaka–
Webster connection ∇ of the pseudohermitian manifold (M, θ) are related by

∇ε
XY = ∇XY +

{
Ω(X, Y)− ε2 A(X, Y)

}
T, (12)

∇ε
XT = τX +

1
ε2 JX, (13)

∇ε
TX = ∇TX +

1
ε2 JX, (14)

∇ε
TT = 0, (15)

for any X, Y ∈ H(M).

Here, Ω(X, Y) = gθ(X, JY) for any X, Y ∈ X(M). Ω is a pseudohermitian analog
to the fundamental 2-form in Hermitian geometry. However, Ω = −dθ so that, unlike
the (perhaps more familiar) case of Kählerian geometry, Ω and its exterior powers do not
determine nontrivial de Rham cohomology classes on M.

The remainder of the section is devoted to the proof of Lemma 2. This requires a rather
involved calculation, as follows. Given a Riemannian metric g on M, it will be useful to
adopt the following:

Definition 32. The Christoffel mapping is

Cg : X(M)×X(M)×X(M)→ C∞(M,R),

Cg(X, Y, Z) = X
(

g(Y, Z)
)
+ Y

(
g(Z, X)

)
− Z

(
g(X, Y)

)
+g
(
[X, Y], Z

)
− g
(
[Y, Z], X

)
+ g
(
[Z, X], Y

)
,

for any X, Y, Z ∈ X(M).

Let gθ and ∇ be, respectively, the Webster metric and Tanaka–Webster connection of
(M, θ). As ∇gθ = 0, one may apply the so-called Christoffel process; i.e., starting from

X
(

gθ(Y, Z)
)
= gθ

(
∇XY , Z

)
+ gθ

(
Y, ∇XZ

)
,

we produce other two identities of the sort by circular permutation of X, Y, Z,

Y
(

gθ(Z, X)
)
= gθ

(
∇YZ , X

)
+ gθ

(
Z, ∇YX

)
,
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Z
(

gθ(X, Y)
)
= gθ

(
∇ZX , Y

)
+ gθ

(
X, ∇ZY

)
,

add the first two and subtract the third, and use ∇XY − ∇YX − [X, Y] = T∇(X, Y) to
recognize torsion terms. We obtain

2 gθ

(
∇XY, Z

)
= X

(
gθ(Y, Z)

)
+ Y

(
gθ(Z, X)

)
− Z

(
gθ(X, Y)

)
+gθ

(
[X, Y], Z

)
− gθ

(
[Y, Z], X

)
+ gθ

(
[Z, X], Y

)
+gθ

(
T∇(X, Y), Z

)
− gθ

(
T∇(Y, Z), X

)
+ gθ

(
T∇(Z, X), Y

) (16)

for any X, Y, Z ∈ X(M). By the purity axiom, the torsion of the Tanaka–Webster connection
satisfies

Tor∇ = 2
{

θ ∧ τ −Ω⊗ T
}

. (17)

Then, by (17),

gθ

(
Tor∇(X, Y), Z

)
− gθ

(
Tor∇(Y, Z), X

)
+ gθ

(
Tor∇(Z, X), Y

)
(18)

= 2
{

A(X, Y) θ(Z)− A(X, Z) θ(Y)
}

+Ω(X, Z) θ(Y) + Ω(Y, Z) θ(X)−Ω(X, Y) θ(Z)
}

for any X, Y, Z ∈ X(M). Substitution from (18) into (16) furnishes

2 gθ

(
∇XY, Z

)
= Cgθ

(X, Y, Z)

+2
{

A(X, Y) θ(Z)− A(X, Z) θ(Y)
}

+Ω(X, Z) θ(Y) + Ω(Y, Z) θ(X)−Ω(X, Y) θ(Z)
}

.

(19)

Next, we may exploit (7) (relating the ε-contraction gε to the Webster metric gθ) to derive

Cgε(X, Y, Z) = Cgθ
(X, Y, Z)

+
(

1
ε2 − 1

){
X
(
θ(Y) θ(Z)

)
+ Y

(
θ(Z) θ(X)

)
− Z

(
θ(X) θ(Y)

)
+θ
(
[X, Y]

)
θ(Z)− θ

(
[Y, Z]

)
θ(X) + θ

(
[Z, X]

)
θ(Y)

}
or, by using 2 (dθ)(X, Y) = X(θ(Y))−Y(θ(X))− θ([X, Y]),

Cgε(X, Y, Z) = Cgθ
(X, Y, Z) + 2

(
1
ε2 − 1

){
X
(
θ(Y) θ(Z)

)
+θ(X) (dθ)(Y, Z) + θ(Y) (dθ)(X, Z)− θ(Z) (dθ)(X, Y)

}
.

(20)

Let ∇ε be the Levi–Civita connection of the Riemannian manifold (M, gε). As ∇ε is
symmetric and ∇εgε = 0, the Christoffel process yields

2 gε

(
∇ε

XY , Z
)
= Cgε(X, Y, Z). (21)

Then, by substitution from (20) into (21),

2 gε

(
∇ε

XY, Z
)
= Cgθ

(X, Y, Z) + 2
( 1

ε2 − 1
){

X
(
θ(Y)

)
θ(Z)

+θ(X) (dθ)(Y, Z) + θ(Y) (dθ)(X, Z)− θ(Z) (dθ)(X, Y)
}

or, by replacing gε in terms of gθ from (7), substituting Cgθ
(X, Y, Z) from (19), and using

Ω = −dθ,
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gθ

(
∇ε

XY, Z
)
+
(

1
ε2 − 1

)
θ
(
∇ε

XY
)

θ(Z)

= gθ

(
∇XY, Z

)
+
(

1
ε2 − 1

)
X
(
θ(Y)

)
θ(Z)

+A(X, Z) θ(Y)− A(X, Y) θ(Z)

+ 1
ε2

{
Ω(X, Y) θ(Z)−Ω(Y, Z) θ(X)−Ω(X, Z) θ(Y)

}
.

(22)

The rather involved relation (22) holding for any X, Y, Z ∈ X(M) can be greatly simplified
by using the decomposition (6). For arbitrary Z ∈ H(M), the relation (22) yields, θ(Z) = 0,

ΠH∇ε
XY = ΠH∇XY + θ(Y) τX +

1
ε2

{
θ(X) JY + θ(Y) JX

}
(23)

where ΠH = ΠH(M) : T(M) → H(M) is the projection with respect to the decomposi-
tion (6). Again, by (22), for Z = T, we obtain

θ
(
∇ε

XY
)
= X

(
θ(Y)

)
+ Ω(X, Y)− ε2 A(X, Y), (24)

which determines the component along T of ∇ε
XY, with respect to the decomposition (6).

At this point, we may use (23) and (24) to compute ∇ε
XY for any X, Y ∈ X(M). For every

V ∈ X(M),
V = ΠHV + θ(V) T, (25)

hence, by (23) and (24),
∇ε

XY = ΠH∇ε
XY + θ

(
∇ε

XY
)

T =

= ∇XY + Ω(X, Y) T + θ(Y) τX +
2
ε2 (θ � J)(X, Y)− ε2 A(X, Y) T, (26)

where � is the symmetric tensor productl i.e., α� β = 1
2 (α⊗ β + β⊗ α). For X, Y ∈ H(M),

Equation (26) becomes

∇ε
XY = ∇XY +

{
Ω(X, Y)− ε2 A(X, Y)

}
T,

and (12) is proved. The remaining relations (13)–(15) in Lemma 2 follow from (26) for: (i)
X ∈ H(M) and Y = T; (ii) X = T and Y ∈ H(M); and (iii) X = Y = T. Q.E.D.

It will be useful to compute the covariant derivative of J with respect to ∇ε, where
J : H(M)→ H(M) is extended as customary to a (1, 1)-tensor field on M by requiring that
JT = 0. Note that the extension of J depends on the chosen contact form θ on M.

Lemma 3. For any X, Y ∈ H(M)(
∇ε

X J
)
Y = −

{
gθ(X, Y) + ε2 A(X, JY)

}
T, (27)(

∇ε
X J
)
T = τ J X +

1
ε2 X, (28)(

∇ε
T J
)
X = 0, (29)(

∇ε
T J
)
T = 0. (30)

Proof. Lemma 3 follows from (12)–(15) together with ∇J = 0. For instance,

(∇ε
X J)Y = ∇ε

X JY− J∇ε
XY
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by (12), and JT = 0 and J2 = −I + θ ⊗ T

= ∇X JY +
{

Ω(X, JY)− ε2 A(X, JY)
}

T − J∇XY

by ∇J = 0, and Ω(X, Y) = gθ(X, JY)

= −
{

gθ(X, Y) + ε2 A(X, JY)
}

T,

yielding (27).

2.4. Gradients and the Laplace–Beltrami Operator on (M, gε)

For every function u ∈ C1(M), let ∇εu be the gradient of u with respect to the
Riemannian metric gε, i.e.,

gε(∇εu, X) = X(u), X ∈ X(M).

Let ∆ε be the Laplace–Beltrami operator of (M, gε), i.e.,

∆εu = −divε

(
∇εu

)
, u ∈ C2(M).

Here, divε is the divergence operator with respect to the volume form Ψε = d vol(gε), i.e.,

LXΨε = divε(X)Ψε

for every C1 vector field X tangent to M. Let (U, xi) be a local coordinate system on M,
and let us set

gε = det
[
gij(ε)

]
, gij(ε) = gε

( ∂

∂xi ,
∂

∂xj

)
, 1 ≤ i, j ≤ 2n + 1.

The Riemannian volume form of (M, gε) is locally given by

Ψε =
√
gε dx1 ∧ · · · ∧ dx2n+1 .

The volume form Ψθ is parallel with respect to the Tanaka–Webster connection (i.e.,∇Ψθ =
0), hence the divergence of a C1 vector field X may be computed as

div(X) = Trace
{

Y 7→ ∇YX
}

. (31)

See [3], p. 112.

Lemma 4. (i) For every u ∈ C1(M),

∇εu = ∇Hu + ε2 θ(∇u) T. (32)

(ii) For every u ∈ C2(M),

∆εu = ∆bu− ε2 T2(u). (33)

Proof. (i) By (7), for every X ∈ X(M),

gθ(∇u, X) = X(u) = gε(∇εu, X)

= gθ(∇εu, X) +
( 1

ε2 − 1
)

θ(∇εu) θ(X).
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In particular, for arbitrary X ∈ H(M),

ΠH∇εu = ∇Hu. (34)

Also, for X = T,
θ(∇εu) = ε2 θ(∇u). (35)

Finally, by (34) and (35) and the decomposition (25),

∇εu = ΠH∇εu + θ(∇εu) T = ∇Hu + ε2 θ(∇u) T,

and (32) in Lemma 4 is proved.

(ii) Let {Xa : 1 ≤ a ≤ 2n} be a local gθ-orthonormal

Gθ(Xa , Xb) = δab , 1 ≤ a, b ≤ 2n,

frame of H(M), defined on the open subset U ⊂ M. Then, by (7),{
Eε

j : 1 ≤ j ≤ 2n + 1
}
≡
{

Xa , ε T : 1 ≤ a ≤ 2n
}

is a local gε-orthonormal frame of T(M). Consequently, the Laplace–Beltrami operator of
(M, gε) on functions can be computed as

∆εu = −
2n+1

∑
j=1

{
Eε

j
(
Eε

j (u)
)
−
(
∇ε

Eε
j
Eε

j
)
(u)
}

= −
2n

∑
a=1

{
Xa
(
Xa(u)

)
−
(
∇ε

Xa
Xa
)
(u)
}
− ε2

{
T
(
T(u)

)
−
(
∇ε

TT
)
(u)
}

by (12) and (15)

= −
2n

∑
a=1

{
Xa
(
Xa(u)

)
−
(
∇Xa Xa

)
(u)
}

+
2n

∑
a=1

{
Ω(Xa , Xa)− ε2 A(Xa , Xa)

}
T(u)− ε2 T2(u)

for every u ∈ C2(M). Finally, (33) in Lemma 4 follows from

∆bu = −
2n

∑
a=1

{
Xa
(
Xa(u)

)
−
(
∇Xa Xa

)
(u)
}

(36)

as Ω is skew-symmetric, T c A = 0, and

2n

∑
a=1

A(Xa , Xa) = trace(τ) = 0.

The formula (36) is a consequence of (31).

Let Ω ⊂ Hn be a bounded domain, with boundary S = ∂Ω of class Cr, 1 ≤ r ≤ ∞.
Let us assume that Ω lies on one side of its boundary; i.e., for every (z0 , t0) ∈ S, there is
a neighborhood U ⊂ Hn and a diffeomorphism ψ : U → B2n+1 such that ψ(z0 , t0) = 0
and ψ(U ∩Ω) = {(z, t) ∈ B2n+1 : t > 0}. Here, BN = {x ∈ RN : |x| < 1} is the unit ball.
Let DO`

(
Ω
)

be the space of differential operators of order ` with real valued continuous
coefficients

Lu ≡ ∑
|α|≤`

aα(z, t) Dαu, aα ∈ C
(
Ω, R

)
, |α| ≤ `.
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DO`

(
Ω
)

is a Banach space with the norm

‖L‖ = ∑
|α|≤k

sup
(z,t)∈Ω

∣∣aα(z, t)
∣∣ .

Let L`(z, t, ξ) = ∑
|α|=`

aα(z, t)ξα be the symbol of L ∈ DO`

(
Ω
)
. L is degenerate elliptic if

(i) There exist (z, t) ∈ Ω and ξ ∈ R2n+1 such that L`(z, t, ξ) 6= 0 and sign L`(z, t, ξ) is
constant on Ω× S2n [where sign : R→ {±1}],

(ii) The set {(z, t, ξ) ∈ Ω× S2n : L`(z, t, ξ) = 0} is nonempty.

Proposition 1. For every bounded domain Ω ⊂ Hn in the Heisenberg group, the sublaplacian
∆b ∈ DO2(Ω) is a degenerate elliptic operator of order ` = 2.

Proof. If E = Hn ×R is the trivial vector bundle, one may compute the symbol σ2(∆b) ∈
Hom

(
π∗E, π∗E

)
[where π : T∗(Hn

)
\ {0} → Hn is the projection] and show that the

ellipticity of ∆b degenerates at the cotangent directions spanned by the canonical contact
form θ0 (see E. Barletta and S. Dragomir [25]). Here we wish to give a “sub-Riemannian
proof” to the statement. Let us recall that L ∈ DO`

(
Ω
)

is elliptic in Ω if L`(z, t, ξ) 6= 0 for
any (z, t) ∈ Ω and any ξ ∈ R2n+1 \ {0}. Let EO`

(
Ω
)

be the set of elliptic operators of order
k. Then, ∆ε ∈ EO2

(
Ω
)

for every ε > 0 and, by (33),∥∥∆ε − ∆b
∥∥ = ε2‖T2‖ → 0, ε→ 0+ ,

hence ∆b ∈ ∂ EO2
(
Ω
)
. However, (see, e.g., N. Shimakura [29], p. 184) EO2

(
Ω
)

is an open
subset of the Banach space DO2

(
Ω
)

whose boundary consists precisely of the degenerate
(second order) elliptic operators on Ω.

2.5. Curvature Properties

Let R(∇) and R(∇ε) be the curvature tensor fields of ∇ (the Tanaka–Webster connec-
tion of (M, θ)) and of ∇ε (the Levi–Civita connection of (M, gε)).

Lemma 5. Let M be a strictly pseudoconvex CR manifold and θ ∈ P+ a positively oriented contact
form on M. Then, R

(
∇ε
)

and R(∇) are related by

R
(
∇ε
)
(X, Y)Z = R(∇)(X, Y)Z

−ε2 [(∇X A
)
(Y, Z)−

(
∇Y A

)
(X, Z)

]
T

+Ω(Y, Z) τX−Ω(X, Z) τY− A(Y, Z) JX + A(X, Z) JY

+ε2 [A(X, Z) τY− A(Y, Z) τX]

+ 1
ε2 [Ω(Y, Z) JX−Ω(X, Z) JY− 2 Ω(X, Y) JZ],

(37)

R
(
∇ε
)
(X, Y)T =

(
∇Xτ

)
Y−

(
∇Yτ

)
X + 2 Ω(X, τY) T, (38)

R
(
∇ε
)
(X, T)Y = R(∇)(X, T)Y

+
{

ε2[(∇T A
)
(X, Y) + gθ

(
τX , τY

)]
− 1

ε2 gθ(X, Y)− 2 A(X, JY)−Ω(τX, Y)
}

T,

(39)

R
(
∇ε
)
(X, T)T = −τ2X− 1

ε2 JX +
1
ε4 X−

(
∇Tτ

)
X, (40)

for any X, Y, Z ∈ H(M).
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Proof. Let X, Y, Z ∈ H(M). Then,

[X, Y] = ΠH [X, Y] + θ
(
[X, Y]

)
T

and
θ
(
[X, Y]

)
= −2 (dθ)(X, Y) = 2 Ω(X, Y),

hence
[X, Y] = ΠH [X, Y] + 2 Ω(X, Y) T. (41)

By (12)–(15) relating ∇ε to ∇, one conducts the following calculations:

R
(
∇ε
)
(X, Y)Z = ∇ε

X∇ε
YZ−∇ε

Y∇ε
XZ−∇ε

[X,Y]Z

by substitution from (41)

= ∇ε
X

{
∇YZ +

[
Ω(Y, Z)− ε2 A(Y, Z)

]
T
}

−∇ε
Y

{
∇XZ +

[
Ω(X, Z)− ε2 A(X, Z)

]
T
}

−∇ΠH [X,Y]Z−
{

Ω
(
ΠH [X, Y], Z

)
− ε2 A

(
ΠH [X, Y], Z

)}
T

−2 Ω(X, Y)
[
∇TZ +

1
ε2 JZ

]
again by (41) and ∇Ω = 0,

= R(∇)(X, Y)Z− 2
ε2 Ω(X, Y) JZ

+
[
Ω(Y, Z)− ε2 A(Y, Z)

] [
τX +

1
ε2 JX

]
−
[
Ω(X, Z)− ε2 A(X, Z)

] [
τY +

1
ε2 JY

]
+ε2{(∇Y A

)
(X, Z)−

(
∇X A

)
(Y, Z)

}
T,

thus proving (37). To prove (38), one conducts the following calculation

R
(
∇ε
)
(X, Y)T = ∇ε

X∇ε
YT −∇ε

Y∇ε
XT −∇ε

[X,Y]T

by (13) and (41)

= ∇ε
X

[
τY +

1
ε2 JY

]
−∇ε

Y

[
τX +

1
ε2 JX

]
−∇ε

ΠH [X,Y]T − 2 Ω(X, Y)∇ε
TT

by τ ◦ J + J ◦ τ = 0

=
(
∇Xτ

)
Y−

(
∇Yτ

)
X +

1
ε2

[(
∇X J

)
Y−

(
∇Y J

)
X
]
,

yielding (38) by ∇J = 0. To prove (39), one conducts the following calculation:

R
(
∇ε
)
(X, T)Y = ∇ε

X∇ε
TY−∇ε

T∇ε
XY−∇ε

[X,T]Y

by (14) and (12), and by [X, T] ∈ H(M)

= ∇ε
X

{
∇TX +

1
ε2 JY

}
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−∇ε
T

{
∇XY +

[
Ω(X, Y)− ε2 A(X, Y)

]
T
}

−∇[X,T]Y−
{

Ω
(
[X, T], Y

)
− ε2 A

(
[X, T], Y

)}
T.

Note that, by the very definition of the pseudohermitian torsion τ,

[X, T] = τX−∇TX, X ∈ H(M).

Then, by ∇J = 0 and ∇Ω = 0,

R
(
∇ε
)
(X, T)Y = R∇(X, T)Y

+
1
ε2

[
Ω(X, JY)− ε2 A(X, JY)

]
T

−Ω(τX, Y) T + ε2 A(τX, Y) T + ε2 (∇T A
)
(X, Y) T,

thus yielding (39). Finally, (40) follows from

R
(
∇ε
)
(X, T)T = ∇ε

X∇ε
TT −∇ε

T∇ε
XT −∇ε

[X,T]T

by ∇ε
TT = 0 and (13)

= −∇ε
T

{
τX +

1
ε2 JX

}
− τ[X, T]− 1

ε2 J[X, T]

by ∇J = 0 and τ ◦ J + J ◦ τ = 0

= −τ2X +
1
ε4 X−

(
∇Tτ

)
X.

3. First Fundamental Forms

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold of CR dimension n. Through
this section, given a positive integer k ≥ 1 and another strictly pseudoconvex CR manifold
(A, T1,0(A)) of CR dimension N = n+ k, we study the geometry of the second fundamental
form of Cauchy–Riemann (CR) immersions f : M→ A.

Definition 33. A CR immersion f : M → A is a C∞ immersion of f : M → A, which is a
CR map.

Our approach to the study of CR immersions is to establish pseudohermitian analogues
to the Gauss–Weingarten formulas and to the Gauss–Ricci–Codazzi equations. Let θ ∈
P+(M) and Θ ∈ P+(A) be positively oriented contact forms on M and A, respectively.

Lemma 6. Let f : M→ A be a CR immersion. There is a unique function Λ ∈ C∞(M) such that

f ∗Θ = Λ θ . (42)

Consequently,
f ∗GΘ = Λ Gθ (43)

and Λ(x) ≥ 0 for any x ∈ M.

Proof. For every x ∈ M and X ∈ H(M)x,

( f ∗Θ)xX = Θ f (x) (dx f )X = 0
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because of
(dx f )H(M)x ⊂ H(A) f (x) . (44)

Hence,
H(M)x ⊂ Ker

[(
f ∗Θ

)
x

]
. (45)

Let {Ea : 1 ≤ a ≤ 2n} be a local frame of H(M), defined on an open neighborhood U ⊂ M
of x. Then,

{Ej : 0 ≤ j ≤ 2n}, E0 = T,

is a local frame of T(M) on U. Let us set

Λ =
(

f ∗Θ
)
T ∈ C∞(M) . (46)

For every X = aj Ej, x ∈ Tx(M) [by θ(T) = 1](
f ∗Θ

)
xX = a0 ( f ∗Θ

)
xTx = a0 Λ(x) = Λ(x) θx(X),

yielding (42). As f is a CR map, aside from (44), one has

(dx f ) ◦ Jx = JA
f (x) ◦ (dx f ), x ∈ M, (47)

where J and JA are the complex structures along the Levi distributions H(M) and H(A).
Also, by exterior differentiation of (42),

dΛ ∧ θ + Λ dθ = f ∗
(
d Θ
)
.

Hence, for any X, Y ∈ H(M),

Λ Gθ(X, Y) = Λ (dθ)(X, JY)

=
(

f ∗
(
d Θ
))
(X, JY) =

(
dΘ
) f ( f∗X, f∗ JY

)
by (47)

=
(
dΘ
) f ( f∗X, (JA) f f∗Y

)
= (GΘ)

f ( f∗X, f∗Y),

proving (43). An upper index f denotes composition with f , e.g., (JA) f = JA ◦ f , where JA

is thought of as a section JA : A→ T∗(A)⊗ T(A). Finally, for every X ∈ Tx(M), X 6= 0 (as
dx f is a monomorphism, and GΘ, f (x) and Gθ, x are positive definite),

0 < GΘ , f (x)
(
(dx f )X, (dx f )X

)
= ( f ∗GΘ)x(X, X) = Λ(x) Gθ, x(X, X),

yielding Λ(x) ≥ 0.

Definition 34. The function Λ = Λ( f ) = Λ( f ; θ, Θ) given by (46) is the dilation of f
relative to the choice of contact forms (θ, Θ).

Definition 35. A CR immersion f : M→ A of (M, θ) into (A, Θ) is said to be isopseudoher-
mitian if Λ( f ; θ, Θ) ≡ 1.

Proposition 2. Let f : M → A be a CR immersion between the strictly pseudoconvex CR
manifolds M and A. Let Θ ∈ P+(A). If

Θ f (x) ◦ (dx f ) 6= 0, x ∈ M,

then there is a contact form θ̂ ∈ P+(M) such that f is an isopseudohermitian immersion of (M, θ̂)
into (A, Θ).
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Proof. Let θ ∈ P+(M) and let Λ be the dilation of the CR immersion f relative to the pair
(θ, Θ). Then, Λ(M) ⊂ (0, +∞), and we may set θ̂ = Λ θ.

For every CR immersion f : M→ A, we may look at M as an immersed submanifold
of the Riemannian manifold (A, gΘ). However, in general, the first fundamental form,
i.e., the pullback f ∗gΘ of the ambient Webster metric gΘ, of the given immersion f :
M → (A, gΘ) does not coincide with the intrinsic Webster metric gθ , not even if f is
isopseudohermitian. To circumnavigate this obstacle, we endow A with the Riemannian
metric gA

ε , the contraction of the Levi form GΘ associated with every ε > 0 as in Section 2,
given by

gA
ε = gΘ +

( 1
ε2 − 1

)
Θ⊗Θ (48)

and derive the Gauss–Codazzi–Ricci equations of the immersion f : M → (A, gA
ε ). As a

consequence of (48),
gA

ε = GΘ on H(A)⊗ H(A), (49)

gA
ε (X, TA) = 0, X ∈ H(A), (50)

gA
ε (TA , TA) = ε−2 , (51)

where TA ∈ X(A) is the Reeb vector field of (A, Θ). Let

gε( f ) = f ∗gA
ε (52)

be the induced metric, i.e., the first fundamental form of the given immersion f : M →
(A, gA

ε ). Then, for any X, Y ∈ H(M),

gε( f )(X, Y) =
(

gA
ε

) f
( f∗X , f∗Y)

by (49), as f∗X, f∗Y ∈ C∞( f−1H(M)
)

= G f
Θ( f∗X, f∗Y) = ( f ∗GΘ)(X, Y) = Λ Gθ(X, Y)

by (43). Throughout, an upper index f denotes composition with f . Summing up:

gε( f ) = Λ Gθ on H(M)⊗ H(M). (53)

For every x ∈ M, let us decompose (dx f )Tx ∈ Tf (x)(A) with respect to

T(A) = H(A)⊕RTA, (54)

which is
(dx f )Tx = v + µ TA, f (x) (55)

for some v ∈ H(A) f (x) and µ ∈ R. If X ∈ H(M), then

gε( f )(X, T)x = ( f ∗gA
ε )(X, T)x

= gA
ε , f (x)

(
(dx f )Xx , (dx f )Tx

)
= GΘ , f (x)

(
(dx f )Xx , v

)
by (49) and (50), which can be applied because (dx f )Xx ∈ H(A) f (x). We have shown that

gε( f )(X, T)x = GΘ, f (x)
(
(dx f )Xx , v

)
(56)

for any X ∈ H(M), where
v = ΠH(A), f (x)(dx f )Tx . (57)
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Let EH( f )x be the orthogonal complement of (dx f )H(M)x in the inner product space(
H(A) f (x) , GΘ, f (x)

)
so that

H(A) f (x) =
[
(dx f )H(M)x

]
⊕ EH( f )x , x ∈ M. (58)

Lemma 7. EH( f )→ M is a JA-invariant real rank 2k subbundle of f−1H(A)→ M.

Proof. Let V ∈ EH( f ). Then,

G f
Θ(J f

AV, f∗X) = −G f
Θ(V, J f

A f∗X)

by (47)]
= −G f

Θ(V, f∗ JX) = 0,

yielding J f
AV ∈ EH( f ).

Definition 36. The real vector bundle EH( f ) → M is called the Levi normal bundle of the
given CR immersion f : M→ (A, Θ). A section ξ ∈ C∞(EH( f )

)
is a Levi normal field.

The tangent vector v ∈ H(A) f (x), first appearing in the decomposition (55), may be
further decomposed, with respect to (58), as

v = (dx f )Yx + v⊥ (59)

for some Y ∈ H(M) and some v⊥ ∈ EH( f )x. The Levi normal vector v⊥ and the value of Y
at x (but not Y) are uniquely determined by the decomposition (59). With (53) and (56), we
started the calculation of the first fundamental form of f : M→ (A, gA

ε ). Let us substitute
from (59) into (56) and take into account (43). We obtain

gε( f )(X, T) = Λ Gθ(X, Y), X ∈ H(M). (60)

Let
tanH, x : H(A) f (x) → H(M)x , norH, x : H(A) f (x) → EH( f )x ,

be the projections associated with the direct sum decomposition (58), so that

w = (dx f )tanH, xw + norH, xw, w ∈ H(A) f (x) . (61)

Then, by (59),
tanH, x v = Yx , norH, x v = v⊥ .

Moreover, by (25) and (57),

Yx = tanH, x

{
ΠH(A), f (x) (dx f )Tx

}
= tanH, x

{
(dx f )Tx −Θ f (x)

[
(dx f )Tx

]
TA, f (x)

}
or

Yx = tanH, x

{
(dx f )Tx −Λ(x) TA, f (x)

}
(62)

as, by (42),
Θ f (x)

[
(dx f )Tx

]
=
(

f ∗Θ
)

x Tx = Λ(x) θx(Tx) = Λ(x).

For further use, let us set

XΘ(x) := (dx f )Tx −Λ(x) TA, f (x) , x ∈ M. (63)
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As a byproduct of the calculations leading to (62), we have XΘ, x ∈ H(A) f (x) for any x ∈ M;
i.e., (63) defines a section XΘ in the pullback bundle f−1H(A)→ M

XΘ = f∗T −Λ T f
A ∈ C∞( f−1H(A)

)
.

Next, by (60) and Yx = tanH, x XΘ, x, i.e., by (62) and (63),

gε( f )(X, T)x = Λ(x) Gθ(X, Y)x = ( f ∗GΘ)(X, Y)x

= GΘ , f (x)
(
(dx f )Xx , (dx f )Yx

)
= GΘ , f (x)

(
(dx f )Xx , (dx f ) tanH, x XΘ , x

)
by (61) for w = XΘ , x

= GΘ , f (x)
(
(dx f )Xx , XΘ , x − norH, x XΘ , x

)
as (dx f )Xx and norH, x XΘ , x are GΘ , f (x)-orthogonal

= GΘ , f (x)
(
(dx f )Xx , XΘ , x

)
= −(dΘ) f (x)

(
JA, f (x) (dx f ) Xx , XΘ, x

)
as f is a CR map

= −(dΘ) f (x)
(
(dx f ) Jx Xx , XΘ, x

)
by TA c dΘ = 0

= −(dΘ) f (x)
(
(dx f ) Jx Xx , (dx f )Tx

)
.

Next, note that, by taking the exterior differential of (42),

f ∗ (dΘ) = d
(

f ∗Θ
)
= dΛ ∧ θ + Λ dθ

so that
gε( f )(X, T)x = −

(
dΛ ∧ θ

)
(JX, T)x + Λ(x)

(
T c dθ

)
(JX)x

by Ker(θ) = H(M), θ(T) = 1, and T c dθ = 0

= −(JX)(Λ)x .

Summing up:
gε( f )(X, T) = −(JX)(Λ), X ∈ H(M). (64)

Together with (53), this determines the first fundamental form gε( f ) = f ∗gA
ε on H(M)⊗

H(M) and H(M)⊗RT. By taking into account the decomposition (6), to fully determine
gε( f ), we ought to compute

gε( f )(T, T)x = ( f ∗gA
ε )(T, T)x = gA

ε, f (x)
(
(dx f )Tx , (dx f )Tx

)
by substitution from (55)

= gA
ε, f (x)

(
v + µ TA, f (x) , v + µ TA, f (x)

)
by (50) i.e., by v ∈ H(A) f (x)⊥ TA, f (x) with respect to gA

ε, f (x)

= gA
ε, f (x)(v, v) + µ2 gA

ε (TA , TA) f (x)

by (49) i.e., gA
ε = GΘ on H(A)⊗ H(M) and by (51) i.e., gA

ε (TA , TA) = ε−2

=
(µ

ε

)2
+ GΘ , f (x)(v, v).
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On the other hand, by going back to (55),

µ = Θ f (x) (dx f ) Tx =
(

f ∗Θ
)

x Tx = Λ(x) θ(T)x = Λ(x)

so that (55) de facto reads
(dx f )Tx = v + Λ(x) TA, f (x)

or, by (63),
v = XΘ , x . (65)

Our calculations so far lead to

gε( f )(T, T)x =
[Λ(x)

ε

]2
+
∥∥XΘ , x

∥∥2
Θ . (66)

Here we have set ‖v‖Θ = GΘ , f (x)(v, v)1/2. Another useful expression of the norm ‖v‖Θ
may be obtained as follows. Note first that, as a consequence of our key observation
XΘ ∈ C∞( f−1H(M)),

g f
Θ
(

f∗T , T f
A
)
= g f

Θ
(

f∗T −Λ T f
A , T f

A
)
+ Λ gΘ(TA , TA)

f

= g f
Θ
(
XΘ , T f

A
)
+ Λ

or
g f

Θ
(

f∗T, T f
A
)
= Λ. (67)

Then, by (65),
GΘ , f (x)(v, v) = gΘ, f (x)

(
XΘ, x , XΘ, x

)
= gΘ, f (x)

(
(dx f )Tx , (dx f )Tx

)
+ Λ(x)2 gΘ , f (x)

(
TA, f (x) , TA, f (x)

)
−2 Λ(x) gΘ, f (x)

(
(dx f )Tx , TA, f (x)

)
or, by (67),

GΘ , f (x)(v, v) =
(

f ∗gΘ
)
(T, T)x −Λ(x)2 . (68)

Finally, by substitution from (68) into (66),

gε( f )(T, T) =
( 1

ε2 − 1
)

Λ2 +
(

f ∗gΘ
)
(T, T). (69)

The first fundamental form of f : M→ (A, gA
ε ) is fully determined. Summing up, we have

established:

Proposition 3. Let us set XΘ = f∗T −Λ T f
A. Then

(i) XΘ ∈ C∞( f−1H(A)
)
,

(ii) For any X ∈ H(M)

G f
Θ
(

f∗X , XΘ
)
= −(JX)(Λ) (70)

or equivalently
Λ tanH XΘ = J∇HΛ. (71)

In particular, if Λ(x) 6= 0 for any x ∈ M, then

tanH XΘ = J∇H log
∣∣Λ∣∣,

while if Λ = constant (e.g., f is isopseudohermitian, i.e., Λ ≡ 1), then XΘ is a Levi normal vector
field on M i.e., XΘ ∈ C∞(EH( f )

)
.
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(iii) The norm of vector field XΘ is

∥∥XΘ
∥∥

Θ =
[(

f ∗gΘ
)
(T, T)−Λ2

]1/2
.

(iv) The first fundamental form gε( f ) of the immersion f : M→
(

A, gA
ε

)
is given by

gε( f ) = Λ Gθ on H(M)⊗ H(M), (72)

gε( f )(X, T) = −(JX)(Λ), X ∈ H(M), (73)

gε( f )(T, T) =
( 1

ε2 − 1
)

Λ2 +
(

f ∗gΘ
)
(T, T). (74)

Consequently,

gε( f ) = Λ gθ +
{(

Λ
ε

)2
−Λ(Λ + 1) +

(
f ∗gΘ

)
(T, T)

}
θ ⊗ θ

+2 θ � gθ

(
J∇HΛ , ·

) (75)

and, in particular,

gε( f ) = Λ gM
ε + 2 θ � gθ

(
J∇HΛ , ·

)
+
{

1
ε2

(
Λ2 − 1

)
−Λ(Λ + 1) + 1 +

(
f ∗gΘ

)
(T, T)

}
θ ⊗ θ .

(76)

Corollary 2. Let f : M → A be an isopseudohermitian CR immersion of (M, θ) into (A, Θ).
Then, the first fundamental form gε( f ) = f ∗gA

ε and the Webster metric gθ , respectively, the
ε-contraction gM

ε of Gθ , are related by

gε( f ) = gθ +
{ 1

ε2 − 2 +
(

f ∗gΘ
)
(T, T)

}
θ ⊗ θ , (77)

gε( f ) = gM
ε +

{(
f ∗gΘ

)
(T, T)− 1

}
θ ⊗ θ . (78)

Let E( f )→ M and Eε( f )→ M be, respectively, the normal bundles of the immersions
f : M→ (A, gΘ) and f : M→ (A, gA

ε ), so that

Tf (x)(A) =
[
(dx f )Tx(M)

]
⊕ E( f )x , (79)

Tf (x)(A) =
[
(dx f )Tx(M)

]
⊕ Eε( f )x , (80)

for every x ∈ M.

Lemma 8. The normal bundle Eε( f )→ M and the Levi normal bundle EH( f )→ M are related
by

Eε( f ) ⊂ EH( f )⊕RT f
A . (81)

A dimension count shows that the inclusion is strict.

Proof. Let
ξ ∈ Eε( f ) ⊂ f−1T(A) =

[
f−1H(M)

]
⊕RT f

A

so that
ξ = W + µ T f

A
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for some W ∈ f−1H(A) and some µ ∈ C∞(M). Then, for any X ∈ H(M)

GΘ(W, f∗X) = gA
ε (W, f∗X) = gA

ε (ξ − µT f
A , f∗X)

as T f
A⊥C∞( f−1H(M)) ⊃ f∗ C∞(H(M))

= gA
ε (ξ , f∗X) = 0

because of ξ⊥ f∗ X(M) ⊃ f∗ C∞ H(M)) 3 f∗X. This yields W ∈ EH( f ).

Let
tanx : Tf (x)(A)→ Tx(M), norx : Tf (x)(A)→ E( f )x ,

tanε
x : Tf (x)(A)→ Tx(M), norε

x : Tf (x)(A)→ Eε( f )x ,

be the projections associated with the decompositions (79) and (80). Next, let us set

T⊥A = nor
(
TA
)
∈ C∞(E( f )) (82)

so that
T f

A = f∗ tan
(
TA
)
+ T⊥A . (83)

Lemma 9. Let f : M → A be a CR immersion of strictly pseudoconvex CR manifolds, and let
θ ∈ P+(M) and Θ ∈ P+(A) be positively oriented contact forms on M and A. Then

Λ2 tan
(
TA
)
=
{

1−Θ f (T⊥A )
} {

Λ T − J∇HΛ
}

. (84)

In particular, if f is isopseudohermitian, then

tan
(
TA
)
=
{

1−Θ f (T⊥A )
}

T. (85)

Proof. As Θ(TA) = 1
1 = Θ(TA)

f = Θ f (T f
A
)

by (83)
= Θ f ( f∗ tan

(
TA
))

+ Θ f (T⊥A )
=
(

f ∗Θ
)

tan (TA) + Θ f (T⊥A ) = Λ θ
[
tan (TA)

]
+ Θ f (T⊥A )

so that
Λ θ
[
tan (TA)

]
= 1−Θ f (T⊥A ). (86)

Moreover, for any X ∈ H(M),

Λ gθ(X, tan(TA)) = Λ Gθ(X, ΠH tan(TA))

= ( f ∗GΘ)(X, ΠH tan(TA)) = G f
Θ
(

f∗X, f∗ΠH tan(TA)
)

= g f
Θ
(

f∗X, f∗ΠH tan(TA)
)

= g f
Θ
(

f∗X, f∗
{

tan(TA)− θ(tan(TA)) T
})

= g f
Θ
(

f∗X, f∗ tan(TA)
)
− θ(tan(TA)) g f

Θ
(

f∗X, f∗T
)
.

As f∗X is tangential, one has g f
Θ( f∗X, T⊥A ) = 0, hence, by (83),

g f
Θ
(

f∗X, f∗ tan(TA)
)
= g f

Θ
(

f∗X, T f
A
)
= 0
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because f∗X ∈ C∞( f−1H(A)
)

and H(A)⊥ TA with respect to gΘ. We may conclude that

Λ gθ(X, tan(TA)) = −θ(tan(TA))
(

f ∗gΘ
)(

X, T
)
. (87)

On the other hand, (
f ∗gΘ

)(
X, T

)
= g f

Θ
(

f∗X, f∗T
)

= g f
Θ
(

f∗X, f∗T −Λ T f
A
)
+ Λ g f

Θ
(

f∗X, T f
A
)

= g f
Θ
(

f∗X, XΘ
)
+ Λ Θ f ( f∗X

)
= G f

Θ
(

f∗X, XΘ
)
+ Λ ( f ∗Θ)X

= G f
Θ
(

f∗X, f∗ tanH XΘ
)
+ Λ2 θ(X)

as X ∈ H(M) = Ker(θ)

= ( f ∗GΘ)
(
X, tanH XΘ

)
= Λ Gθ

(
X, tanH XΘ

)
= −(JX)(Λ)

by (70). Then, by (87),
Λ ΠH tan TA = −θ

(
tan TA

)
J∇HΛ. (88)

Finally,
Λ tan(TA) = Λ

{
ΠH tan(TA) + θ(tan TA) T

}
by (88)

= θ(tan(TA))
{
− J∇HΛ + Λ T

}
that is, by (86)

Λ2 tan(TA) =
{

1−Θ f (T⊥A )
} {

Λ T − J∇HΛ
}

,

and Lemma 9 is proved.

4. Pseudohermitian Immersions

Definition 37. Let (M, T1,0(M)) and (A, T1,0(A)) be strictly pseudoconvex CR manifolds
of CR dimensions n and N = n + k, k ≥ 1. Let θ ∈ P+(M) and Θ ∈ P+(A). A CR
immersion f : M→ A is said to be a pseudohermitian immersion of (M θ) into (A, Θ) if

(i) f is isopseudohermitian, i.e., f ∗Θ = θ,
(ii) T⊥A = 0.

Proposition 4. Let f : M → A be an isopseudohermitian immersion. The following statements
are equivalent:

(i) f is a pseudohermitian immersion.
(ii) f ∗gΘ = gθ .
(iii) XΘ = 0.
(iv)

(
f ∗gΘ

)
(T, T) = 1.

Proof. (i) =⇒ (ii). Let f be a pseudohermitian immersion. Then, for any X, Y ∈ H(M),(
f ∗gΘ

)
(X, Y) = g f

Θ
(

f∗X, f∗Y
)
= G f

θ

(
f∗X, f∗Y

)
=
(

f ∗GΘ
)
(X, Y) = Gθ(X, Y) = gθ(X, Y).

Hence, f ∗gΘ = gθ on H(M)⊗ H(M). Next, T⊥A = 0 together with Lemma 9 yields

tan(TA) = T. (89)

Then, (
f ∗gΘ

)
(X, T) = g f

Θ
(

f∗X, f∗T
)
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by (89)
= g f

Θ
(

f∗X, f∗ tan(TA)
)

by T⊥A = 0

= g f
Θ
(

f∗X, T f
A
)
= 0 = gθ(X, T).

Hence, f ∗gΘ = gθ on H(M)⊗RT. It remains necessary that we check (ii) on RT ⊗RT.
Indeed, (

f ∗gΘ
)
(T, T) = g f

Θ
(

f∗T, f∗T
)

by (89)
= g f

Θ
(

f∗ tan (TA), f∗ tan (TA)
)

by T⊥A = 0

= g f
Θ
(
T f

A , T f
A
)
= gΘ(TA , TA

) f
= 1 = gθ(T, T)

by the very definition of the Webster metrics. Q.E.D.

(ii) =⇒ (iii). Let f : M→ A be a CR immersion such that (ii) holds, i.e., f ∗gΘ = gθ . As
f is a CR map, the assumption (ii) implies f ∗GΘ = Gθ and then, by (43), Λ ≡ 1. Moreover,∥∥XΘ

∥∥2
Θ = g f

Θ
(
XΘ , XΘ

)
= g f

Θ
(

f∗T − T f
A , f∗T − T f

A
)

=
(

f ∗gΘ
)
(T, T) + gΘ

(
TA , TA

) f − 2 g f
Θ
(

f∗T, T f
A
)

by (67)
= gθ(T, T)− 1 = 0

so that XΘ = 0. Q.E.D.

(iii) =⇒ (iv). Let f : M → A be an isopseudohermitian immersion such that XΘ =
0. Then, ∥∥XΘ

∥∥2
Θ =

(
f ∗gΘ

)
(T, T)− 1 (90)

yields (iv). Q.E.D.

(iv) =⇒ (i). Let f : M→ A be an isopseudohermitian immersion such that(
f ∗gΘ

)
(T, T) = 1.

Then, by (90), XΘ = 0 i.e.,

T f
A = f∗ T ∈ f∗ X(M) =⇒ T⊥A = 0.

5. Gauss and Weingarten Formulas

Let f : M → A be a CR immersion of strictly pseudoconvex CR manifolds, and let
θ ∈ P+(M) and Θ ∈ P+(A). We adopt the following notations for the various linear
connections we shall work with:

Dε Levi–Civita connection of
(

A, gA
ε

)
,

D Tanaka–Webster connection of (A, Θ),

∇ f , ε Levi–Civita connection of
(

M, gε( f )
)
,

∇ε Levi–Civita connection of
(

M, gM
ε

)
,

∇ Tanaka–Webster connection of (M, θ).
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The Gauss and Weingarten formulas for the isometric immersion f :
(

M, gε( f )
)
→
(

A, gA
ε

)
are: (

Dε
) f

X f∗Y = f∗∇ f , ε
X Y + Bε( f )(X, Y), (91)(

Dε
) f

Xξ = − f∗ aε
ξ X + D⊥ε

X ξ , (92)

for any X, Y ∈ X(M) and any ξ ∈ C∞(Eε( f )
)
. Here, Bε( f ), aε

ξ and D⊥ε are, respectively,
the second fundamental form, the Weingarten operator (associated with the normal vector
field ξ), and the normal connection, a connection in the vector bundle Eε( f )→ M, of the
given isometric immersion. The symbol

(
Dε
) f in (91) and (92) denotes the connection

induced by the Levi–Civita connection of (A, gA
ε ) in the pullback bundle f−1T(A)→ M;

i.e.,
(

Dε
) f is the pullback connection f−1Dε. One has

∇ f , ε
X Y = tanε

{(
Dε
) f

X f∗ Y
}

, Bε( f ) = norε

{(
Dε
) f

X f∗ Y
}

,

aε
ξ X = −tanε

{(
Dε
) f

Xξ
}

, D⊥ε
X ξ = nor

{(
Dε
) f

Xξ
}

.

The second fundamental form Bε( f ) and Weingarten operator aε
ξ are related by

(
gA

ε

) f (Bε( f )(X, Y), ξ
)
= gε( f )

(
aε

ξ X, Y
)
. (93)

The second fundamental form Bε( f ) is symmetric and, merely as a consequence of (93)],
the Weingarten operator aε

ξ is self-adjoint with respect to gε( f ).

6. Gauss–Ricci–Codazzi Equations

Let E → M be a vector bundle and D ∈ C(E) a connection. The curvature form
RD = R(D) is

RD(X, Y) =
[
DX , DY

]
−D[X, Y] , X, Y ∈ X(M).

The curvature forms of the connections in the Gauss and Weingarten formulas are

D E R(D)

(
Dε
) f f−1T(A)→ M R

(
(Dε) f )

∇ f , ε T(M)→ M R
(
∇ f , ε

)

D⊥ε Eε( f )→ M R
(

D⊥ε
)

The Gauss–Codazzi equation for the isometric immersion f : (M, gε( f )) → (A, gA
ε ) is

(see, e.g., [20]):

R
(
(Dε) f )(X, Y) f∗Z = f∗ R

(
∇ f , ε

)
(X, Y)Z

− f∗ aε
Bε( f )(Y,Z)X + f∗ aε

Bε( f )(X,Z)Y +
(

Dε
XBε( f )

)
(Y, Z)− (Dε

YBε( f )
)
(X, Z)

(94)

for any X, Y, Z ∈ X(M). Here, Dε
XBε( f ) is the Van der Waerden–Bortolotti covariant

derivative (of the second fundamental form), i.e.,(
Dε

XBε( f )
)
(Y, Z) = D⊥ε

X Bε( f )(Y, Z)− Bε( f )
(
∇ f , ε

X Y, Z
)
− Bε( f )

(
Y, ∇ f , ε

X Z
)
.
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The Codazzi equation is obtained by identifying the Eε( f ) components of the Gauss–Codazzi
equation (94)

norε

{
R
(
(Dε) f )(X, Y) f∗Z

}
=(

Dε
XBε( f )

)
(Y, Z)− (Dε

YBε( f )
)
(X, Z).

(95)

Let us take the inner product of (94) with W ∈ X(M) in order to identity the tangential
components of (94)(

gA
ε

) f
(

R
(
(Dε) f )(X, Y) f∗Z, f∗W

)
= gε( f )

(
R
(
∇ f , ε

)
(X, Y)Z, W

)
−gε( f )

(
aε

Bε( f )(Y,Z)X, W
)
+ gε( f )

(
aε

Bε( f )(X,Z)Y, W
)

and let us substitute from (93) so as to obtain (the Gauss equation of the given isometric
immersion) (

gA
ε

) f
(

R
(
(Dε) f )(X, Y) f∗Z, f∗W

)
= gε( f )

(
R
(
∇ f , ε

)
(X, Y)Z, W

)
−
(

gA
ε

) f (Bε( f )(X, W), Bε( f )(Y, Z)
)
+
(

gA
ε

) f (Bε( f )(Y, W), Bε( f )(X, Z)
) (96)

for any X, Y, Z, W ∈ X(M). For any X, Y ∈ X(M) and any ξ ∈ C∞(Eε( f )
)

as a conse-
quence of the Gauss and Weingarten formulas (91) and (92),

R
(
(Dε) f )(X, Y)ξ = R

(
D⊥ε

)
(X, Y)ξ

+∇ f ,ε
Y aε

ξ X−∇ f ,ε
X aε

ξY + aε
ξ [X, Y]− aε

D⊥ε
X ξ

Y + aε
D⊥ε

Y ξ
X

+Bε( f )
(
aε

ξ X, Y
)
− Bε( f )

(
X, aε

ξY
)

and, taking the inner product with η ∈ C∞(Eε( f )
)
, gives

(
gA

ε

) f
(

R
(
(Dε) f )(X, Y)ξ, η

)
=
(

gA
ε

) f
(

R
(

D⊥ε
)
(X, Y)ξ, η

)
+
(

gA
ε

) f
(

Bε( f )
(
aε

ξ X, Y
)
, η
)
−
(

gA
ε

) f
(

Bε( f )
(
X, aε

ξY
)
, η
) (97)

or, by applying (93) to modify the last two terms in (97),(
gA

ε

) f
(

R
(
(Dε) f )(X, Y)ξ, η

)
=
(

gA
ε

) f
(

R
(

D⊥ε
)
(X, Y)ξ, η

)
−gε( f )

([
aε

ξ , aε
η

]
X, Y

) (98)

(the Ricci equation for the given isometric immersion).

7. The Projections tanε and norε

Our main purpose in the present section is to compute the projection tanε : f−1T(A)→
T(M) in terms of pseudohermitian invariants. One has (at every point of M)

Eε( f ) =
{

ξ ∈ f−1T(A) :
(

gA
ε

) f
(ξ, f∗V) = 0, ∀ V ∈ T(M)

}
.

Also, for every V ∈ T(M) by (48),

(
gA

ε

) f
(ξ, f∗V) = g f

Θ(ξ, f∗V) + Λ
( 1

ε2 − 1
)

Θ f (ξ) θ(V).
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Therefore, if we set (again pointwise)

Sε( f ) =
{

f∗V + Λ
( 1

ε2 − 1
)

θ(V) T f
A : V ∈ T(M)

}
,

then
Eε( f ) = Sε( f )⊥ . (99)

As to the notation adopted in (99), if Sx ⊂ Tf (x)(A) is a linear subspace, then S⊥x denotes
the orthogonal complement of Sx in Tf (x)(A) with respect to the inner product gΘ, f (x). We
shall need the linear operator Lε : X(M)→ C∞( f−1T(A)) given by

LεV ≡ f∗V + Λ
( 1

ε2 − 1
)

θ(V) T f
A , V ∈ X(M). (100)

The relation (100) also defines a vector bundle morphism Lε : T(M)→ f−1T(A), denoted
by the same symbol. Then,

Eε( f ) =
{

ξ ∈ f−1T(A) : g f
Θ
(

Lε V, ξ
)
= 0, ∀ V ∈ T(M)

}
.

For arbitrary W ∈ f−1T(A), we take the inner product of

W = f∗ tanε W + norε W

with f∗V, V ∈ T(M), with respect to the inner product (gA
ε )

f , so as to obtain(
gA

ε

) f
(W, f∗V) = gε( f )(tanε W, V). (101)

Lemma 10. The function
λ ≡

(
f ∗gΘ

)
(T, T) ∈ C∞(M) (102)

is strictly positive; i.e., λ(x) > 0 for any x ∈ M.

Proof. One has
λ(x) = gΘ, f (x)

(
(dx f )Tx , (dx f )Tx

)
≥ 0.

If there is x0 ∈ M such that λ(x0) = 0, then (dx0 f )Tx0 = 0, yielding Tx0 = 0 (as f is an
immersion), a contradiction.

At this point, we employ the relations (see (48) and (75))

gA
ε = gΘ +

( 1
ε2 − 1

)
Θ⊗Θ ,

gε( f ) = Λ gθ +
{(Λ

ε

)2
−Λ(Λ + 1) + λ

}
θ ⊗ θ + 2 θ � gθ

(
J∇HΛ , ·

)
,

and modify (101) accordingly. We obtain

g f
Θ
(
W, f∗V

)
+ Λ

( 1
ε2 − 1

)
Θ f (W)θ(V) = (103)

= Λ gθ

(
V, tanε W

)
+
{(Λ

ε

)2
−Λ(Λ + 1) + λ

}
θ(V) θ

(
tanε W

)
+

+θ(V) gθ

(
J∇HΛ , tanε W

)
+ θ
(
tanε W

)
gθ

(
J∇HΛ , V

)
.

We ought to examine a few consequences of (103). First, let us use (103) for V = X ∈ H(M),
i.e., as θ(X) = 0,

g f
Θ
(
W, f∗X

)
= Λ gθ

(
X, tanε W

)
+ θ
(
tanε W

)
gθ

(
J∇HΛ, X

)
. (104)
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Let {Xa : 1 ≤ a ≤ 2n} be a local Gθ-orthonormal [i.e., Gθ(Xa , Xb) = δab, 1 ≤ a, b ≤ 2n]
frame of H(M), defined on the open set U ⊂ M. Then,

Λ ΠH tanε W = Λ
2n

∑
a=1

gθ

(
Xa , tanε W

)
Xa

by (104)

=
2n

∑
a=1

{
g f

Θ
(
W, f∗Xa

)
− gθ

(
J∇HΛ , Xa

)}
Xa

or

Λ ΠH tanε W =
2n

∑
a=1

g f
Θ
(
W, f∗Xa

)
Xa − J∇HΛ (105)

everywhere in U. Second, let us use (103) for V = T; i.e., as θ(T) = 1 and gθ(T, Y) = θ(Y)
for any Y ∈ X(M),

g f
Θ
(
W, f∗T

)
+ Λ

(
1
ε2 − 1

)
Θ f (W){

Λ2
(

1
ε2 − 1

)
+ λ

}
θ
(
tanε W

)
+ gθ

(
J∇HΛ , tanε W

)
.

(106)

We shall conduct an asymptotic analysis of our equations as ε → 0+, so we consider
0 < ε < 1 to start with. Consequently, by Lemma 10,

Λ(x)2
( 1

ε2 − 1
)
+ λ(x) > 0, x ∈ M.

For simplicity, we set

uε = θ
(
tanε W

)
∈ C∞(M), Xε = ΠH(M) tanε W ∈ C∞(H(M)),

so that tanε W = Xε + uε T and Equations (105) and (106) read:

Λ Xε =
2n

∑
a=1

g f
Θ
(
W, f∗Xa

)
Xa − J∇HΛ , (107)

g f
Θ
(
W, f∗T

)
+ Λ

(
1
ε2 − 1

)
Θ f (W)

=
{

Λ2
(

1
ε2 − 1

)
+ λ

}
uε + gθ

(
J∇HΛ , Xε

)
.

(108)

Let us multiply (108) by Λ and substitute Λ Xε from (107) into the resulting equation. We
obtain

g f
Θ
(
W, Λ f∗T

)
+ Λ2

(
1
ε2 − 1

)
Θ f (W)

= Λ
{

Λ2
(

1
ε2 − 1

)
+ λ

}
uε + g f

Θ
(
W, J∇HΛ

)
− ‖∇HΛ‖2

θ .
(109)

Let Z(Λ) = {x ∈ M : Λ(x) = 0} be the zero set of Λ. Note that (107) and (109) determine
Xε and uε on the open set M \ Z(Λ).

From now on, we confine our calculations to isopseudohermitian (i.e., Λ ≡ 1) CR
immersions f : M→ A. Then, (107) and (109) read

Xε =
2n

∑
a=1

g f
Θ
(
W, f∗Xa

)
Xa , (110)

g f
Θ
(
W, f∗T

)
+
( 1

ε2 − 1
)

Θ f (W) =
( 1

ε2 − 1 + λ
)

uε . (111)

Summing up, we have proved:
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Lemma 11. For every W ∈ f−1T(A)

tanε W = ∑2n
a=1 g f

Θ
(
W, f∗Xa

)
Xa

+ 1
1+ε2(λ−1)

{
Θ f (W) + ε2 g f

Θ(W, XΘ)
}

T
(112)

everywhere in U, where XΘ = f∗T − T f
A.

Finally, for the calculation of the projection norε, we shall use

norε W = W − f∗ tanε W

together with (112).

8. Gauss Formula for f : (M, gε( f )) → (A, gA
ε )

The purpose of the present section is to give an explicit form of the Gauss formula(
Dε
) f

V f∗W = f∗∇ f , ε
V W + Bε( f )(V, W), V, W ∈ X(M). (113)

To this end, we shall compute

∇ f , ε
V W = tanε

{(
Dε
) f

V f∗W
}

, Bε( f )(V, W) = norε

{(
Dε
) f

V f∗W
}

,

by essentially using (112) in Lemma 11. Calculations are considerably simplified by ex-
ploiting the decomposition T(M) = H(M) ⊕ RT. Let us set V = X and W = Y with
X, Y ∈ H(M) in the Gauss formula (113), i.e.,(

Dε
) f

X f∗ Y = f∗∇ f , ε
X Y + Bε( f )(X, Y). (114)

On the other hand, by (12)–(15), with ∇ε replaced by Dε,

Dε
XY = DXY +

{
gΘ(X, JAY)− ε2 gΘ(X, τAY)

}
TA , (115)

Dε
XTA = τAX +

1
ε2 JAX, (116)

Dε
TA

X = DTA X +
1
ε2 JAX, (117)

Dε
TA

TA = 0, (118)

for any X, Y ∈ H(A). We systematically apply our findings in Section 2 to the pseudoher-
mitian manifold (A, Θ) and to the Riemannian metric gA

ε (the ε-contraction of the Levi
form GΘ). By (115), (

Dε
) f

X f∗Y = D f
X f∗Y

+
{

g f
Θ( f∗X, J f

A f∗Y)− ε2 g f
Θ( f∗X, τ

f
A f∗Y)

}
T f

A .
(119)

Here, D f = f−1D is the pullback of the Tanaka–Webster connection D–a connection in the
pullback bundle f−1T(A)→ M. We shall substitute from (119) into the left-hand side of
(114). Our ultimate goal is to relate the pseudohermitian geometry of the ambient space
(A, Θ) to that of the submanifold (M, θ). Therefore, to compute the right-hand side of (114),
one needs a lemma relating the induced connection ∇ f , ε, associated with the isometric
immersion f : (M, gε( f ))→ (A, gA

ε ), to the Tanaka–Webster connection ∇ of (M, θ).



Axioms 2023, 12, 329 33 of 82

Lemma 12. Let f : M → A be an isopseudohermitian (i.e., f ∗Θ = θ) CR immersion. The
Levi–Civita connection ∇ f , ε of (M, gε( f )) and the Tanaka–Webster connection ∇ of (M, θ) are
related by

∇ f , ε
X Y = ∇XY +

{
Ω(X, Y)− 1

µε
A(X, Y)

}
T, (120)

∇ f , ε
X T = τX + µε JX +

1
2µε

X(λ) T, (121)

∇ f , ε
T X = ∇TX + µε JX +

1
2µε

X(λ) T, (122)

∇ f , ε
T T = −1

2
∇Hλ +

1
2µε

T(λ) T, (123)

for any X, Y ∈ H(M). Here µε = µε( f ; θ, θ) ∈ C∞(M) is given by

µε =
1
ε2 − 1 + λ, λ = ( f ∗gΘ)(T, T). (124)

Proof. We start from the well-known (see, e.g., Proposition 2.3 in [10], Volume I, p. 160)
expression of the Levi–Civita connection ∇ f , ε in terms of the Riemannian metric gε( f )

2 gε( f )
(
∇ f , ε

U V, W
)

= U
(

gε( f )(V, W)
)
+ V

(
gε( f )(W, V)

)
−W

(
gε( f )(U, V)

)
+gε( f )

(
[U, V], W

)
+ gε( f )

(
[W, U], V

)
+ gε( f )

(
U, [W, V]

)
for any U, V, W ∈ X(M). We adopt the notations in Section 2; i.e., we set

Cg(U, V, W)

= U
(

g(V, W)
)
+ V

(
g(W, V)

)
−W

(
g(U, V)

)
+g
(
[U, V], W

)
+ g
(
[W, U], V

)
+ g
(
U, [W, V]

)
so that

2 gε( f )
(
∇ f , ε

U V, W
)
= Cgε( f )(U, V, W). (125)

By (78) in Corollary 2 (to Proposition 3),

gε( f ) = gM
ε + (λ− 1) θ ⊗ θ, (126)

where λ ∈ C∞(M) is given by (102).

Lemma 13. The Christoffel mappings Cgε( f ) and CgM
ε

are related by

Cgε( f )(U, V, W) = CgM
ε
(U, V, W)

+U(λ) θ(V) θ(W) + V(λ) θ(U) θ(W)−W(λ) θ(U) θ(V)

+2(λ− 1)
[
θ(W) θ

(
∇UV

)
+Ω(U, V) θ(W) + Ω(W, U) θ(V) + Ω(W, V) θ(U)

]
(127)

for any U, V, W ∈ X(M).

Proof. (127) is a straightforward (yet rather involved) consequence of (126). We give a
few details, for didactic reasons, as follows. Let us substitute from (126) into Cgε( f ) and
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recognize the term CgM
ε

. To bring into the picture the Tanaka–Webster connection, we
substitute the remaining Lie products from

[V, W] = ∇VW −∇WV − 2(θ ∧ τ)(V, W) + 2Ω(V, W) T (128)

and use ∇θ = 0. At its turn, (128) is a mere consequence of

T∇ = 2
{

θ ∧ τ −Ω⊗ T
}

.

Let ∇ε be the Levi–Civita connection of (M, gM
ε ). Similar to (125),

2 gM
ε

(
∇ε

UV, W
)
= CgM

ε
(U, V, W). (129)

Then, (125)–(129) yield

2 gε

(
∇ f , ε

U V, W
)
+ 2(λ− 1) θ

(
∇ f , ε

U V
)

θ(W) = 2 gε

(
∇ε

UV, W
)

+U(λ) θ(V) θ(W) + V(λ) θ(U) θ(W)−W(λ) θ(U) θ(V)

+2(λ− 1)
[
θ(W) θ

(
∇UV

)
+Ω(U, V) θ(W) + Ω(W, U) θ(V) + Ω(W, V) θ(U)

]
.

(130)

Let us substitute from gε = gθ + (ε−2 − 1) θ ⊗ θ into (130) and use nondegeneracy of gθ to
“simplify” W. We obtain

2∇ f , ε
U V + 2

(
1
ε2 + λ− 2

)
θ
(
∇ f , ε

U V
)

T

= 2∇ε
UV + 2

(
1
ε2 − 1

)
θ
(
∇ε

UV
)

T

+
[
U(λ) θ(V) + V(λ) θ(U)

]
T − θ(U) θ(V)∇λ

+2(λ− 1)
{[

θ
(
∇UV

)
+ Ω(U, V)

]
T + θ(V) JU + θ(U) JV

}
.

(131)

Next, let us apply θ to both sides of (131) and use θ(T) = 1 and θ ◦ J = 0 in order to yield

2
(

1
ε2 + λ− 1

)
θ
(
∇ f , ε

U V
)
= 2

ε2 θ
(
∇ε

UV
)

+
[
U(λ) θ(V) + V(λ) θ(U)

]
− θ(U) θ(V) T(λ)

+2(λ− 1)
{[

θ
(
∇UV

)
+ Ω(U, V)

]}
.

(132)

In particular, for U = X and V = Y with X, Y ∈ H(M), the formulas (131) and (132)
become

∇ f , ε
X Y +

(
1
ε2 + λ− 2

)
θ
(
∇ f , ε

X Y
)

T

= ∇ε
XY +

{(
1
ε2 − 1

)
θ
(
∇ε

XY
)
+ (λ− 1)Ω(X, Y)

}
T,

(133)

( 1
ε2 + λ− 1

)
θ
(
∇ f , ε

X Y
)
=

1
ε2 θ

(
∇ε

XY
)
+ (λ− 1)Ω(X, Y). (134)

Here, one also uses θ(∇XY) = 0 because ∇ parallelizes H(M). Let us multiply (134) by T
and subtract the resulting equation from (133). We obtain

∇ f , ε
X Y = ∇ε

XY +
{

θ
(
∇ f , ε

X Y
)
− θ
(
∇ε

XY
)}

T, (135)

a simplified form of (133) equivalent to

ΠH(M)∇
f , ε
X Y = ΠH(M)∇ε

XY. (136)
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At this point, we exploit the relationship between the Levi–Civita connection ∇ε and the
Tanaka–Webster connection ∇ as established in Lemma 2. Ssee formulas (12)–(15). For
instance, by (12) and (136),

∇ε
XY = ∇XY +

{
Ω(X, Y)− ε2 A(X, Y)

}
T =⇒

ΠH(M)∇ε
XY = ∇XY =⇒

ΠH(M)∇
f , ε
X Y = ∇XY (137)

for any X, Y ∈ H(M). Also, by applying θ to both sides of (12),

θ
(
∇ε

XY
)
= Ω(X, Y)− ε2 A(X, Y) (138)

and substitution into (134) furnishes

θ
(
∇ f , ε

X Y
)
= Ω(X, Y)− 1

µε
A(X, Y). (139)

Finally, by (137) and (138),

∇ f , ε
X Y = ∇XY +

{
Ω(X, Y)− 1

µε
A(X, Y)

}
T,

which is (120). Q.E.D.

Similarly, the formulas (131) and (132) for U = X and V = T become, by (13), i.e.,
∇ε

XT = τX + ε−2 JX ∈ H(M),

ΠH∇
f , ε
X T = τX + µε JX, θ

(
∇ f , ε

X T
)
=

1
2µε

X(λ),

yielding (121). Q.E.D. The proof of the remaining relations (122) and (123) is similar.

Let us go back to (119). As J f
A ◦ f∗ = f∗ ◦ J formula (119) reads(

Dε
) f

X f∗Y = D f
X f∗Y

+
{(

f ∗gΘ
)
(X, JY)− ε2 g f

Θ( f∗X, τ
f
A f∗Y)

}
T f

A .
(140)

Let us substitute from (140) and (120) into the Gauss formula (114) in order to obtain:

Proposition 5. Let M and A be strictly pseudoconvex CR manifolds, and let θ ∈ P+(M) and
Θ ∈ P+(A). Let f : M→ A be an isopseudohermitian immersion of (M, θ) into (A, Θ). Let gA

ε ,
0 < ε < 1, be the ε-contraction of the Levi form GΘ, and let gε( f ) = f ∗gA

ε . Then

D f
X f∗Y +

{(
f ∗gΘ

)
(X, JY)− ε2 g f

Θ( f∗X, τ
f
A f∗Y)

}
T f

A

= f∗∇XY +
{

Ω(X, Y)− 1
µε

A(X, Y)
}

f∗T + Bε( f )(X, Y),

X, Y ∈ H(M),

(141)

is the Gauss formula for the isometric immersion f : (M, gε( f )) → (A, gA
ε ) along H(M) ⊗

H(M).

It should be noted that all terms in the Gauss formula (113), except for the second
fundamental form Bε( f ), were expressed in terms of pseudohermitian invariants of (M, θ)
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and (A, Θ). The remaining components of (113), respectively, along H(M)⊗RT, RT ⊗
H(M), and RT ⊗RT, can be derived by setting

(U, V) ∈
{
(X, T), (T, X), (T, T)

}
, X ∈ H(M), (142)

into (113). We relegate the derivation of the components (142) to further work. For the time
being, we seek to further split (141) into tangential and normal parts, with respect to the
direct sum decomposition (80). This amounts to decomposing D f

X f∗Y and the Reeb vector

field T f
A with respect to (80).

We start with the decomposition of T f
A. Formula (112) for W = T f

A gives, as XΘ ∈
f−1H(A), so that XΘ and T f

A are g f
Θ-orthogonal,

tanε(TA) =
2n

∑
a=1

g f
Θ
(

f∗Xa , T f
A
)

Xa +
1

ε2 µε
T

and
g f

Θ
(

f∗Xa , T f
A
)
= Θ f ( f∗Xa

)
= θ(Xa) = 0

so that:

Lemma 14. Let f : M → A be an isopseudohermitian immersion of (M, θ) into (A, Θ). The
tangential and normal components of the Reeb vector field T f

A , with respect to the decomposition (80),
are

tanε (T
f
A) =

1
ε2 µε

T, norε (T
f
A) = T f

A −
1

ε2 µε
f∗ T. (143)

Next, we attack the decomposition of D f
X f∗Y with respect to (80). To this end, we

need to introduce pseudohermitian analogs to familiar objects in the theory of isometric
immersions between Riemannian manifolds, such as the induced and normal connections,
the second fundamental form, and the Weingarten operator. For any V, W ∈ X(M) and
any ξ ∈ C∞(E( f )), we set by definition

∇>V W = tan
{

D f
V f∗W

}
, B( f )(V, W) = nor

{
D f

V f∗W
}

,

aξV = −tan
{

D f
Vξ
}

, ∇⊥V ξ = nor
{

D f
Vξ
}

,

where
tan : f−1T(A)→ T(M), nor : f−1T(A)→ E( f ),

are the natural projections.

Theorem 2. (i) ∇> is a linear connection on M.

(ii) B( f ) is C∞(M,R)-bilinear.
(iii) a is C∞(M,R)-bilinear.
(iv) ∇⊥ is a connection in the vector bundle E( f )→ M.
(v) For any V, W ∈ X(M) and any ξ ∈ C∞(E( f )).

D f
V f∗W = f∗∇>V W + B( f )(V, W), (144)

D f
Vξ = − f∗aξV +∇⊥V ξ . (145)

The proof of Theorem 2 is straightforward. We adopt the following pseudohermitian
analog to the ordinary terminology in use within the theory of isometric immersions
between Riemannian manifolds.
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Definition 38. ∇> is the induced connection (the connection induced by D via f ). ∇⊥ is the
normal Tanaka–Webster connection. B( f ) and aξ are, respectively, the pseudohermitian second
fundamental form and the pseudohermitian Weingarten operator (associated with the normal
vector field ξ) of the CR immersion f : M → (A, Θ). (144) is the pseudohermitan Gauss
formula. (145) is the pseudohermitian Weingarten formula.

The induced connection ∇> and the (intrinsic) Tanaka–Webster connection ∇ of
(M, θ) do not coincide, in general, unless, e.g., f : (M, θ) → (A, Θ) is a pseudohermitian
immersion. The ambient connection–the Tanaka–Webster connection of (A, Θ)–has torsion
so that B( f ), unlike its Riemannian counterpart, it is never symmetric. We expect that B( f )
is the second fundamental form of f as introduced by P. Ebenfelt, X. Huang and D. Zaitsev
(see formula 2.3 in [12], p. 636) by making use of B. Lamel’s spaces Ek(p) (actually of E1(p);
see Definition 1 in [13], p. 1). The main properties of ∇>, B( f ), and aξ are collected in the
following.

Theorem 3. Let f : M→ A be a CR immersion, and let θ ∈ P+(M) and Θ ∈ P+(A).

(i) The induced connection ∇T has torsion, i.e.,

Tor∇>(V, W) = −2 ( f ∗gΘ)(V, JW) T>A
+Λ

{
θ(V) tan

[
τA
(

f∗W
)]
− θ(W) tan

[
τA
(

f∗ V
)]}

.
(146)

In particular, if gΘ is Sasakian, then ∇> is symmetric ⇐⇒ the Reeb vector field of (A, Θ) if
gΘ-orthogonal to f (M).

(ii) The pseudohermitian second fundamental form B( f ) is not symmetric, in general, i.e.,

B( f )(V, W)− B( f )(W, V) = −2 ( f ∗gΘ)(V, JW) T⊥A
+Λ

{
θ(V) nor

[
τA
(

f∗W
)]
− θ(W) nor

[
τA
(

f∗ V
)]}

.
(147)

In particular, if gΘ is Sasakian, then B( f ) is symmetric⇐⇒ TA is tangent to f (M).

(iii) The metric f ∗gΘ is parallel with respect to ∇> i.e., ∇> f ∗gΘ = 0.

(iv) For any V, W ∈ X(M) and ξ ∈ C∞(E( f )
)

g f
Θ
(

B( f )(V, W), ξ
)
= ( f ∗gΘ)(aξV, W). (148)

(v) For any V, W ∈ X(M)

(∇>V J)W = tan
{

J f
A B( f )(V, W)

}
, (149)

B( f )(V, JW) = nor
{

J f
A B( f )(V, W)

}
. (150)

(vi) For any V ∈ X(M)

∇>V T>A − aT⊥A
V = 0, B( f )(V, T>A ) +∇⊥V T⊥A = 0. (151)

Proof. (i)–(ii) The torsion of D is

TorD = 2
{

Θ ∧ τA −ΩA ⊗ TA
}
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where ΩA(V, W) = gΘ
(
V, JA W) for any V, W ∈ X(A) see e.g., (17)). Then, for any

V, W ∈ X(M)

Λ
{

θ(V) τA
(

f∗W
)
− θ(W) τA

(
f∗ V

)}
− 2 ( f ∗gΘ)(V, JW)T f

A

= D f
V f∗W − D f

W f∗W − f∗[V, W] =

by the pseudohermitian Gauss formula (144)

= f∗ Tor∇>(V, W) + B(V, W)− B(W, V)

yielding, by T f
A = f∗ T>A + T⊥A , (146) and (147). Q.E.D.

(iii) For any U, V, W ∈ X(M)

0 =
(

D f
U g f

Θ
)(

f∗ V, f∗W
)

= U
((

f ∗gΘ
)
(V, W)

)
− g f

Θ
(

D f
U f∗V, f∗W

)
− g f

Θ
(

f∗ V, D f
U f∗W

)
again by (144)

=
(
∇>U
(

f ∗ gΘ
))
(V, W).

Q.E.D.

(iv) By (144)
g f

Θ
(

B( f )(V, W), ξ
)
= g f

Θ
(

D f
V f∗W, ξ

)
by D f g f

Θ = 0 and f∗W⊥ ξ together with the pseudohermitian Weingarten formula (145)

= −g f
Θ
(

f∗W, D f
Vξ
)
=
(

f ∗gΘ
)
(aξV, W).

Q.E.D.

(v) By (144)
f∗∇>V JW + B( f )(V, JW) = D f

V f∗ JW

as f is a CR map, and by D f J f
A = 0 and again (144)

= J f
A D f

V f∗W = f∗ J∇>V W + J f
A B( f )(V, W).

Q.E.D.

(vi) Follows from D f J f
A = 0, by (144) and (145).

Formula (112) for W = D f
X f∗Y gives

tanε

(
DX f∗Y

)
= ∑2n

a=1 g f
Θ
(

DX f∗Y, f∗Xa
)

Xa

+ 1
ε2 µε

{
Θ f (D f

X f∗Y
)
+ ε2 g f

Θ
(

DX f∗Y, XΘ
)}

T.
(152)

On the other hand, by the pseudohermitian Gauss formula (144) for (V, W) = (X, Y) with
X, Y ∈ H(M),

g f
Θ
(

D f
X f∗Y, f∗Xa

)
= ( f ∗gΘ)

(
∇>XY, Xa

)
. (153)

Let us set
T>A = tan

(
T f

A
)
, T⊥A = nor

(
T f

A
)
,
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so that
T f

A = f∗T>A + T⊥A (154)

everywhere on M. Then, by (154), the pseudohermitian Gauss formula (144), and XΘ =

f∗T − T f
A, the functions

Θ f (D f
X f∗Y), g f

Θ
(

D f
X f∗Y, XΘ

)
∈ C∞(M,R)

can be written as

Θ f (D f
X f∗Y

)
= ( f ∗gΘ)

(
∇>XY, T>A

)
+ g f

Θ
(

B( f )(X, Y), T⊥A
)
, (155)

g f
Θ
(

D f
X f∗Y, XΘ

)
= ( f ∗gΘ)

(
∇>XY, T − T>A

)
−g f

Θ
(

B( f )(X, Y), T⊥A
)
.

(156)

Finally, let us substitute from (153) and from (155) and (156) into (152). We obtain:

Lemma 15. Let f : M → A be an isopseudohermitian immersion. The tangential component of
D f

X f∗Y with respect to (80) is

tanε

(
DX f∗Y

)
= ∑2n

a=1
(

f ∗gΘ
)(
∇>XY, Xa

)
Xa

+ 1
ε2 µε

{(
f ∗gΘ

)(
∇>XY, T>A + ε2(T − T>A

))
+(1− ε2) g f

Θ
(

B( f )(X, Y), T⊥A
)}

T,

(157)

for any X, Y ∈ H(M).

At this point, we may go back to (141), the Gauss formula for the isometric immersion
f : (M, gε( f )) → (A, gA

ε ) along H(M)⊗ H(M), and apply the projections tanε and norε

to both sides. We obtain, by
(

f ∗gΘ
)
(X, JY) = Ω(X, Y),

tanε

(
D f

X f∗Y
)
+
{

Ω(X, Y)− ε2 g f
Θ
(

f∗X, τ
f
A f∗Y

)}
tanε(T

f
A)

= ∇XY +
{

Ω(X, Y)− 1
µε

A(X, Y)
}

T,
(158)

norε

(
D f

X f∗Y
)
+
{

Ω(X, Y)− ε2 g f
Θ
(

f∗X, τ
f
A f∗Y

)}
norε(T

f
A)

= Bε( f )(X, Y).
(159)

Let us substitute from (143) and (157) into (158). We obtain

∑a
(

f ∗gΘ
)(
∇T

XY, Xa
)

Xa

+ 1
ε2µε

{(
f ∗gΘ

)(
∇>XY, ε2T + (1− ε2)T>A

)
+ g f

Θ
(

B( f )(X, Y), (1− ε2) T⊥A
)}

T

+ 1
ε2µε

{
Ω(X, Y)− ε2 g f

Θ
(

f∗X, τ
f
A f∗ Y

)}
T = ∇XY +

{
Ω(X, Y)− 1

µε
A(X, Y)

}
T.

(160)

Moreover, by D f
X f∗Y ∈ f−1H(A) = Ker

(
Θ f ),

0 = Θ f (D f
X f∗Y

)
= g f

Θ
(

D f
X f∗Y, T f

A
)

by the pseudohermitian Gauss formula (144)

= g f
Θ
(

f∗∇T
XY, T f

A
)
+ g f

Θ
(

B( f )(X, Y), T f
A
)
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by (154)
=
(

f ∗gΘ
)(
∇T

XY, T>A
)
+ g f

Θ
(

B( f )(X, Y), T⊥A
)
.

Summing up, we have proved the identity(
f ∗gΘ

)(
∇T

XY, T>A
)
+ g f

Θ
(

B( f )(X, Y), T⊥A
)
= 0. (161)

As a consequence of (161), Equation (160) simplifies to

∑a
(

f ∗gΘ
)(
∇T

XY, Xa
)

Xa

+ 1
µε

{(
f ∗gΘ

)(
∇>XY, T

)
− g f

Θ
(

f∗X, τ
f
A f∗ Y

)}
T

= ∇XY + 1
µε

{
(λ− 1)Ω(X, Y)− A(X, Y)

}
T.

(162)

Identifying the H(M) and RT in (162) leads to:

Proposition 6. Let f : M → A be an isopseudohermitian immersion of (M, θ) and (A, Θ).
The equations

∑
a

(
f ∗gΘ

)(
∇T

XY, Xa
)

Xa = ∇XY, (163)

(
f ∗gΘ

)(
∇>XY, T

)
+ A(X, Y)

= (λ− 1)Ω(X, Y) + g f
Θ
(

f∗X, τ
f
A f∗ Y

)
,

(164)

are equivalent to the tangential part (158) of the Gauss formula (141) along H(M)⊗ H(M) for the
isometric immersion f : (M, gε( f ))→ (A, gA

ε ).

A remark is in order. Let us apply Θ f to both sides of the pseudohermitian Gauss
formula (144) for W = X ∈ C∞(H(M)), i.e.,

D f
V f∗X = f∗∇>V X + B( f )(V, X), V ∈ X(M).

As D parallelizes H(A) and f ∗Θ = θ

0 = Θ f (D f
V f∗X

)
= θ

(
∇>V X

)
+ Θ f (B( f )(V, X)

)
showing that in general∇> does not parallelize H(M) (unlike the Tanaka–Webster connec-
tion ∇).

Let us go back to the Gauss formula (159). We need to compute norε(D f
X f∗Y). To this

end, let us simplify (157) according to our successive finding (161), i.e.,

tanε

(
D f

X f∗Y
)
= ∑a

(
f ∗gΘ

)(
∇>XY, Xa

)
Xa

+ 1
µε

(
f ∗gΘ

)(
∇>XY, T

)
T.

(165)

Then
norε(D f

X f∗Y) = D f
X f∗Y− f∗ tanε(D f

X f∗Y) (166)

by (165)

= D f
X f∗Y−∑

a

(
f ∗gΘ

)(
∇>XY, Xa

)
f∗ Xa −

1
µε

(
f ∗gΘ

)(
∇>XY, T

)
f∗ T.

Also, let us recall that, by (143),

norε

(
T f

A
)
= T f

A −
1

ε2µε
f∗ T. (167)
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Next, let us modify the Gauss formula (159) by substitution from (166) and (167). We obtain

D f
X f∗Y−∑

a

(
f ∗gΘ

)(
∇>XY, Xa

)
f∗ Xa −

1
µε

(
f ∗gΘ

)(
∇>XY, T

)
f∗ T

+
{

Ω(X, Y)− ε2 g f
Θ
(

f∗X, τ
f
A f∗ Y

)} {
T f

A −
1

ε2µε
f∗ T

}
= Bε( f )(X, Y)

or, by (163):

Proposition 7. Let f : M→ A be an isopseudohermitian immersion of (M, θ) into (A, Θ). The
normal part (159) of the Gauss formula (141) for the isometric immersion f : (M, gε( f ))→ (A, gA

ε )
along H(M)⊗ H(M), is equivalent to

D f
X f∗Y− 1

µε

(
f ∗gΘ

)(
∇>XY, T

)
f∗ T

+
{

Ω(X, Y)− ε2 g f
Θ
(

f∗X, τ
f
A f∗ Y

)} {
T f

A −
1

ε2µε
f∗ T

}
= f∗∇XY + Bε( f )(X, Y)

(168)

for any X, Y ∈ H(M).

Another useful form of (168) is obtained by the substitution f∗T = XΘ + T f
A; i.e.,

D f
X f∗Y− 1

µε

(
f ∗gΘ

)(
∇>XY, T

) (
XΘ + T f

A
)

+
{

Ω(X, Y)− ε2 g f
Θ
(

f∗X, τ
f
A f∗ Y

)} {
T f

A −
1

ε2µε

(
XΘ + T f

A
)}

= f∗∇XY + Bε( f )(X, Y).

(169)

Indeed, the left-hand side of (169) is already decomposed into a f−1H(A) component and
an RT f

A component. Consequently, we can compute the RT f
A component of Bε( f )(X, Y) by

applying Θ f to both sides of (169) and using the identities Θ f (D f
X f∗Y

)
= 0, Θ f (XΘ

)
= 0,

and Θ f ( f∗∇XY
)
= 0], i.e.,

Θ f (Bε( f )(X, Y)
)
= − 1

µε

(
f ∗gΘ

)(
∇>XY, T

)
+
(

1− 1
ε2 µε

) {
Ω(X, Y)− ε2 g f

Θ
(

f∗X, τ
f
A f∗ Y

)}
.

(170)

To fully determine Bε( f )(X, Y), one needs to compute its f−1H(A) component as well. To
this end, we apply the projection Π f

H(A)
: f−1T(A)→ f−1H(M) to both sides of (169) and

use ΠH(A)TA = 0, i.e.,

D f
X f∗Y−

1
µε

(
f ∗gΘ

)(
∇>XY, T

)
XΘ

− 1
ε2µε

{
Ω(X, Y)− ε2 g f

Θ
(

f∗X, τ
f
A f∗ Y

)}
XΘ

= f∗∇XY + Π f
H(A)

Bε( f )(X, Y).

or
Π f

H(A)
Bε( f )(X, Y) = D f

X f∗Y− f∗∇XY

+ 1
µε

{
g f

Θ
(

f∗X, τ
f
A f∗ Y

)
−
(

f ∗gΘ
)(
∇>XY, T

)
− 1

ε2 Ω(X, Y)
}
XΘ

(171)

for any X, Y ∈ H(M).
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A summary of the various decompositions and projections used so far is provided
below. Given an isopseudohermitian immersion f of (M, θ) into (A, Θ), we adopted the
following orthogonal decompositions.

Decomposition
Ambient inner

product

Tf (x)(A) =
[
(dx f )Tx(M)

]
⊕ Eε( f )x gA

ε, f (x)

Tf (x)(A) =
[
(dx f )Tx(M)

]
⊕ E( f )x gΘ, f (x)

H(A) f (x) =
[
(dx f )H(M)x

]
⊕ EH( f )x GΘ, f (x)

The following projections correspond to the chosen decompositions:

tanε : f−1T(A)→ T(M), norε : f−1T(A)→ Eε( f ),

tan : f−1T(A)→ T(M), nor : f−1T(A)→ E( f ),

tanH : f−1H(A)→ H(M), norH : f−1H(A)→ EH( f ).

The following Riemannian metrics appear in previous and further calculations:

Metrics

on A
gΘ gA

ε

Metrics

on M

Intrinsic

Extrinsic

gθ

f ∗gΘ

gM
ε

gε( f )

As a reminder, the adopted terminology gθ and gΘ are, respectively, the Webster
metrics of (M, θ) and (A, Θ), gM

ε and gA
ε are respectively the ε-contractions of Gθ and GΘ,

f ∗gΘ and gε( f ) are, respectively, the Riemannian metric on M induced by gΘ via f , and the
first fundamental form of f : M→ (A, gA

ε ).

The following connections (linear or in normal bundles) are of frequent use

D Tanaka–Webster connection of (A, Θ)
Dε Levi–Civita connection of (A, gA

ε )
∇ Tanaka–Webster connection of (M, θ)
∇ε Levi–Civita connection of (M, gM

ε )
∇ f , ε Levi–Civita connection of (M, gε( f ))
∇⊥ε normal connection of f : M→ (A, gA

ε )
∇> linear connection of M induced by D via f
∇⊥ normal Tanaka–Webster connection of f : M→ (A, Θ)

The list of Gauss–Weingarten and pseudohermitian Gauss–Weingarten formulas is(
Dε
) f

V f∗W = f∗∇ f , ε
V W + Bε( f )(V, W),

(
Dε
) f

Vξ = − f∗aε
ξV +∇⊥ε

V ξ ,
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D f
V f∗W = f∗∇>V W + B( f )(V, W),

D f
Vη = − f∗aηV +∇⊥V η ,

V, W ∈ X(M), ξ ∈ C∞(Eε( f )
)
, η ∈ C∞(E( f )

)
.

Let EH( f ) → M be the Levi normal bundle. By Lemma 7, the Levi normal bundle is JA-
invariant. Let J⊥ : EH( f )→ Eh( f ) be the restriction of JA to EH( f ). The complexification
EH( f )⊗C decomposes as

EH( f )⊗C = E1,0( f )⊕ E0,1( f ),

E1,0( f ) = Eigen
((

J⊥
)C, i

)
, E0,1( f ) = E1,0( f ) , i =

√
−1,

where
(

J⊥
)C is the C-linear extension of J⊥ to EH( f )⊗C. Let

{Xa : 1 ≤ a ≤ 2n} ≡ {Xα , JXα : 1 ≤ α ≤ n},

Xn+α = JXα , 1 ≤ α ≤ n,

be a local Gθ-orthonormal, i.e., Gθ(Xa , Xb) = δab, 1 ≤ a, b ≤ 2n, frame of H(M), adapted
to the complex structure J, and defined on the open set U ⊂ M. Next, let us set

Tα =
1√
2

(
Xα − i J Xα

)
, 1 ≤ α ≤ n,

so that {Tα : 1 ≤ α ≤ n} ⊂ C∞(U, T1,0(M)
)

is a local Gθ-orthonormal, i.e., Gθ(Tα , Tβ) =

δαβ with Tβ = Tβ, frame of the CR structure T1,0(M). Moreover, let

{ξp : 1 ≤ p ≤ 2k} ⊂ C∞(U, EH( f )
)

be a local G f
Θ-orthonormal, i.e., G f

Θ(ξp , ξq) = δpq, frame, adapted to the complex structure
J⊥ i.e.,

J⊥ξ j = ξk+j , 1 ≤ j ≤ k.

Let us set as customary

ζ j =
1√
2

(
ξ j − i J⊥ ξ j

)
∈ C∞(U, E1,0( f )

)
, 1 ≤ j ≤ k,

so that {ζ j : 1 ≤ j ≤ k} is a local G f
Θ-orthonormal, i.e., G f

Θ
(
ζ j , ζ`

)
= δj` with ζ` = ζ` ,

frame in E1,0( f ). The conventions as to the range of the various indices are

a, b, c, · · · ∈ {1, · · · , 2n}, α, β, γ, · · · ∈ {1, · · · , n},

p, q, r, · · · ∈ {1, · · · , 2k}, σ, ρ, κ, · · · ∈ {1, · · · , k}.

Lemma 16. Let f : M→ A be an isopseudohermitian immersion of (M, θ) into (A, Θ). The CR
structure T1,0(A) of the ambient space decomposes as

T1,0(A) f (x) =
[
(dx f )T1,0(M)x

]
⊕ E1,0( f )x (172)

for any x ∈ M. In particular,{
Tj : 1 ≤ j ≤ N} ≡

{
f∗Tα , ζσ : 1 ≤ α ≤ n, 1 ≤ σ ≤ k

}
is a local frame of f−1T1,0(A) such that

G f
Θ
(
Tj , T`

)
= δj` , T` ≡ T` .
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Proof. Let w ∈
[
(dx f )T1,0(M)x

]
⊕ E1,0( f )x so that

w = (dx f )Z = ξ − i J⊥x ξ

for some Z ∈ T1,0(M)x and ξ ∈ EH( f )x. Of course, Z = X − i Jx X for some X ∈ H(M)x.
Then,

GΘ, f (x)
(
w, w

)
= GΘ, f (x)

(
(dx f )(X− i Jx X), ξ + i J⊥x ξ

)
= 0

as (dx f )X, (dx f )Jx X ∈ (dx f )H(M)x ⊥ ξ, J⊥x ξ, thus yielding w = 0; i.e., the sum (dx f )T1,0
(M)x + E1,0( f )x is direct.

A comparison to the work by P. Ebenfelt et al. (see [12], p. 636) is at this point advisable.
Let M ⊂ Cn+1 and A ⊂ CN+1 be real hypersurfaces, such that the induced CR structures

T1,0(M) =
[
T(M)⊗C

]
∩ T′

(
Cn+1),

T1,0(A) =
[
T(A)⊗C

]
∩ T′

(
CN+1),

are strictly pseudoconvex, where

T′
(
Cn+1)

x = SpanC

{( ∂

∂za

)
x

: 0 ≤ a ≤ n
}

, x ∈ Cn+1 ,

T′
(
CN+1)

y = SpanC

{( ∂

∂ZB

)
y

: 0 ≤ B ≤ N
}

, y ∈ CN+1 .

Let f : M → A be an isopseudohermitian immersion of (M, θ) into (A, Θ). Let x ∈ M
and let us set x̂ = f (x) ∈ A. Let U ⊂ M and V ⊂ A be, respectively, open neighborhoods
of x and x̂ in M and A, such that U is the domain of a (local) frame {Tα : 1 ≤ α ≤ n}
of T1,0(M), and V is described by a defining function ρ̂ ∈ C∞(CN+1); i.e., ρ̂(y) = 0 and
ρ̂Z(y) = (∂ρ̂)(y) ≡

(
ρ̂Z0 , ρ̂Z1 , · · · , ρ̂ZN

)
6= 0 for every y ∈ V. B. Lamel introduced

(see [13,14]) the sequence of subspaces Eν(x) ⊂ CN+1, ν ∈ Z+, where Eν(x) is the span
over C of {

T J1
1
· · · T Jn

n
(
ρ̂Z ◦ f

)
(x) : J =

(
J1 , · · · , Jn

)
∈ Zn

+ , |J| ≤ ν
}

.

Note that Eν(x) ⊂ Eν+1(x) for any ν ∈ Z+. Let us set

s(x) = min
ν∈Z+

[
N + 1− dimC Eν(x)

]
.

Let ν0 ∈ Z+ and s0 ∈ Z+ ∩
[
1, N

]
. According to B. Lamel (see [13,14]), f : M → A is

(ν0 , s0)-degenerate at x ∈ M if

s(x) = s0 = codimC Eν0(x).

Also, minx∈M s(x) is the degeneracy of f at x. Let

E1(x) = SpanC
{(

ρZ ◦ f
)
(x), Lα

(
ρZ ◦ f

)
(x) : 1 ≤ α ≤ n

}
be the complex conjugate of E1(x). Let f−1T′

(
CN+1)→ M be the pullback of T′

(
CN+1)→

CN+1 via f : M→ CN+1. Let

φ(y) : CN+1 → T′
(
CN+1)

y , w =
(
w0 , w1 , · · · , wN) 7−→ wB

( ∂

∂ZB

)
y

,

be the natural identification. For every subspace S ⊂ CN+1 and every x ∈ M, let

F(S)y :
CN+1

S
→

T′
(
CN+1)

y

φ(y) S
, y ∈ CN+1 ,
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be the natural isomorphism. Let

πx : CN+1 → CN+1

E1(x)

be the projection, and let us consider the field of forms

Πx : T1,0(M)x × T1,0(M)x →
(

f−1T′ CN+1)
x

φ(x̂) E1(x)
,

Πx(v, w) = F
[

E1(x)
]

x̂
πx V W

(
ρZ ◦ f

)
(x) , v, w ∈ T1,0(M)x ,

where V, W ∈ C∞(T1,0(M)
)

are smooth extensions of v and w to the whole of M; i.e.,
Vx = v and Wx = w.

Theorem 4. Let M ⊂ Cn+1 and A ⊂ CN+1 be strictly pseudoconvex real hypersurfaces. Let f :
M→ A be an isopseudohermitan immersion of (M, θ) into (A, Θ), and let x ∈ M and x̂ = f (x) ∈
A. The quotient space

(
f−1T′(CN+1)

)
x

/
φ(x̂) E1(x) is isomorphic to T1,0(A)x̂

/
(dx f ) T1,0(M)x.

Hence, Π determines a field of C-bilinear symmetric forms

Πx : T1,0(M)x × T1,0(M)x → E1,0( f )x .

Let
(
Z0 , Z1 , · · · , ZN) be the Cartesian complex coordinates on CN+1, and let us set

f B = ZB ◦ f . As f : M→ A is a CR map, its components f B are CR functions, i.e.,

Tα

(
f B) = 0, 0 ≤ α ≤ N, (173)

for every local frame Tα ∈ C∞(U, T1,0(M)). Then,

Tα

(
ρ̂ZB ◦ f

)
(x) = ρ̂ZB ZC

( f (x)) Tα

(
f C)

x ,

f B = f B , ZB = ZB , uZBZC
= ∂2u

∂ZB ∂ZB
, u ∈ C2(CN+1).

(174)

We shall need the local frame T̂j ∈ C∞(V, T1,0(A)
)

T̂j = ρ̂Z0
∂

∂Zj − ρ̂Zj
∂

∂Z0 ,

uZB = ∂u
∂ZB , u ∈ C1(CN+1), (175)

defined on the open set V = {y ∈ A : ρ̂Z0(y) 6= 0}. Then, by (173) and (175),

(dx f )Tα , x = Tα , x
(

f B) ( ∂

∂ZB

)
x̂

= Tα , x
(

f j) 1
ρZ0(x̂)

{
T̂j, x̂ + ρ̂Zj(x̂)

( ∂

∂Z0

)
x̂

}
+ Tα , x

(
f 0) ( ∂

∂Z0

)
x̂

or

f∗ Tα =
1

ρ̂Z0 ◦ f
Tα( f j) T̂ f

j +
{

Tα

(
f 0)+ ρ̂Zj ◦ f

ρ̂Z0 ◦ f
Tα( f j)

} ( ∂

∂Z0

) f
.

On the other hand, ρ̂ ◦ f = 0 on M yields, again by (173),

0 = Tα

(
ρ̂ ◦ f

)
=
(
ρ̂ZB ◦ f

)
Tα( f B)

=⇒ Tα

(
f 0)+ ρ̂Zj ◦ f

ρ̂Z0 ◦ f
Tα( f j) = 0.
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We conclude that
f∗ Tα =

1
ρ̂Z0 ◦ f

Tα( f j) T̂ f
j . (176)

It is an elementary matter that:

Lemma 17. Let Θ = i
2
(
∂− ∂

)
ρ̂. The Levi form Gjk = GΘ

(
T̂j , T̂k

)
of (A, Θ) is given by

2∣∣ρ̂Z0

∣∣2 Gjk = ρ̂ZjZk
−

ρ̂Zj
ρ̂Z0

ρ̂Z0Zk
−

ρ̂Zk
ρ̂Z0

(
ρ̂ZjZ0

−
ρ̂Zj
ρ̂Z0

ρ̂Z0Z0

)
= 1

ρ̂Z0
T̂j
(
ρ̂Zk

)
−

ρ̂Zk∣∣ρ̂Z0

∣∣2 T̂j
(
ρ̂Z0

) (177)

everywhere on V.

Lemma 18. For every x ∈ M
dimC E1(x) = n + 1. (178)

Proof. Note that E1(x) is the span over C of{(
ρ̂Z ◦ f

)
(x), Tα

(
ρ̂Z ◦ f

)
(x) : 1 ≤ α ≤ n

}
.

Let λ , λα ∈ C, 1 ≤ α ≤ n, such that

λ
(
ρ̂Z ◦ f

)
(x) + λα Tα

(
ρ̂Z ◦ f

)
(x) = 0

or
λ
(
ρ̂Z0 ◦ f

)
(x) + λα Tα

(
ρ̂Z0 ◦ f

)
(x) = 0, (179)

λ
(
ρ̂Zj ◦ f

)
(x) + λα Tα

(
ρ̂Zj ◦ f

)
(x) = 0, 1 ≤ j ≤ N. (180)

Substitution from (179) into (180) gives

λα
{

Tα , x
(
ρ̂Zj ◦ f

)
−

ρ̂Zj( f (x))

ρ̂Z0( f (x))
Tα , x

(
ρ̂Z0 ◦ f

)}
= 0

or, by (174),

V
(

f C) (ρ̂ZjZC
−

ρ̂Zj

ρ̂Z0

ρ̂Z0ZC

)
x̂
= 0 (181)

where x̂ = f (x) and
V := λα Tα , x ∈ T1,0(M)x , λα = λα .

Let us substitute ρ̂ZjZk
from (177) into (181). We obtain

2
|ρ̂Z0 (x̂)|2 V

(
f k)Gjk(x̂)

+
(
ρ̂ZjZ0

−
ρ̂Zj
ρ̂Z0

ρ̂Z0Z0

)
x̂

{
V
(

f 0)+ ρ̂Zk
(x̂)

ρ̂Z0
(x̂) V

(
f k)} = 0.

(182)

On the other hand, ρ̂ ◦ f = 0 everywhere on U, hence (as V is tangent to M and V( f B) = 0)

0 = V
(
ρ̂ ◦ f

)
= ρ̂ZB

(x̂)V
(

f B)
so that (182) simplifies to

V
(

f k)Gjk(x̂) = 0



Axioms 2023, 12, 329 47 of 82

or, as GΘ , x̂ is nondegenerate,

V( f j) = 0, 1 ≤ j ≤ N. (183)

Substitution from (183) into (181) yields

V
(

f 0) T̂j
(
ρ̂Z0

)
x̂ = 0

and hence
V( f 0) = 0. (184)

Then, by (183) and (184) and V
(

f B) = 0,

(dx f )V = V
(

f B) ( ∂

∂ZB

)
x̂
= 0

hence, as dx f is a monomorphism, V = 0 and then λα = 0, 1 ≤ α ≤ n. Finally, by (179),
λ = 0.

Proof of Theorem 4. It suffices to show that

Φx : E1,0( f )x →
(

f−1T′CN+1)
x

φ(x̂) E1(x)
,

Φx(w) := w + φ(x̂) E1(x) , w ∈ E1,0( f )x ,

is a monomorphism. We set

ζσ = aj
σ T̂ f

j , aj
σ ∈ C∞(U, C).

Let w = µσ ζσ , x ∈ E1,0( f )x i.e.,

w = µσ aj
σ(x) T̂j, x̂ = µσ aj

σ(x)
(

ρ̂Z0

∂

∂Zj − ρ̂Zj

∂

∂Z0

)
x̂

,

0 = GΘ , x̂
(
w, (dx f )Tα , x

)
= µσ aj

σ(x) Tα

(
f k)

x Gjk(x̂). (185)

If w ∈ Ker
(
Φx
)
, then

w =
{

λ ρ̂ZB
(x̂) + λα Tα , x

(
ρ̂ZB
◦ f
)} ( ∂

∂ZB

)
x̂

for some λ , λα ∈ C, yielding

−µσ ak
σ(x) ρ̂Zk (x̂) = λ ρ̂Z0

(x̂) + λα Tα , x
(
ρ̂Z0
◦ f
)
, (186)

µσ aj
σ(x) ρ̂Z0(x̂) = λ ρ̂Zj

(x̂) + λα Tα , x
(
ρ̂Zj
◦ f
)
. (187)

Let us substitute from (186) into (187). We obtain

µσ
{

aj
σ(x) ρ̂Z0(x̂) +

ρ̂Zj
(x̂)ρ̂Zk

(x̂)

ρ̂Z0
(x̂) ak

σ(x)
}

= λα
{

Tα , x
(
ρ̂Zj
◦ f
)
−

ρ̂Zj
(x̂)

ρ̂Z0
(x̂) Tα , x

(
ρ̂Z0
◦ f
)}

.

(188)



Axioms 2023, 12, 329 48 of 82

Let us substitute from (174) into (188). The right-hand side of (188) becomes

{
ρ̂ZjZB

(x̂)−
ρ̂Zj

(x̂)

ρ̂Z0
(x̂)

ρ̂Z0ZB
(x̂)
}

V
(

f B)
where V := λα Tα , x ∈ T1,0(M)x

=
1

ρ̂Z0
(x̂)

T̂j
(
ρ̂ZB

)
x̂ V
(

f B)
by replacing T̂j

(
ρ̂Zk

)
in terms of the Levi form, from (177),

=
2∣∣ρ̂Z0(x̂)
∣∣2 Gjk(x̂)V( f k)

+
1∣∣ρ̂Z0(x̂)
∣∣2 {ρ̂Zk (x̂)V( f k) + ρ̂Z0(x̂)V( f 0)

}
T̂j
(
ρ̂Z0

)
x̂

and (188) is modified accordingly:

µσ
{

aj
σ(x) ρ̂Z0(x̂) +

ρ̂Zj
(x̂)ρ̂Zk

(x̂)

ρ̂Z0
(x̂) ak

σ(x)
}

= 2∣∣ρ̂Z0 (x̂)
∣∣2 Gjk(x̂)V( f k).

(189)

Let us contract (189) with µρ aj
ρ(x) and observe, by (185), that the right-hand side of the

resulting equation is zero, while the left-hand side is

ρ̂Z0(x̂)
{ N

∑
j=1

∣∣µρ aj
ρ(x)

∣∣2 + 1∣∣ρ̂Z0(x̂)
∣∣2
∣∣∣µρ aj

ρ(x) ρ̂Zj(x̂)
∣∣∣2}.

Therefore, by (189), µρ aj
ρ(x) = 0 for any 1 ≤ j ≤ N, and hence w = 0.

The C-bilinearity and symmetry of Πx follows from

V W
(
ρZ ◦ f

)
(x) ≡ vα wβ Tα , x

{
Tβ

(
ρZ ◦ f

)}
, mod E1(x),

v = vα Tα , x , w = wβ Tβ , x , vα = vα , wβ = wβ ,

together with the involutivity of T0,1(M).

Let BH(X, Y) := norH

{
D f

X f∗Y
}

for any X, Y ∈ C∞(H(M)). We expect that

BH( f )
∣∣
T1,0(M)⊗T1,0(M)

= Π.

The proof is relegated to further work.

9. Relating R
(
∇ f ,ε) to R(∇)

The scope of the present section is to relate the curvature tensor field R(∇ f ,ε) of
the induced connection ∇ f ,ε to the curvature tensor field R(∇) of the Tanaka–Webster
connection ∇. To this end, we exploit the relationship (116)–(119) among ∇ f ,ε and ∇ i.e.,

∇ f ,ε
X Y = ∇XY +

[
Ω(X, Y)− 1

µε
A(X, Y)

]
T, (190)

∇ f ,ε
X T = τX + µε JX +

1
2µε

X(λ) T, (191)
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∇ f ,ε
T X = ∇TX + µε JX +

1
2 µε

X(λ) T, (192)

∇ f ,ε
T T = −1

2
∇Hλ +

1
2 µε

T(λ) T, (193)

for any X, Y ∈ C∞(H(M)). Then, for arbitrary X, Y, Z ∈ C∞(H(M)),

R
(
∇ f ,ε)(X, Y)Z =

[
∇ f ,ε

X , ∇ f ,ε
Y
]
Z−∇ f ,ε

[X,Y]Z

by (190) and the decomposition [X, Y] = ΠH [X, Y] + θ([X, Y]) T

= ∇ f ,ε
X

{
∇YZ +

[
Ω(Y, Z)− 1

µε
A(Y, Z)

]
T
}

−∇ f ,ε
Y

{
∇XZ +

[
Ω(X, Z)− 1

µε
A(X, Z)

]
T
}

−∇ f ,ε
ΠH [X,Y]Z− θ([X, Y])∇ f ,ε

T Z

by again applying (190), using the identity θ
(
[X, Y]

)
= 2 Ω(X, Y), and taking covariant

derivatives with respect to ∇ f ,ε

= ∇X∇YZ +
{

Ω
(
X, ∇YZ

)
− 1

µε
A
(
X, ∇YZ

)}
T

−∇Y∇XZ−
{

Ω
(
Y, ∇XZ

)
− 1

µε
A
(
Y, ∇XZ

)}
T

−∇ΠH [X,Y]Z−
{

Ω
(
ΠH [X, Y], Z

)
− 1

µε
A
(
ΠH [X, Y], Z

)}
T−

−2 Ω(X, Y)∇ f ,ε
T Z

+
[
X(Ω(Y, Z)− 1

µε
X(A(Y, Z))

]
T +

[
Ω(Y, Z)− 1

µε
A(Y, Z)

]
∇ f ,ε

X T

−
[
Y(Ω(X, Z)− 1

µε
Y(A(X, Z))

]
T −

[
Ω(X, Z)− 1

µε
A(X, Z)

]
∇ f ,ε

Y T.

Let us look at the term Ω
(
ΠH [X, Y], Z

)
. Using again the decomposition of [X, Y] into

H(M) and RT components, one has

Ω
(
ΠH [X, Y], Z

)
= Ω

(
[X, Y], Z

)
− θ([X, Y])Ω(T, Z) =

as T cΩ = 0 and [X, Y] = ∇XY−∇YX + 2 Ω(X, Y) T

= Ω
(
∇XY, Z

)
−Ω

(
∇YX, Z

)
.

The last identity leads (by ∇Ω = 0) to simplifications, i.e.,

Ω
(
X, ∇YZ

)
−Ω

(
Y, ∇XZ

)
−Ω

(
ΠH [X, Y], Z

)
+X(Ω(Y, Z)−Y(Ω(X, Z)

=
(
∇XΩ

)
(Y, Z)−

(
∇YΩ

)
(X, Z) = 0.

The same arguments apply (as T c A = 0) to the pseudohermitian torsion A, hence leading
one to recognize covariant derivatives of A with respect to the Tanaka–Webster connection,

−A
(
X, ∇YZ

)
+ A

(
Y, ∇XZ

)
+ A

(
ΠH [X, Y], Z

)
−X(A(Y, Z) + Y(A(X, Z)
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= −
(
∇X A

)
(Y, Z) +

(
∇Y A

)
(X, Z).

Similarly,
∇ΠH [X,Y]Z = ∇[X,Y]Z− θ

(
[X, Y]

)
∇TZ

= ∇[X,Y]Z− 2 Ω(X, Y)∇TZ

and one may recognize curvature i.e.,

∇X∇YZ−∇Y∇XZ−∇ΠH [X,Y]Z

= ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z + 2 Ω(X, Y)∇TZ

= R∇(X, Y)Z + 2 Ω(X, Y)∇TZ.

Then,
R
(
∇ f ,ε)(X, Y)Z = R∇(X, Y)Z

+
1

µε

[(
∇Y A

)
(X, Z)−

(
∇X A

)
(Y, Z)

]
T + 2 Ω(X, Y)∇TZ− 2 Ω(X, Y)∇ f ,ε

T Z

+
[
Ω(Y, Z)− 1

µε
A(Y, Z)

]
∇ f ,ε

X T −
[
Ω(X, Z)− 1

µε
A(X, Z)

]
∇ f ,ε

Y T

by (191) and (192)

= R∇(X, Y)Z +
1

µε

[(
∇Y A

)
(X, Z)−

(
∇X A

)
(Y, Z)

]
T

−2 Ω(X, Y)
{

µε JZ +
1

2 µε
Z(λ) T

}
+
[
Ω(Y, Z)− 1

µε
A(Y, Z)

] [
τX + µε JX +

1
2µε

X(λ) T
]

−
[
Ω(X, Z)− 1

µε
A(X, Z)

] [
τY + µε JY +

1
2µε

Y(λ) T
]
,

which leads to (194) in Proposition 8 below. Summing up the calculations above, we may
state:

Proposition 8. Let f : M→ A be an isopseudohermitian immersion of (M, θ) into (A, Θ). Let
∇ f ,ε and ∇ be, respectively, the Levi–Civita connection of (M, gε( f )) and the Tanaka–Webster
connection of (M, θ). Then,

R
(
∇ f ,ε)(X, Y)Z = R∇(X, Y)Z

−2 Ω(X, Y)
{

µε JZ + 1
2 µε

Z(λ) T
}
+ 1

µε

{(
∇Y A

)
(X, Z)−

(
∇X A

)
(Y, Z)

}
T

+Ω(Y, Z)
{

τX + µε JX + 1
2 µε

X(λ) T
}
−Ω(X, Z)

{
τY + µε JY + 1

2 µε
Y(λ) T

}
− 1

µε
A(Y, Z)

{
τX + µε JX− 1

2 µε
X(λ)T

}
+ 1

µε
A(X, Z)

{
τY + µε JY− 1

2 µε
Y(λ)T

}
,

(194)

R
(
∇ f ,ε)(X, Y)T = Ω(X, Y)∇Hλ

+
(
∇Xτ

)
Y−

(
∇Yτ

)
X

+ 1
2
{

X(λ) JY−Y(λ) JX
}
− 1

2 µε

{
X(λ) τY−Y(λ) τX

}
,

(195)
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R
(
∇ f ,ε)(X, T)Y = R∇(X, T)Y

+ 1
µε

(
∇T A

)
(X, Y) T + 1

2 µε

(
∇Xdλ

)
Y

+X(λ) JY + 1
2 Y(λ) JX

−µε

{
gθ(X, Y) + 1

µε
A(X, JY)

}
T

+ 1
2 µε

{
Y(λ) τX− 1

2 µε
X(λ)Y(λ) T

}
+ 1

2 Ω(X, Y)
{
∇Hλ− 1

µε
T(λ) T

}
− 1

2 µε
A(X, Y)

{
∇Hλ + 1

µε
T(λ) T

}
−
{

Ω(τX, Y)− 1
µε

A(τX, Y)
}

T.

(196)

R
(
∇ f ,ε)(X, T)T

= − 1
2 ∇X∇Hλ− τ2X + µ2

εX + 1
2 µε

T(λ) τX−
(
∇Tτ)X

+ 1
4 µε

X(λ)∇Hλ− 1
2 T(λ) JX− 2 µε JτX

− 1
2

{
Ω
(
X, ∇Hλ

)
− 1

µε
A
(
X, ∇Hλ

)}
T

− 1
2µε

(τX)(λ) T − 1
2 (JX)(λ) T

(197)

for any X, Y, Z ∈ H(M).

Proof. We are left with the proofs of (195)–(197). For all X, Y ∈ H(M), one has

R
(
∇ f ,ε)(X, Y)T =

[
∇ f ,ε

X , ∇ f ,ε
Y
]
T −∇ f ,ε

[X,Y]T

by (191)

= ∇ f ,ε
X

{
τY + µε JY +

1
2 µε

Y(λ) T
}

−∇ f ,ε
Y

{
τX + µε JX +

1
2 µε

X(λ) T
}

−∇ f ,ε
ΠH [X,Y]T − θ([X, Y])∇ f ,ε

T T

by τ H(M) ⊂ H(M), J H(M) ⊂ H(M), (190)–(191) and (193),

= ∇XτY +

{
Ω(X, τY)− 1

µε
A(X, τY)

}
T

+X
(
µε

)
JY + µε∇ f ,ε

X JY− 1
2 µ2

ε
X
(
µε

)
Y(λ) T

+
1

2 µε

{
X
(
Y(λ)

)
T + Y(λ)∇ f ,ε

X T
}

−∇YτX−
{

Ω(Y, τX)− 1
µε

A(Y, τX)

}
T

−Y
(
µε

)
JX− µε∇ f ,ε

Y JX +
1

2 µ2
ε

Y
(
µε

)
X(λ) T

− 1
2 µε

{
Y
(
X(λ)

)
T + X(λ)∇ f ,ε

Y T
}
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−τ ΠH [X, Y]− µε J ΠH [X, Y]− 1
2 µε

(
ΠH [X, Y]

)
(λ) T

−2 Ω(X, Y)
{
− 1

2
∇Hλ +

1
2 µε

T(λ) T
}

.

As τ(T) = 0, one has
τ ΠH [X, Y] = τ[X, Y]

= τ{∇XY−∇YX + 2 Ω(X, Y) T} = τ
(
∇XY

)
− τ

(
∇YX

)
,

and one may recognize the covariant derivatives of τ (with respect to ∇). The similar
treatment of the term J ΠH [X, Y] leads to covariant derivatives of J and ∇J = 0, with the
corresponding simplifications. Terms such as

Ω(X, τY)−Ω(Y, τX)

and
−A(X, τY) + A(Y, τX)

vanish because τ is symmetric [i.e., gθ(X, τY) = gθ(τX, Y)] while J is skew symmetric, i.e.,
gθ(X, JY) = −gθ(JX, Y), and because of the purity axiom τ ◦ J + J ◦ τ = 0. For instance,

Ω(X, τY)−Ω(Y, τX) = gθ(X, JτY)− gθ(Y, JτX)

= gθ(X, JτY + τ JY) = 0.

In the end, one is left with (195). Q.E.D.

A bit of extra care should be put into the proof of (196). One has

R
(
∇ f ,ε)(X, T)Y = ∇ f ,ε

X ∇
f ,ε
T Y−∇ f ,ε

T ∇
f ,ε
X Y−∇ f ,ε

[X,T]Y

by (192) and (190), applied twice as X, Y, [X, T] ∈ H(M),

= ∇ f ,ε
X

{
∇TY + µε JY +

1
2 µε

Y(λ) T
}

−∇ f ,ε
T

{
∇XY +

[
Ω(X, Y)− 1

µε
A(X, Y)

]
T
}

−∇[X,Y]Y−
{

Ω([X, T], Y)− 1
µε

A([X, T], Y)
}

T

again by (190) and (192) and by taking covariant derivatives, together with X(µε) = X(λ),

= ∇X∇TY +

{
Ω
(
X, ∇TY

)
− 1

µε
A
(
X, ∇TY

)}
T

−∇T∇XY− µε J∇XY− 1
2µε

(
∇XY

)
(λ) T

+X(λ) JY + µε∇ f ,ε
X JY− 1

2 µ2
ε

X(λ)Y(λ) T

+
1

2 µε

{
X
(
Y(λ)

)
T + Y(λ)∇ f ,ε

X T
}

−
{

T
(
Ω(X, Y)

)
− 1

µε
T
(

A(X, Y)
)
+

1
µ2

ε
T(λ) A(X, Y)

}
T

−
{

Ω(X, Y)− 1
µε

A(X, Y)
}
∇ f ,ε

T T −∇[X,T]Y
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as [X, T] = τX −∇TX by the very definition of pseudohermitian torsion together with
∇T = 0

−
{

Ω(τX, Y)−Ω
(
∇TX, Y

)
− 1

µε
A(τX, Y) +

1
µε

A
(
∇TX, Y

)}
T

by recognizing the curvature of ∇ and the covariant derivatives of Ω and A

= R∇(X, T)Y−
(
∇TΩ

)
(X, Y) T +

1
µε

(
∇T A

)
(X, Y) T

−µε J∇XY− 1
2µε

(
∇XY

)
(λ) T + X(λ) JY

by (190)

+µε

{
∇X JY +

[
Ω(X, JY)− 1

µε
A(X, JY)

]
T
}

+
1

2 µε

{
X
(
Y(λ))− 1

µε
X(λ)Y(λ)

}
T

by (191)

+
1

2 µε
Y(λ)

{
τX + µε JX +

1
2µε

X(λ) T
}
− 1

µ2
ε

T(λ) A(X, Y) T

by (193)

+

{
Ω(X, Y)− 1

µε
A(X, Y)

}{
1
2
∇Hλ− 1

2 µε
T(λ) T

}
−
{

Ω(τX, Y)− 1
µε

A(τX, Y)
}

T

by recognizing the covariant derivatives of J and dλ, using ∇Ω = 0 and ∇J = 0, and
observing simplification of terms

= R∇(X, T)Y +
1

µε

(
∇T A

)
(X, Y) T +

1
2 µε

(
∇Xdλ

)
Y

+X(λ) JY +
1
2

Y(λ) JX

−µε

{
gθ(X, Y) +

1
µε

A(X, JY)
}

T

+
1

2 µε

{
Y(λ) τX− 1

2 µε
X(λ)Y(λ) T

}
+

1
2

Ω(X, Y)
{
∇Hλ− 1

µε
T(λ) T

}
− 1

2 µε
A(X, Y)

{
∇Hλ +

1
µε

T(λ) T
}

−
{

Ω(τX, Y)− 1
µε

A(τX, Y)
}

T,

which is (196). Q.E.D.

The proof of (197) is a similar, yet rather involved, calculation relying on (190)–(193).
We give a few details for didactic purposes, as follows:

R
(
∇ f ,ε)(X, T)T = ∇ f ,ε

X ∇
f ,ε
T T −∇ f ,ε

T ∇
f ,ε
X T −∇ f ,ε

[X,T]T
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by (193) and (191)

= ∇ f ,ε
X

{
−1

2
∇Hλ +

1
2 µε

T(λ) T
}

−∇ f ,ε
T

{
τX + µε JX +

1
2 µε

X(λ) T
}

−τ[X, T]− µε J[X, T]− 1
2 µε

[X, T](λ) T

by (190) and (191) and computing covariant derivatives of products

= −1
2

{
∇X∇Hλ +

[
Ω
(
X, ∇Hλ

)
− 1

µε
A
(
X, ∇Hλ

)]
T
}

− 1
2 µ2

ε
X
(
µε

)
T(λ) T +

1
2µε

[
X
(
T(λ)

)
T + T(λ)∇ f ,ε

X T
]

by (192) and taking covariant derivatives

−∇TτX− µε JτX− 1
2 µε

(τX)(λ) T

−T
(
µε

)
JX− µε∇ f ,ε

T JX

+
1

2 µ2
ε

T
(
µε

)
X(λ) T − 1

2µε

{
T
(
X(λ)

)
T + X(λ)∇ f ,ε

T T
}

by the identity [X, T] = τX−∇TX

−τ {τX−∇TX} − µε J {τX−∇TX} − 1
2 µε

[X, T](λ) T

by (192) and (193), and ∇J = 0,

= −1
2
∇X∇Hλ− τ2X + µ2

εX +
1

2 µε
T(λ) τX−

(
∇Tτ)X

+
1

4 µε
X(λ)∇Hλ− 1

2
T(λ) JX− 2 µε JτX

−1
2

{
Ω
(
X, ∇Hλ

)
− 1

µε
A
(
X, ∇Hλ

)}
T

− 1
2µε

(τX)(λ) T − 1
2
(JX)(λ) T,

which is (197).

10. Gauss Equation for f : (M, gε( f )) → (A, gA
ε )

In this section,we start from the Gauss equation for the isometric immersion f :
(M, gε( f ))→ (A, gA

ε ), which relates the curvature R
(

Dε
)

of the ambient space (A, gA
ε ) to

the curvature R
(
∇ f ,ε) of the submanifold (M, gε( f )), and the second fundamental form

Bε( f ),
gA

ε

(
R
(

Dε
)
(X, Y) f∗Z, f∗W

)
= gε( f )

(
R
(
∇ f ,ε)(X, Y)Z, W

)
+ (198)

−gA
ε

(
Bε( f )(X, W), Bε( f )(Y, Z)

)
+ gA

ε

(
Bε( f )(Y, W), Bε( f )(X, Z)

)
for any X, Y, Z, W ∈ X(M). According to our philosophy, through this work, we seek to
relate the pseudohermitian geometry of the ambient space (A, Θ) to that of the submanifold
(M, θ) and the pseudohermitian second fundamental form B( f ). The Gauss Equation (198)
may be effectively used for the purpose because R

(
Dε
)

and R(D) are related by Lemma 5.
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The identities in Lemma 5 are stated in terms of R
(
∇ε) and R(∇) for an arbitrary strictly

pseudoconvex CR manifold M endowed with the positively oriented contact form θ ∈
P+(M). These are easily transposed to (A, Θ). For instance, (28) prompts:

R
(

Dε
)
(X, Y)Z = RD(X, Y)Z

−ε2{(DX AΘ
)
(Y, Z)−

(
DY AΘ

)
(X, Z)

}
TA

+ΩA(Y, Z) τAX−ΩA(X, Z) τAY

−AΘ(Y, Z) JAX + AΘ(X, Z) JAY

+ 1
ε2 {ΩA(Y, Z) JAX−ΩA(X, Z) JAY− 2 ΩA(X, Y) JAZ}

+ε2 {AΘ(X, Z) τAY− AΘ(Y, Z) τAX}

(199)

for any X, Y, Z ∈ H(A). The fact that R
(
∇ f ,ε) is related to R(∇) formed the topic of

Section 9, while the relation between Bε( f ) and B( f ) was provided in Section 8.
Let X, Y, Z, W ∈ H(M). Then, by (199),(

gA
ε

) f (R((Dε) f )(X, Y) f∗Z, f∗W
)

=
(

gA
ε

) f (RD f
(X, Y) f∗Z, f∗W

)
+Ω f

A
(

f∗Y, f∗Z
) (

gA
ε

) f (
τ

f
A f∗X, f∗W

)
−Ω f

A
(

f∗X, f∗Z
) (

gA
ε

) f (
τ

f
A f∗Y, f∗W

)
+A f

Θ
(

f∗X, f∗Z
) (

gA
ε

) f (J f
A f∗Y, f∗W

)
− A f

Θ
(

f∗Y, f∗Z
) (

gA
ε

) f (J f
A f∗X, f∗W

)
+ 1

ε2

{
Ω f

A
(

f∗Y, f∗Z
) (

gA
ε

) f (J f
A f∗X, f∗W

)
−Ω f

A
(

f∗X, f∗Z
) (

gA
ε

) f (J f
A f∗Y, f∗W

)
−2Ω f

A
(

f∗X, f∗Y
) (

gA
ε

) f (J f
A f∗Z, f∗W

)}
+ε2

{
A f

Θ
(

f∗X, f∗Z
) (

gA
ε

) f (
τ

f
A f∗Y, f∗W

)
− A f

Θ
(

f∗Y, f∗Z
) (

gA
ε

) f (
τ

f
A f∗X, f∗W

)}
.

(200)

Note that
Ω f

A
(

f∗X, f∗Y
)
= g f

Θ
(

f∗X, J f
A f∗Y

)
as J f

A ◦ f∗ = f∗ ◦ J

= g f
Θ
(

f∗X, f∗ JY
)

as f∗X, f∗ JY ∈ C∞( f−1H(M)
)

= GΘ
(

f∗X, f∗ JY
)

as f ∗GΘ = Gθ

= Gθ(X, Y) = Ω(X, Y),

i.e.,
Ω f

A
(

f∗X, f∗Y
)
= Ω(X, Y) (201)

for any X, Y ∈ H(M). In particular,(
gA

ε

) f (J f
A f∗X, f∗Y

)
= −Ω(X, Y). (202)
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Substitution from (201) and (202) into (200) leads to(
gA

ε

) f (R((Dε) f )(X, Y) f∗Z, f∗W
)

= g f
Θ
(

RD f
(X, Y) f∗Z, f∗W

)
+Ω(Y, Z) g f

Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

+ε2
{

g f
Θ
(
τ

f
A f∗X, f∗Z

)
g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗Y, f∗Z) g f

Θ
(
τ

f
A f∗X, f∗W

)}
+ 1

ε2 {Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

(203)

for any X, Y, Z, W ∈ H(M). Recalling (194) in Proposition 8, one has

R
(
∇ f ,ε)(X, Y)Z = R∇(X, Y)Z

2 Ω(X, Y)
{

µε JZ + 1
2 µε

Z(λ) T
}

+ 1
µε

{(
∇Y A

)
(X, Z)−

(
∇X A

)
(Y, Z)

}
T + Ω(Y, Z)

{
τX + µε JX + 1

2 µε
X(λ) T

}
−Ω(X, Z)

{
τY + µε JY + 1

2 µε
Y(λ) T

}
− 1

µε
A(Y, Z)

{
τX + µε JX− 1

2 µε
X(λ)T

}
+ 1

µε
A(X, Z)

{
τY + µε JY− 1

2 µε
Y(λ)T

}
.

(204)

Let us take the inner product gε( f ) of (204) with W ∈ H(M). We obtain, because of
gε( f ) = Gθ on H(M)⊗ H(M) and H(M)⊥ T with respect to gε( f ),

gε( f )
(

R
(
∇ f ,ε)(X, Y)Z, W

)
= gε( f )

(
R∇(X, Y)Z, W)

−2 µε Ω(X, Y) Gθ(JZ, W)

+Ω(Y, Z)
{

Gθ(τX, W) + µε Gθ(JX, W)
}

−Ω(X, Z)
{

Gθ(τY, W) + µε Gθ(JX, W)
}

− 1
µε

A(Y, Z)
{

Gθ(τX, W) + µεGθ(JX, W)
}

+ 1
µε

A(X, Z)
{

Gθ(τY, W) + µεGθ(JY, W)
}

.

(205)

At this point, we need to recall (168), i.e.,

Bε( f )(X, W) = DX f∗W − f∗∇XW

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

)
f∗T

+
{

Ω(X, W)− ε2 gΘ
(

f∗X, τ
f
A f∗W

)} {
T f

A −
1

ε2 µε
f∗T
}

.

(206)

Let us replace the pair (X, W) with (Y, Z) in (206). We obtain

Bε( f )(Y, Z) = DY f∗Z− f∗∇YZ

− 1
µε

(
f ∗gΘ

)(
∇>Y Z, T

)
f∗T

+
{

Ω(Y, Z)− ε2 gΘ
(

f∗Y, τ
f
A f∗Z

)} {
T f

A −
1

ε2 µε
f∗T
}

.

(207)
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Next, let us use (206) and (207) to compute the inner product of the normal vectors
Bε( f )(X, W) and Bε( f )(Y, Z) with respect to gA

ε . Specifically, we may conduct the fol-
lowing calculation(

gA
ε

) f (Bε( f )(X, W), Bε( f )(Y, Z)
)
= I + II + III + IV (208)

where the terms I, II, III, and IV are given by

I =
(

gA
ε

) f (DX f∗W, DY f∗Z
)
−
(

gA
ε

) f (DX f∗W, f∗∇YZ
)

− 1
µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
gA

ε

) f (DX f∗W, f∗T
)

+
{

Ω(Y, Z)− ε2 gΘ
(

f∗Y, τ
f
A f∗Z

)} (
gA

ε

) f
(

DX f∗W, T f
A −

1
ε2 µε

f∗T
)

,

II = −
(

gA
ε

) f ( f∗∇XW, DY f∗Z
)
+
(

gA
ε

) f ( f∗∇XW, f∗∇YZ
)

+
1

µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
gA

ε

) f ( f∗∇XW, f∗T
)

−
{

Ω(Y, Z)− ε2 gΘ
(

f∗Y, τ
f
A f∗Z

)} (
gA

ε

) f
(

f∗∇XW, T f
A −

1
ε2 µε

f∗T
)

,

III = − 1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
gA

ε

) f ( f∗T, DY f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
gA

ε

) f ( f∗T, f∗∇YZ
)

+
1

µ2
ε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

) (
gA

ε

) f ( f∗T, f∗T
)

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

) {
Ω(Y, Z)− ε2 gΘ

(
f∗Y, τ

f
A f∗Z

)}
×
(

gA
ε

) f
(

f∗T, T f
A −

1
ε2 µε

f∗T
)

,

IV =
{

Ω(X, W)− ε2 gΘ
(

f∗X, τ
f
A f∗W

)} (
gA

ε

) f (T f
A −

1
ε2 µε

f∗T, DY f∗Z
)

−
{

Ω(X, W)− ε2 gΘ
(

f∗X, τ
f
A f∗W

)} (
gA

ε

) f (T f
A −

1
ε2 µε

f∗T, f∗∇YZ
)

− 1
µε

{
Ω(X, W)− ε2 gΘ

(
f∗X, τ

f
A f∗W

)} (
f ∗gΘ

)(
∇>Y Z, T

)
×
(

gA
ε

) f (T f
A −

1
ε2 µε

f∗T, f∗T
)

+
{

Ω(X, W)− ε2 gΘ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 gΘ

(
f∗Y, τ

f
A f∗Z

)}
×
(

gA
ε

) f
(

T f
A −

1
ε2 µε

f∗T, T f
A −

1
ε2 µε

f∗T
)

.

The calculation of the terms II, III, and IV requires the following:

Lemma 19.

(i) ‖ f∗T‖gA
ε
=
√

µε.
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(ii)
(

gA
ε

) f
(

f∗T, T f
A −

1
ε2µε

f∗T
)
= 0.

(iii)
∥∥∥∥T f

A −
1

ε2µε
f∗T
∥∥∥∥

gA
ε

=

√
λ− 1

1 + ε2(λ− 1)
.

Here, we have set ‖V‖gA
ε
=
(

gA
ε

) f
(V, V)1/2 for any V ∈ C∞( f−1T(A)

)
.

Proof of Lemma 19. As gΘ is a Riemannian metric, the function λ =
(

f ∗gΘ
)
(T, T) : M→

R is everywhere positive, i.e., λ(x) > 0 for any x ∈ M. More is true, i.e.,

λ(x) ≥ 1, x ∈ M, (209)

λ
(
x0
)
= 1⇐⇒ (dx0 f )Tx0 = TA, f (x0)

. (210)

Indeed
g f

Θ
(

f∗T, T f
A
)
= g f

Θ
(
XΘ + T f

A , T f
A
)

as XΘ ∈ f−1H(A)⊥ T f
A with respect to g f

Θ

= g f
Θ
(
T f

A , T f
A
)
= gΘ

(
TA , TA

) f
= 1,

i.e.,
g f

Θ
(

f∗T, T f
A
)
= 1. (211)

Hence,
0 ≤ ‖XΘ‖2

gΘ
= g f

Θ
(
XΘ , XΘ

)
=
(

f ∗gΘ
)
(T, T)− 2 g f

Θ
(

f∗T, T f
A
)
+ 1

by (211)
= λ− 1,

yielding (209).

To prove (210) let x0 ∈ M be a point such that λ(x0) = 1. This is equivalent [by the
preceding calculation] to XΘ, x0 = 0. Q.E.D.

In particular, by (209),

µε =
1
ε2 + λ− 1 ≥ 0

so that statement (i) in Lemma 19 is legitimate. As a byproduct of the calculations just done,
one has

‖XΘ‖2
gΘ

= λ− 1 (212)

that we ought to keep for further applications.

The proofs of (i)–(iii) in Lemma 19 are straightforward calculations. We give a few
details for pedagogical reasons.

(i) ‖ f∗T‖2
gA

ε
=
∥∥∥XΘ + T f

A

∥∥∥2

gA
ε

as XΘ ∈ f−1H(A)⊥ T f
A with respect to g f

Θ

= ‖XΘ‖2
gA

ε
+
∥∥∥T f

A

∥∥∥2

gA
ε

by (212) and the very definition of gA
ε

= λ− 1 + ε−2 = µε. Q.E.D.

(ii)
(

gA
ε

) f
(

f∗T, T f
A −

1
ε2µε

f∗T
)
=
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=
(

gA
ε

) f
(
XΘ + T f

A , T f
A −

1
ε2µε

(
XΘ + TA

))
by gA

ε = gΘ on H(A)⊗ H(A) and gA
ε (TA , TA) = ε−2

= − 1
ε2µε

g f
Θ
(
XΘ , XΘ

)
+

1
ε2 −

1
ε2µε

1
ε2

by (212)

=
1
ε2

(
1− 1

ε2µε

)
− 1

ε2µε
(λ− 1) =

1
ε2µε

(
µε −

1
ε2 − λ + 1

)
= 0. Q.E.D.

(iii)
∥∥∥∥T f

A −
1

ε2µε
f∗T
∥∥∥∥2

gA
ε

=

∥∥∥∥T f
A −

1
ε2µε

(
XΘ + T f

A
)∥∥∥∥2

gA
ε

=
1
ε2

(
1− 1

ε2µε

)
+

1
ε4µ2

ε
‖XΘ‖2

gΘ
=

ε2µε − 1
ε4µε

=
λ− 1

1 + ε2(λ− 1)
. Q.E.D.

Let us go back to the calculation of the term I. One has, by the very definition of gA
ε ,

I = g f
Θ
(

DX f∗W, DY f∗Z
)
− g f

Θ
(

DX f∗W, f∗∇YZ
)

− 1
µε

(
f ∗gΘ

)(
∇>Y Z, T

)
g f

Θ
(

DX f∗W, f∗T
)

− 1
ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
g f

Θ(DX f∗W, f∗T).

(213)

Similarly, let us compute the term II. Again, by the relationship between gA
ε and gΘ,

relative to the decomposition T(A) = H(A)⊕RTA,

II = −g f
Θ
(

f∗∇XW, DY f∗Z
)
+
(

f ∗gΘ
)(
∇XW, ∇YZ

)
+ 1

µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
f ∗gΘ

)(
∇XW, T

)
1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇XW, T).

(214)

Similar to the above, the term III may be calculated as follows by (i)–(ii) in Lemma 19:

III = − 1
µε

(
f ∗gΘ

)(
∇>XW, T

)
g f

Θ
(

f∗T, DY f∗Z
)

+ 1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
T, ∇YZ

)
+ 1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

)
.

(215)

Finally, the term IV may be calculated as follows (by (ii)–(iii) in Lemma 19)

IV = − 1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DY f∗Z
)

+ 1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇YZ

)
+
{

Ω(X, W)− ε2 g f
Θ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
×

× λ−1
1+ε2(λ−1) .

(216)

We need:

Lemma 20.
θ
(
T f ) = 1− ‖T⊥‖2

gΘ
. (217)
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Proof. We start from T f
A = f∗T> + T⊥, an orthogonal decomposition with respect to g f

Θ.
Then,

1 = Θ(TA)
f = Θ f (T f

A
)
= Θ f ( f∗T>

)
+ Θ f (T⊥)

= ( f ∗Θ)(T>) + g f
Θ
(
T f

A , T⊥
)
= θ(T>) +

∥∥∥T⊥
∥∥∥2

gΘ
.

Let us go back to the Gauss Equation (198),(
gA

ε

) f (R((Dε) f )(X, Y) f∗Z, f∗W
)

= gε( f )
(

R
(
∇ f ,ε)(X, Y)Z, W

)
−gA

ε

(
Bε( f )(X, W), Bε( f )(Y, Z)

)
+ gA

ε

(
Bε( f )(Y, W), Bε( f )(X, Z)

) (218)

written for any X, Y, Z, W ∈ H(M).
Collecting the calculations above, we shall substitute into (218) in three steps as

follows.

(1) The curvature term

gA
ε

(
R
(

Dε
)
(X, Y) f∗Z, f∗W

)
in the left-hand side of (218) is replaced by (203).

(2) The curvature term

gε( f )
(

R
(
∇ f ,ε)(X, Y)Z, W

)
in the right-hand side of (218) is replaced by (205).

(3) Finally, the terms

(gA
ε )

f (Bε( f )(X, W), Bε( f )(Y, Z)
)
, (gA

ε )
f (Bε( f )(Y, W), Bε( f )(X, Z)

)
,

in the right-hand side of (218) are replaced by (208) together with the expressions (213)–(216)
of the terms I, II, III, and IV.

The aim of Steps 1 and 2 is then to compute the term(
gA

ε

) f (R((Dε) f )(X, Y) f∗Z, f∗W
)
− gε( f )

(
R
(
∇ f ,ε)(X, Y)Z, W

)
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appearing in (198). Indeed one has

(gA
ε )

f (R((Dε) f )(X, Y) f∗Z, f∗W
)

−gε( f )
(

R
(
∇ f ,ε)(X, Y)Z, W

)
= g f

Θ
(

RD f
(X, Y) f∗Z, f∗W

)
+Ω(Y, Z) g f

Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

+ε2
{

g f
Θ
(
τ

f
A f∗X, f∗Z

)
g f

Θ
(
τ

f
A f∗Y, f∗W

)
−

−g f
Θ
(
τ

f
A f∗Y, f∗Z) g f

Θ
(
τ

f
A f∗X, f∗W

)}
+ 1

ε2 {Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

−gε( f )
(

R∇(X, Y)Z, W)

+2 µε Ω(X, Y) Gθ(JZ, W)

−Ω(Y, Z)
{

Gθ(τX, W) + µε Gθ(JX, W)
}

+Ω(X, Z)
{

Gθ(τY, W) + µε Gθ(JY, W)
}

+ 1
µε

A(Y, Z)
{

Gθ(τX, W) + µεGθ(JX, W)
}

− 1
µε

A(X, Z)
{

Gθ(τY, W) + µεGθ(JY, W)
}

.

(219)

Let us substitute from (213)–(216) into (208). We obtain:(
gA

ε

) f (Bε( f )(X, W), Bε( f )(Y, Z)
)

= g f
Θ
(

DX f∗W, DY f∗Z
)
− g f

Θ
(

DX f∗W, f∗∇YZ
)

− 1
µε

(
f ∗gΘ

)(
∇>Y Z, T

)
g f

Θ
(

DX f∗W, f∗T
)

− 1
ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
g f

Θ(DX f∗W, f∗T)

−g f
Θ
(

f∗∇XW, DY f∗Z
)
+
(

f ∗gΘ
)(
∇XW, ∇YZ

)
+

1
µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
f ∗gΘ

)(
∇XW, T

)
+

1
ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇XW, T)

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

)
g f

Θ
(

f∗T, DY f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
T, ∇YZ

)
+

1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

)
− 1

ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DY f∗Z
)
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+
1

ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇YZ

)
+
{

Ω(X, W)− ε2 g f
Θ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)
. (220)

Let us interchange X and Y in (220). We obtain:

big(gA
ε

) f (Bε( f )(Y, W), Bε( f )(X, Z)
)

= g f
Θ
(

DY f∗W, DX f∗Z
)
− g f

Θ
(

DY f∗W, f∗∇XZ
)

− 1
µε

(
f ∗gΘ

)(
∇>X Z, T

)
g f

Θ
(

DY f∗W, f∗T
)

− 1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
g f

Θ(DY f∗W, f∗T)

−g f
Θ
(

f∗∇YW, DX f∗Z
)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>X Z, T

) (
f ∗gΘ

)(
∇YW, T

)
+

1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇YW, T)

− 1
µε

(
f ∗gΘ

)(
∇>Y W, T

)
g f

Θ
(

f∗T, DX f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
T, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
∇>X Z, T

)
− 1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DX f∗Z
)

+
1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇XZ

)
+
{

Ω(Y, W)− ε2 g f
Θ
(

f∗Y, τ
f
A f∗W

)} {
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)
. (221)

Consequently, by (220) and (221),

−
(

gA
ε

) f (Bε( f )(X, W), Bε( f )(Y, Z)
)

+
(

gA
ε

) f (Bε( f )(Y, W), Bε( f )(X, Z)
)

= −g f
Θ
(

DX f∗W, DY f∗Z
)
+ g f

Θ
(

DX f∗W, f∗∇YZ
)

+
1

µε

(
f ∗gΘ

)(
∇>Y Z, T

)
g f

Θ
(

DX f∗W, f∗T
)

+
1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
g f

Θ(DX f∗W, f∗T)
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+g f
Θ
(

f∗∇XW, DY f∗Z
)
−
(

f ∗gΘ
)(
∇XW, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
f ∗gΘ

)(
∇XW, T

)
− 1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇XW, T)

+
1

µε

(
f ∗gΘ

)(
∇>XW, T

)
g f

Θ
(

f∗T, DY f∗Z
)

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
T, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

)
+

1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DY f∗Z
)

− 1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇YZ

)
−
{

Ω(X, W)− ε2 g f
Θ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)

+g f
Θ
(

DY f∗W, DX f∗Z
)
− g f

Θ
(

DY f∗W, f∗∇XZ
)

− 1
µε

(
f ∗gΘ

)(
∇>X Z, T

)
g f

Θ
(

DY f∗W, f∗T
)

− 1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
g f

Θ(DY f∗W, f∗T)

−g f
Θ
(

f∗∇YW, DX f∗Z
)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>X Z, T

) (
f ∗gΘ

)(
∇YW, T

)
+

1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇YW, T)

− 1
µε

(
f ∗gΘ

)(
∇>Y W, T

)
g f

Θ
(

f∗T, DX f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
T, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
∇>X Z, T

)
− 1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DX f∗Z
)

+
1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇XZ

)
+
{

Ω(Y, W)− ε2 g f
Θ
(

f∗Y, τ
f
A f∗W

)} {
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
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× λ− 1
1 + ε2(λ− 1)

. (222)

Finally, let us substitute from (219) and (222) into the Gauss Equation (218). We obtain
the rather involved equation:

g f
Θ
(

RD(X, Y) f∗Z, f∗W
)

+Ω(Y, Z) g f
Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

+ε2
{

g f
Θ
(
τ

f
A f∗X, f∗Z

)
g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗Y, f∗Z) g f

Θ
(
τ

f
A f∗X, f∗W

)}
+

1
ε2 {Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

−gθ

(
R∇(X, Y)Z, W)

+2 µε Ω(X, Y) Gθ(JZ, W)

−Ω(Y, Z)
{

Gθ(τX, W) + µε Gθ(JX, W)
}

+Ω(X, Z)
{

Gθ(τY, W) + µε Gθ(JY, W)
}

+
1

µε
A(Y, Z)

{
Gθ(τX, W) + µεGθ(JX, W)

}
− 1

µε
A(X, Z)

{
Gθ(τY, W) + µεGθ(JY, W)

}
= −g f

Θ
(

DX f∗W, DY f∗Z
)
+ g f

Θ
(

DX f∗W, f∗∇YZ
)

+
1

µε

(
f ∗gΘ

)(
∇>Y Z, T

)
g f

Θ
(

DX f∗W, f∗T
)

+
1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
g f

Θ(DX f∗W, f∗T)

+g f
Θ
(

f∗∇XW, DY f∗Z
)
−
(

f ∗gΘ
)(
∇XW, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
f ∗gΘ

)(
∇XW, T

)
− 1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇XW, T)

+
1

µε

(
f ∗gΘ

)(
∇>XW, T

)
g f

Θ
(

f∗T, DY f∗Z
)

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
T, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

)
+

1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DY f∗Z
)
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− 1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇YZ

)
−
{

Ω(X, W)− ε2 g f
Θ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)

+g f
Θ
(

DY f∗W, DX f∗Z
)
− g f

Θ
(

DY f∗W, f∗∇XZ
)

− 1
µε

(
f ∗gΘ

)(
∇>X Z, T

)
g f

Θ
(

DY f∗W, f∗T
)

− 1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
g f

Θ(DY f∗W, f∗T)

−g f
Θ
(

f∗∇YW, DX f∗Z
)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>X Z, T

) (
f ∗gΘ

)(
∇YW, T

)
+

1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇YW, T)

− 1
µε

(
f ∗gΘ

)(
∇>Y W, T

)
g f

Θ
(

f∗T, DX f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
T, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
∇>X Z, T

)
− 1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DX f∗Z
)

+
1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇XZ

)
+
{

Ω(Y, W)− ε2 g f
Θ
(

f∗Y, τ
f
A f∗W

)} {
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)
. (223)

This is the Gauss equation for the isometric immersion f : (M, gε( f )) → (A, gA
ε ), which

we succeeded in fully writing in terms of pseudohermitian invariants of (M, θ) and (A, Θ)
with coefficients that are rational functions of ε, i.e., coefficients of the form

ε2 ,
1
ε2 , µε ≡

1
ε2 + λ− 1,

1
µε

,
1

ε2µε
.

To simplify (223) and examine its consequences as ε→ 0+ will be our job for the remainder
of this section. To begin, note that simplifications occur in the term

1
ε2

{
Ω(X, Y)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)

}
+2µε Ω(X, Y) GΘ(JZ, W)

−µε Ω(Y, Z) GΘ(JX, W) + µε Ω(X, Z) GΘ(JY, W),
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which is, by µε = ε−2 + λ− 1, merely

(λ− 1)
{
−Ω(X, Z)Ω(Y, W) + Ω(Y, Z)Ω(X, W)− 2 Ω(X, Y)Ω(Z, W)

}
.

Therefore, the (unbounded) terms of order O(ε−2) simplify, and we may take ε → 0+ in
the resulting equation:

g f
Θ
(

RD(X, Y) f∗Z, f∗W
)

+Ω(Y, Z) g f
Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

+ε2
{

g f
Θ
(
τ

f
A f∗X, f∗Z

)
g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗Y, f∗Z) g f

Θ
(
τ

f
A f∗X, f∗W

)}
−(λ− 1){Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

−gθ

(
R∇(X, Y)Z, W)

−Ω(Y, Z) A(X, W) + Ω(X, Z) A(Y, W)

+
1

µε
A(Y, Z) A(X, W)− A(Y, Z)Ω(X, W)

− 1
µε

A(X, Z) A(Y, W) + A(X, Z)Ω(Y, W)

= −g f
Θ
(

DX f∗W, DY f∗Z
)
+ g f

Θ
(

DX f∗W, f∗∇YZ
)

+
1

µε

(
f ∗gΘ

)(
∇>Y Z, T

)
g f

Θ
(

DX f∗W, f∗T
)

+
1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
g f

Θ(DX f∗W, f∗T)

+g f
Θ
(

f∗∇XW, DY f∗Z
)
−
(

f ∗gΘ
)(
∇XW, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>Y Z, T

) (
f ∗gΘ

)(
∇XW, T

)
− 1

ε2 µε

{
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇XW, T)

+
1

µε

(
f ∗gΘ

)(
∇>XW, T

)
g f

Θ
(

f∗T, DY f∗Z
)

− 1
µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
T, ∇YZ

)
− 1

µε

(
f ∗gΘ

)(
∇>XW, T

) (
f ∗gΘ

)(
∇>Y Z, T

)
+

1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DY f∗Z
)

− 1
ε2 µε

{
Ω(X, W)− ε2 g f

Θ
(

f∗X, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇YZ

)
−
{

Ω(X, W)− ε2 g f
Θ
(

f∗X, τ
f
A f∗W

)} {
Ω(Y, Z)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗Z

)}
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× λ− 1
1 + ε2(λ− 1)

+g f
Θ
(

DY f∗W, DX f∗Z
)
− g f

Θ
(

DY f∗W, f∗∇XZ
)

− 1
µε

(
f ∗gΘ

)(
∇>X Z, T

)
g f

Θ
(

DY f∗W, f∗T
)

− 1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
g f

Θ(DY f∗W, f∗T)

−g f
Θ
(

f∗∇YW, DX f∗Z
)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>X Z, T

) (
f ∗gΘ

)(
∇YW, T

)
+

1
ε2 µε

{
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)} (
f ∗gΘ

)
(∇YW, T)

− 1
µε

(
f ∗gΘ

)(
∇>Y W, T

)
g f

Θ
(

f∗T, DX f∗Z
)

+
1

µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
T, ∇XZ

)
+

1
µε

(
f ∗gΘ

)(
∇>Y W, T

) (
f ∗gΘ

)(
∇>X Z, T

)
− 1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)}
× g f

Θ
(

f∗T, DX f∗Z
)

+
1

ε2 µε

{
Ω(Y, W)− ε2 g f

Θ
(

f∗Y, τ
f
A f∗W

)} (
f ∗gΘ

)(
T, ∇XZ

)
+
{

Ω(Y, W)− ε2 g f
Θ
(

f∗Y, τ
f
A f∗W

)} {
Ω(X, Z)− ε2 g f

Θ
(

f∗X, τ
f
A f∗Z

)}
× λ− 1

1 + ε2(λ− 1)
. (224)

To produce (224), one also has to recognize pseudohermitian torsion terms in (223); e.g.,
A(X, W) = Gθ

(
τX, W). Recall that 1/µε → 0 and 1/

(
ε2 µε) → 1 as ε → 0+. Therefore,

(224) yields, as ε→ 0+,
g f

Θ
(

RD f
(X, Y) f∗Z, f∗W

)
+Ω(Y, Z) g f

Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

−(λ− 1){Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

−gθ

(
R∇(X, Y)Z, W)

−Ω(Y, Z) A(X, W) + Ω(X, Z) A(Y, W)

−A(Y, Z)Ω(X, W) + A(X, Z)Ω(Y, W)

= −g f
Θ
(

DX f∗W, DY f∗Z
)
+ g f

Θ
(

DX f∗W, f∗∇YZ
)

+Ω(Y, Z) g f
Θ(DX f∗W, f∗T) + Ω(X, W) g f

Θ
(

f∗T, DY f∗Z
)

+g f
Θ
(

f∗∇XW, DY f∗Z
)
−
(

f ∗gΘ
)(
∇XW, ∇YZ

)
−Ω(Y, Z)

(
f ∗gΘ

)
(∇XW, T)−Ω(X, W)

(
f ∗gΘ

)(
T, ∇YZ

)
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+(λ− 1)
{

Ω(Y, W)Ω(X, Z)−Ω(X, W)Ω(Y, Z)
}
+

+g f
Θ
(

DY f∗W, DX f∗Z
)
− g f

Θ
(

DY f∗W, f∗∇XZ
)

−Ω(X, Z) g f
Θ(DY f∗W, f∗T)−Ω(Y, W) g f

Θ
(

f∗T, DX f∗Z
)

−g f
Θ
(

f∗∇YW, DX f∗Z
)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
+Ω(X, Z)

(
f ∗gΘ

)
(∇YW, T) + Ω(Y, W)

(
f ∗gΘ

)(
T, ∇XZ

)
. (225)

Equation (225) may be further simplified. First note that the term

−(λ− 1){Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + 2 Ω(X, Y)Ω(Z, W)}

on the left-hand side of (225) and

(λ− 1)
{

Ω(Y, W)Ω(X, Z)−Ω(X, W)Ω(Y, Z)
}

on the right-hand side of (225) simplify to

2(λ− 1){Ω(X, Z)Ω(Y, W)−Ω(X, W)Ω(Y, Z) + Ω(X, Y)Ω(Z, W)}

to be written on the right-hand side of (225). Also, for further use, let us consider the (1, 2)
tensor field

U = U( f ) = U( f , Θ) ∈ T 1,2(M)

given by
U(V, W) = ∇>V W −∇VW , V, W ∈ X(M), (226)

expressing the difference between the induced connection ∇> and the (intrinsic) Tanaka–
Webster connection ∇. A term of the form

g f
Θ
(

D f
X f∗W, f∗T

)
may be written

g f
Θ
(

D f
X f∗W, f∗T

)
by the pseudohermitian Gauss formula

= g f
Θ
(

f∗∇>XW, f∗T
)
=
(

f ∗gΘ
)(
∇>XW, T

)
,

hence pairs of terms such as

Ω(Y, Z) g f
Θ
(

DX f∗W, f∗T
)
−Ω(Y, Z)

(
f ∗gΘ

)(
∇XW, T

)
may be written

Ω(Y, Z)
(

f ∗gΘ
)(

U(X, W), f∗T
)
.

Finally, terms of the form

g f
Θ
(

D f
Y f∗W, DX f∗Z

)
, g f

Θ
(

D f
Y f∗W, f∗∇XZ

)
,

are computed by using the pseudohermitian Gauss formula. For instance,

g f
Θ
(

D f
Y f∗W, D f

X f∗Z
)

=
(

f ∗gΘ
)(
∇>Y W, ∇>X Z

)
+ g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)
,

g f
Θ
(

DY f∗W, f∗∇XZ
)
=
(

f ∗gΘ
)(
∇>Y W, ∇XZ

)
.
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Under the modifications above, Equation (225) simplifies down to:

g f
Θ
(

RD(X, Y) f∗Z, f∗W
)
− gθ

(
R∇(X, Y)Z, W)

+Ω(Y, Z) g f
Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

−Ω(Y, Z) A(X, W) + Ω(X, Z) A(Y, W)

−A(Y, Z)Ω(X, W) + A(X, Z)Ω(Y, W)

= −
(

f ∗gΘ
)(
∇>XW, ∇>Y Z

)
− g f

Θ
(

B( f )(X, W), B( f )(Y, Z)
)

+
(

f ∗gΘ
)(
∇>XW, ∇YZ

)
+Ω(Y, Z)

(
f ∗gΘ

)
(U(X, W), T) + Ω(X, W)

(
f ∗gΘ

)(
U(Y, Z), T

)
+
(

f ∗gΘ
)(
∇XW, ∇>Y Z

)
−
(

f ∗gΘ
)(
∇XW, ∇YZ

)
+2(λ− 1)

{
Ω(Y, W)Ω(X, Z)−Ω(X, W)Ω(Y, Z) + Ω(X, Y)Ω(Z, W)

}
+
(

f ∗gΘ
)(
∇>Y W, ∇>X Z

)
+ g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)

−
(

f ∗gΘ
)(
∇>Y W, ∇XZ

)
−Ω(X, Z)

(
f ∗gΘ

)
(U(Y, W), T)−Ω(Y, W)

(
f ∗gΘ

)(
U(X, Z), T

)
−
(

f ∗gΘ
)(
∇YW, ∇>X Z

)
+
(

f ∗gΘ
)(
∇YW, ∇XZ

)
. (227)

Once again, using (226), we may write (227) as:

g f
Θ
(

RD(X, Y) f∗Z, f∗W
)
− gθ

(
R∇(X, Y)Z, W)

+Ω(Y, Z) g f
Θ
(
τ

f
A f∗X, f∗W

)
−Ω(X, Z) g f

Θ
(
τ

f
A f∗Y, f∗W

)
−g f

Θ
(
τ

f
A f∗X, f∗Z

)
Ω(Y, W) + g f

Θ
(
τ

f
A f∗Y, f∗Z

)
Ω(X, W)

−Ω(Y, Z) A(X, W) + Ω(X, Z) A(Y, W)

−A(Y, Z)Ω(X, W) + A(X, Z)Ω(Y, W)

= −
(

f ∗gΘ
)(

U(X, W), U(Y, Z)
)
− g f

Θ
(

B( f )(X, W), B( f )(Y, Z)
)

+Ω(Y, Z)
(

f ∗gΘ
)
(U(X, W), T) + Ω(X, W)

(
f ∗gΘ

)(
U(Y, Z), T

)
+2(λ− 1)

{
Ω(Y, W)Ω(X, Z)−Ω(X, W)Ω(Y, Z) + Ω(X, Y)Ω(Z, W)

}
+
(

f ∗gΘ
)(

U(Y, W), U(X, Z)
)
+ g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)

−Ω(X, Z)
(

f ∗gΘ
)
(U(Y, W), T)−Ω(Y, W)

(
f ∗gΘ

)(
U(X, Z), T

)
. (228)

We organize terms in (228) so as to emphasize the similarity to the classical Gauss equation
in the theory of isometric immersions between Riemannian manifolds:

g f
Θ
(

RD(X, Y) f∗Z, f∗W
)
= gθ

(
R∇(X, Y)Z, W)

−g f
Θ
(

B( f )(X, W), B( f )(Y, Z)
)
+ g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)

−
(

f ∗gΘ
)(

U(X, W), U(Y, Z)
)
+
(

f ∗gΘ
)(

U(Y, W), U(X, Z)
)

+Ω(Y, Z)
(

f ∗gΘ
)(

U(X, W), T
)

+Ω(X, W)
(

f ∗gΘ
)(

U(Y, Z), T
)
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−Ω(X, Z)
(

f ∗gΘ
)(

U(Y, W), T
)

−Ω(Y, W)
(

f ∗gΘ
)(

U(X, Z), T
)

+2(λ− 1)
[
Ω(Y, W)Ω(X, Z)−Ω(X, W)Ω(Y, Z) + Ω(X, Y)Ω(Z, W)

]
−Ω(Y, Z)

[
g f

Θ
(
τ

f
A f∗X, f∗W

)
− A(X, W)

]
−Ω(X, W)

[
g f

Θ
(
τ

f
A f∗Y, f∗Z

)
− A(Y, Z)

]
+Ω(X, Z)

[
g f

Θ
(
τ

f
A f∗Y, f∗W

)
− A(Y, W)

]
+Ω(Y, W)

[
g f

Θ
(
τ

f
A f∗X, f∗Z

)
− A(X, Z)

]
(229)

for any X, Y, Z, W ∈ H(M).

Definition 39. We shall refer to (229) as the pseudohermitian Gauss equation of the isopseu-
dohermitian immersion f : (M, θ)→ (A, Θ).

The first two lines in (229) are entirely similar to the Gauss equation in Riemannian
geometry except of course that the Levi–Civita connections of the ambient space and sub-
manifold were replaced by the Tanaka–Webster connections, while the second fundamental
form of the given immersion was replaced by the pseudohermitian second fundamental
form. However, in the theory at hand, with respect to the theory of isometric immersions,
where the induced connection and the (intrinsic) Levi–Civita connection of the induced
metric coincide, there is a non-uniqueness of choice of connection on the submanifold
and the (1, 2) tensor field U measuring the difference between the induced connection
∇>, and the (intrinsic) Tanaka–Webster connection ∇ appears explicitly in (229). Also,
unlike the Riemannian case, the canonical connections used (i.e., ∇, ∇> and D) are not
symmetric, and their torsion appears explicitly in the embedding Equation (229); the last
four terms in (229) depend upon the pseudohermitian torsion tensor fields τA and τ of
the ambient space (A, Θ) and the submanifold (M, θ). The term in (229) containing the
function λ =

(
f ∗gΘ

)
(T, T) is prompted by our more general treatment (with respect to

the previous works [15,17,18]), including the case of pseudohermitian immersions where
λ = 1, but not confined to that case.

Keep in mind that (229) follows, as ε → 0+, from the Gauss Equation (198) written
for X, Y, Z, W ∈ H(M). The same technique should then prompt other (pseudohermitian)
Gauss-like equations corresponding to the cases where not all arguments X, Y, Z, W are
horizontal. Deriving the remaining Gauss-like equations [springing from the various
components of (198) with respect to the decomposition T(M) = H(M)⊕RT] is relegated
to further work.

11. CR Immersions into Spheres
11.1. Mean Curvature

By a classic result of T. Takahashi (see [30]), an isometric immersion ψ : M → Sn(r)
of an m-dimensional Riemannian manifold into the sphere j : Sn(r) ⊂ Rn+1 of radius
r > 0 is minimal if and only if ∆Ψ = −(m/r2)Ψ, where Ψ = j ◦ ψ and ∆ is the Laplace–
Beltrami operator on M. Takahashi’s theorem relies on the simple observation that given
isometric immersions f : M → A and j : A ↪→ Rn where M and A are Riemannian
manifolds, the mean curvature vector H( f ) is the tangential component in f−1T(A) of
(1/m)∆(j ◦ f ). We wish to look at a similar configuration within CR geometry, starting with
an isopseudohermitian immersion f : (M, θ) → (A, Θ) and, hence, for every 0 < ε < 1,
with the isometric immersion f :

(
M, gε( f )

)
→ (A, gA

ε ). By Nash’s embedding theorem
(see [31]), there is an integer 2n+ 1 < K ≤ (2N + 1)(3N + 7) and a C∞ isometric embedding
of
(

A, gA
ε

)
into the Euclidean space RK, yet both K and the immersion A → RK depend

on ε. [We conjecture that the nature of said dependence can be understood by inspecting



Axioms 2023, 12, 329 71 of 82

the proof in [31]. See also R.E. Greene and H. Jacobowitz [32] for a simplified proof in the
real analytic case.] To circumnavigate this difficulty, we confine ourselves to A = S2N+1

and the pair of immersions
(

M, gε( f )
) f−→

(
S2N+1, gA

ε

) j
↪→ CN+1, where the ambient

space CN+1 is thought of as carrying, in addition to the Euclidean metric g0, the family of
Riemannian metrics

g0, ε := g0 +
( 1

ε2 − 1
)

ω0 ⊗ω0 , 0 < ε < 1, (230)

built such that j∗ g0, ε = gA
ε . Then, we benefit from j∗g0 = gΘ [a phenomenon known

to hold only for the sphere — in general, for a strictly pseudoconvex real hypersurface
A ⊂ CN+1, none of the Webster metrics {geu Θ : u ∈ C∞(A, R)} is induced by the
ambient Euclidean metric g0 (see e.g., [3], p. 41–42)] to relate the mean curvature vectors
Hε( f ) and Hε(j ◦ f ) of the isometric immersions f : (M, gε( f )) →

(
S2N+1, gA

ε

)
and

j ◦ f : (M, gε( f ))→
(
CN+1 , g0, ε

)
.

Let A = S2N+1 ⊂ CN+1 be the standard sphere, equipped with the strictly pseudocon-
vex CR structure

T1,0(S2N+1)y =
[
Ty
(
S2N+1)⊗R C

]
⊕ T′

(
CN+1)

y , y ∈ S2N+1 ,

and the positively oriented contact form

Θ ∈ P+
(
S2N+1), Θ =

i
2
(
∂− ∂

)
|Z|2 .

The Webster metric gΘ is the first fundamental form of j : S2N+1 → CN+1, the inclusion of
S2N+1 into

(
CN+1, g0

)
; i.e., j∗g0 = gΘ. Let X0 ∈ X(CN+1) be the real tangent vector field

defined by

X0 =
i
2

(
ZB ∂

∂ZB − ZB
∂

∂ZB

)
.

The Reeb vector field TA of
(
S2N+1 , Θ) is given by j∗TA = 2 Xj

0. Let ω0 ∈ Ω1(CN+1) be
the differential 1-form

ω0(X) = g0
(
X, X0

)
, X ∈ X

(
CN+1).

Also,

ν =
1
2

(
ZB ∂

∂ZB + ZB
∂

∂ZB

)j

is a unit normal vector field on S2N+1 in (CN+1 , g0
)

and Jj
0 ν = Xj

0. We shall need the
family of Riemannian metrics

{
g0, ε

}
0<ε<1 on CN+1

g0, ε = g0 +
( 1

ε2 − 1
)

ω0 ⊗ω0 .

If A = S2N+1, then j∗ω0 = Θ and, hence, j∗g0, ε = gA
ε . Let f : M → S2N+1 be an

isopseudohermitian immersion, i.e., a CR immersion, such that f ∗Θ = θ. Corresponding to
the isometric immersions(

M, gε( f )
) f−→

(
S2N+1 , gA

ε

) j−→
(
CN+1 , g0, ε

)
(231)

one has the decompositions

Tx̂
(
S2N+1) = [(dx f )Tx(M)

]
⊕ Eε( f )x , x ∈ M, (232)

Tj(x̂)
(
CN+1) = [(dx̂j)Tx̂

(
S2N+1)]⊕ Eε(j)x̂ , (233)
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T(j◦ f )(x)
(
CN+1) = [dx(j ◦ f ) Tx(M)

]
⊕ Eε(j ◦ f )x , (234)

where
Eε( f )

↓

M

Eε(j)

↓

S2N+1

Eε(j ◦ f )

↓

M

are the normal bundles of the given isometric immersions. The decompositions (232)–(234)
imply.

Lemma 21. For every x ∈ M

Eε(j ◦ f )x =
[(

dx̂ j
)

Eε( f )x

]
⊕ Eε(j)x̂ . (235)

The projections associated with the direct sum decompositions (232)–(234) are de-
noted by

Tx(M)
tanε, x←− Tx̂(S2N+1)

norε, x−→ Eε( f )x ,

Tx̂
(
S2N+1) Tanε, x̂←− Tj(x̂)

(
CN+1) Norε, x̂−→ Eε(j)x̂ ,

Tx(M)
tan0

ε, x←− T(j◦ f )(x)
(
CN+1) nor0

ε, x−→ Eε(j ◦ f )x .

Theorem 5. Let M be a strictly pseudoconvex CR manifold of CR dimension n equipped with the
contact form θ ∈ P+(M). Let Θ = (i/2) j∗

(
∂− ∂

)
|Z|2 ∈ P+

(
S2N+1) be the canonical contact

form. For any isopseudohermitian immersion f : M→ S2N+1 of (M, θ) into (S2N+1 , Θ),

norε , x ◦ Tanε , x̂ = Tanε , x̂ ◦ nor0
ε , x (236)

for every x ∈ M and 0 < ε < 1. Consequently, the mean curvature vectors of the isometric
immersions f : (M, gε( f )) → (S2N+1 , gA

ε ) and j ◦ f : (M, gε( f )) → (CN+1 , g0, ε) are
related by

Hε( f )x = Tanε, x̂ Hε(j ◦ f )x , x ∈ M. (237)

Proof. The proof is organized in two steps, as follows. First, we show that Tanε , x̂ maps
Eε(j ◦ f )x into Eε( f )x. Indeed, for any X ∈ Tx(M) and any V ∈ Eε(j ◦ f )x(

gA
ε

)
x̂

(
(dx f )X, Tanε, x̂ V

)
as gA

ε = j∗ g0, ε

=
(

g0, ε

)
j(x̂)

(
(dx̂ j)(dx f )X, (dx̂ j)Tanε, x̂ V

)
as V = (dx̂ j)Tanε, x̂ V + Norε, x̂ V and

Norε, x̂ V ∈ Eε(j)x̂ ⊥ (dx̂ j) Tx̂(S2N+1) 3 (dx̂ j)(dx f )X

=
(

g0, ε

)
j(x̂)

(
dx(j ◦ f )X, V

)
= 0,

hence
Tanε, x̂ Eε(j ◦ f )x ⊂ Eε( f )x .



Axioms 2023, 12, 329 73 of 82

At this point, (236) is equivalent to the commutativity of the diagram

Tx̂
(
CN+1) Tanε, x̂−→ Tx̂

(
S2N+1)

nor0
ε, x ↓ ↓ norε, x

Eε(j ◦ f )x
Tanε, x̂−→ Eε( f )x

Let V ∈ Tx̂
(
CN+1). Then, by (232) and (233),

Tanε, x̂ V = (dx f ) tanε, x
(
Tanε, x̂ V

)
+ norε,x

(
Tanε, x̂ V

)
, (238)

nor0
ε, x V = (dx̂ j)Tanε, x̂

(
nor0

ε, x V
)
+ Norε, x̂

(
nor0

ε, x V
)
. (239)

Then, by (233),
V = (dx̂ j)Tanε, x̂ V + Norε, x̂ V =

by substitution from (238)

= dx(j ◦ f ) tanε, x
(
Tanε, x̂ V

)︸ ︷︷ ︸
∈dx(j◦ f ) Tx(M)

+ (dx̂ j) norε,x
(
Tanε, x̂ V

)︸ ︷︷ ︸
∈(dx̂ j) Eε( f )x

+Norε, x̂ V︸ ︷︷ ︸
∈Eε(j)x̂

by (235) together with comparison to V = dx(j ◦ f ) tan0
ε, x V + nor0

ε, x V

tanε, x
(
Tanε, x̂ V

)
= tan0

ε, x V,

(dx̂ j) norε,x
(
Tanε, x̂ V

)
+ Norε, x̂ V = nor0

ε, x V. (240)

Finally, (239) and (240) yield (236). Q.E.D.

Let {Ea : 1 ≤ a ≤ 2n} be a local Gθ-orthonormal frame of H(M), and let us set
Tε =

(
1
/√

µε

)
T, so that{

Ep : 0 ≤ p ≤ 2n
}
≡
{

Ea , Tε : 1 ≤ a ≤ 2n
}

, E0 = Tε ,

is a local gε( f )-orthonormal frame of T(M). The mean curvature vector of the isometric
immersion f of (M, gε( f )) into (S2N+1, gA

ε ) is given by

Hε( f ) =
1

2n + 1
Tracegε( f ) Bε( f )

(locally)
=

1
2n + 1

2n

∑
p=0

Bε( f )
(
Ep , Ep

)
.

To prove (237), we recall the Gauss formulas(
Dε
) f

X f∗Y = f∗∇ f , ε
X Y + Bε( f )(X, Y),

(
Dg0, ε

)j
X j∗ Y = j∗ Dε

XY + Bε(j)(X, Y),

X, Y ∈ X(M), X, Y ∈ X(S2N+1),

for the isometric immersions (231). Here, Dg0, ε denotes the Levi–Civita connection of
(Cn+1, g0, ε). Also, ∇ f , ε ≡ ∇gε( f ) and Dε ≡ DgA

ε are, respectively, the Levi–Civita con-
nections of (M, gε( f )) and (S2N+1, gA

ε ), as considered earlier in this paper. For every
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tangent vector field X ∈ X(M), let X̃ ∈ X(S2N+1) denote a tangent vector field such that
X̃ f (x) = (dx f )Xx, for every x ∈ M. Then,

Bε( f )
(
Ep , Ep

)
x = norε, x

{(
Dε
) f

Ep
f∗ Ep

}
x

= norε, x

{(
Dε

Ẽp
Ẽp
)

f (x)

}
= norε, x Tanε, x̂

{(
Dg0, ε

)j
Ẽp

j∗ Ẽp

}
x̂

(by Lemma 5)

= Tanε, x̂ nor0
ε, x

{(
Dg0, ε

)j
Ẽp

j∗ Ẽp

}
x̂
.

Let ˜̃X ∈ X(CN+1) be a tangent vector field such that ˜̃Xj(y) = (dy j)X̃y for any y ∈ S2N+1.
Then,

˜̃X(j◦ f )(x) = dx(j ◦ f ) Xx,

hence
Bε( f )

(
Ep , Ep

)
x = Tanε, x̂ nor0

ε, x

(
Dg0, ε

˜̃Ep

˜̃Ep

)
j(x̂)

= Tanε, x̂ nor0
ε, x

{(
Dg0, ε

)j◦ f
Ep

(j ◦ f )Ep

}
x̂
= Tanε, x̂ Bε(j ◦ f )(Ep , Ep)x .

Q.E.D.

It is an open problem to relate the mean curvature vector H(j ◦ f ) to ∆gε( f )
(
j ◦ f

)
,

where ∆gε( f ) is the Laplace–Beltrami operator of the Riemannian manifold (M, gε( f )). This
would be the first step towards a pseudohermitian analog to Takahashi’s theorem (see [30]).
We expect that the solution to the problem may be obtained along the following lines. Start
with the Gauss formula(

Dg0, ε
)j◦ f

X (j ◦ f )∗ Y− (j ◦ f )∗∇ f , ε
X Y = Bε(j ◦ f )(X, Y) (241)

for the isometric immersion j ◦ f : (M, gε( f )) → (CN+1, g0, ε), and take the trace with
respect to gε( f ) of both members. Exploit the relationship between g0, ε and the Euclidean
metric g0 (see (230)) to relate the Levi–Civita connections Dg0, ε and D0 ≡ Dg0 .

11.2. On a Theorem by S-S. Chern

Given the result of S-S. Chern (see [21]), for every minimal isometric immersion
f : M→ A of an m-dimensional Riemannian manifold M into a Riemannian manifold A of
constant sectional curvature κ, the scalar curvature R of M obeys to R ≤ m(m− 1)κ with
equality if and only if f is totally geodesic. The proof is to take traces twice in the Gauss
equation for f . To search for a pseudohermitian analog to S-S. Chern’s result (see op. cit.),
let f : M → S2N+1 be an isopseudohermitian immersion, and let X, Y, Z ∈ H

(
S2N+1).

Then (see [3], p. 60),

R(D)(X, Y)Z = gΘ(Y, Z)X− gΘ(X, Z)Y

+gΘ
(

JAY, Z
)

JAX− gΘ
(

JAX, Z
)

JAY− 2 gΘ
(

JAX, Y
)

JAZ . (242)

Let f : M→ S2N+1 be an isopseudohermitian immersion of (M, θ) into (S2N+1, Θ). Then,
by (242) and f∗ ◦ J = JA ◦ f∗,

RD f
(X, Y) f∗ Z =

(
f ∗gΘ

)
(Y, Z) f∗X−

(
f ∗gΘ

)
(X, Z) f∗ Y

+
(

f ∗gΘ
)(

JY, Z
)

f∗ J X−
(

f ∗gΘ
)(

JX, Z
)

f∗ JY

−2
(

f ∗gΘ
)(

J X, Y
)

f∗ J Z (243)

for any X, Y, Z ∈ H(M). Let W ∈ H(M), and let us take the inner product of (243) with
f∗W; i.e.,

g f
Θ
(

RD f
(X, Y) f∗ Z , f∗W

)
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= gθ(Y, Z) gθ(X, W)− gθ(X, Z) gθ(Y, W)

+Ω
(
Y, Z

)
Ω(X, W)−Ω

(
X, Z

)
Ω(Y, W)− 2 Ω

(
X, Y

)
Ω(Z, W). (244)

The pseudohermitian torsion of the sphere A = S2N+1 vanishes; i.e., τA = 0. Then, by
substitution from (244) into (229),

gθ

(
R∇(X, Y)Z, W)

= gθ(Y, Z) gθ(X, W)− gθ(X, Z) gθ(Y, W)

+g f
Θ
(

B( f )(X, W), B( f )(Y, Z)
)
− g f

Θ
(

B( f )(Y, W), B( f )(X, Z)
)

+(2λ− 1)
{

Ω(X, W)Ω(Y, Z)−Ω(Y, W)Ω(X, Z)
}

−2λ Ω(X, Y)Ω(Z, W)

−Ω(Y, Z) A(X, W)−Ω(X, W) A(Y, Z)

+Ω(X, Z) A(Y, W) + Ω(Y, W) A(X, Z)

+
(

f ∗gΘ
)(

U(X, W), U(Y, Z)
)
−
(

f ∗gΘ
)(

U(Y, W), U(X, Z)
)

−Ω(Y, Z)
(

f ∗gΘ
)(

U(X, W), T
)
−Ω(X, W)

(
f ∗gΘ

)(
U(Y, Z), T

)
+Ω(X, Z)

(
f ∗gΘ

)(
U(Y, W), T

)
+ Ω(Y, W)

(
f ∗gΘ

)(
U(X, Z), T

)
. (245)

The Ricci curvature of the Tanaka–Webster connection ∇ of (M, θ) is

Ric∇(V, W) = trace
{

U 7−→ R∇(U, W)V
}

for any V, W ∈ X(M). Let {Ea : 1 ≤ a ≤ 2n} be a local Gθ-orthonormal frame of H(M),
defined on an open subset Ω ⊂ M, so that {Ea , T : 1 ≤ a ≤ 2n} is a local gθ-orthonormal
frame of T(M). Then,

Ric∇(V, W) =
2n

∑
a=1

gθ

(
R∇(Ea , W)V, Ea

)
+ θ
(

R∇(T, W)V
)
.

As H(M) is parallel with respect to∇, the curvature transformation R∇(V, W) maps H(M)
into itself. Let us substitute X = W = Ea in (245) and take the sum over 1 ≤ a ≤ 2n. We
obtain, as Ω is skew-symmetric, trace(τ) = 0, and τ ◦ J + J ◦ τ = 0,

Ric∇(Z, Y) = 2(2λ + n− 1) gθ(Y, Z)

+g f
Θ
(

H( f ), B( f )(Y, Z)
)

−
2n

∑
a=1

g f
Θ
(

B( f )(Y, Ea), B( f )(Ea , Z)
)

+
(

f ∗gΘ
)(

traceGθ
ΠH(M) U, U(Y, Z)

)
−

2n

∑
a=1

(
f ∗gΘ

)(
U(Y, Ea), U(Ea , Z)

)
−Ω(Y, Z)

(
f ∗gΘ

)(
traceGθ

ΠH(M) U, T
)

+
(

f ∗gΘ
)(

U(Y, JZ), T
)
−
(

f ∗gΘ
)(

U(JY , Z), T
)

(246)

where
H( f ) := traceGθ

ΠH(M) B( f ) ∈ C∞(E( f )
)
.
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Let us set Z = Tα and Y = Tβ in (246) and contract with gαβ. We obtain

R = 2n(2λ + n− 1)

+g f
Θ
(

H( f ), gαβ B( f )(Tβ , Tα)
)

−gαβ
2n

∑
b=1

g f
Θ
(

B( f )(Tβ , Eb), B( f )(Eb , Tα)
)

+
(

f ∗gΘ
)(

traceGθ
ΠH(M) U, gαβ U(Tβ , Tα)

)
−gαβ

2n

∑
b=1

(
f ∗gΘ

)(
U(Tβ , Eb), U(Eb , Tα)

)
−i n

(
f ∗gΘ

)(
traceGθ

ΠH(M) U, T
)
+ 2 i

(
f ∗gΘ

)(
gαβ U(Tβ , Tα), T

)
, (247)

where R = gαβ Rαβ is the pseudohermitian scalar curvature of (M, θ) (see e.g., [3], p. 50).
Note that for every bilinear form B on T(M)

traceGθ
ΠH(M) B = gαβ B

(
Tα , Tβ

)
+ complex conjugate.

The identity (147) with τA = 0 is

B( f )(V, W) = B( f )(W, V)− 2 ( f ∗gΘ)(V, JW) T⊥A

for any V, W ∈ X(M); hence

B( f )(Tβ , Tα) = B(Tα , Tβ)− 2 i ( f ∗gΘ)(Tα , Tβ) T⊥A ,

yielding
H( f ) = 2 gβα B( f )

(
Tβ , Tα

)
+ 2 i gαβ ( f ∗gΘ)(Tα , Tβ) T⊥A . (248)

Note that for any X, Y ∈ H(M), as f is a CR map,(
f ∗gΘ

)
(X, Y) = g f

Θ
(

f∗X, f∗Y
)
= G f

Θ( f∗ , f∗Y) = ( f ∗GΘ)(X, Y),

that is, (
f ∗gΘ

)
(X, Y) = Gθ(X, Y). (249)

Hence, as f ∗gΘ is symmetric, and by (249),

2 gαβ ( f ∗gΘ)(Tα , Tβ) = traceGθ
ΠH(M) f ∗gΘ

=
2n

∑
a=1

(
f ∗gΘ

)
(Ea , Ea) =

2n

∑
a=1

Gθ(Ea , Ea),

that is,
gαβ ( f ∗gΘ)(Tα , Tβ) = n. (250)

Consequently, (248) simplifies to

gβα B( f )
(
Tβ , Tα

)
=

1
2

H( f )− 2 i n T⊥A . (251)

Next, by (146) with τA = 0,

U(V, W)−U(W, V) = Tor∇>(V, W)− Tor∇(V, W)

= −2 ( f ∗gΘ)(V, JW) T>A − 2
{

θ ∧ τ −Ω⊗ T
}
(V, W), (252)
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hence
U(Tα , Tβ) = U(Tβ , Tα) + 2 i ( f ∗gΘ)(Tα , Tβ) T>A − 2 i gαβ T,

yielding
traceGθ

ΠH(M) U = 2 gβα U(Tβ , Tα)

+2 i gαβ ( f ∗gΘ)(Tα , Tβ) T>A − 2 i n T

or, by (250),

gβα U(Tβ , Tα) =
1
2

traceGθ
ΠH(M) U − i n T>A + i n T. (253)

Substitution from (251)–(253) into (247) leads to

R = 2n(λ + n) +
1
2

∥∥H( f )
∥∥2

gΘ
− i n Θ f (H( f )

)
−gαβ

2n

∑
b=1

g f
Θ
(

B( f )(Tβ , Eb), B( f )(Eb , Tα)
)

+
1
2

∥∥traceGθ
ΠH(M) U

∥∥2
f ∗gΘ

− i n ( f ∗gΘ)
(
traceGθ

ΠH(M) U, T>A
)

−gαβ
2n

∑
b=1

(
f ∗gΘ

)(
U(Tβ , Eb), U(Eb , Tα)

)
+i ( f ∗gΘ)(traceGθ

ΠH(M) U, T) (254)

because, as H( f ) ∈ C∞(E( f )),

g f
Θ
(

H( f ), T⊥A
)
= g f

Θ
(

H( f ), TA
)
= Θ f (H( f )),(

f ∗gΘ
)(

T>A , T
)
= g f

Θ
(

f∗ T>A , f∗ T
)
= g f

Θ
(
TA , f∗ T

)
= Θ f ( f∗ T

)
= ( f ∗Θ)(T) = θ(T) = 1.

Let {ξσ : 1 ≤ σ ≤ 2k} be a local g f
Θ-orthonormal frame of E( f ), so that B( f ) = Bσ( f )⊗ ξσ

for some field Bσ( f ) of scalar C∞(M)-bilinear forms on T(M). Then,

Bσ( f )(V, W) = ( f ∗gΘ)(aξσ
V, W).

In particular, for any V, W, Y, Z ∈ X(M)

g f
Θ
(

B( f )(V, W), B( f )(Y, Z)
)
=

2k

∑
σ=1

( f ∗gΘ)(aσV, W) ( f ∗gΘ)(aσY, Z)

where aσ ≡ aξσ
. Consequently,

gαβ
2n

∑
b=1

g f
Θ
(

B( f )(Tβ , Eb), B( f )(Eb , Tα)
)

=
2n

∑
b=1

2k

∑
σ=1

gβα ( f ∗gΘ)(aσTβ , Eb) ( f ∗gΘ)(aσEb , Tα). (255)

Next, for any V, W ∈ X(M) and ξ ∈ C∞(E( f ))

( f ∗gΘ)(aξV, W) = g f
Θ
(

B( f )(V, W), ξ
)
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= g f
Θ
(

B( f )(W, V), ξ
)
− 2 ( f ∗gΘ)(V, JW) g f

Θ(T
⊥
A , ξ)

or
( f ∗gΘ)(aξV, W) = ( f ∗gΘ)(aξW, V)− 2 ( f ∗gΘ)(V, JW)Θ f (ξ). (256)

Therefore, the failure (as compared to the theory of isometric immersions) of the pseudo-
hermitian Weingarten operator aξ to be self-adjoint (with respect to f ∗gΘ) is compensated
by (256). Consequently,

( f ∗gΘ)(aσTβ , Ea) = ( f ∗gΘ)(aσEa , Tβ)− 2( f ∗gΘ)(Tβ , JEa)Θ f (ξσ),

and (255) becomes

gαβ
2n

∑
a=1

g f
Θ
(

B( f )(Tβ , Ea) B( f )(Ea , Tα)
)

= ∑
a, σ

gαβ ( f ∗gΘ)(aσEa , Tα) ( f ∗gΘ)(aσEa , Tβ)

−2 ∑
a, σ

Θ f (ξσ) gαβ ( f ∗gΘ)(aσEa , Tα) ( f ∗gΘ)(Tβ , JEa),

and, as {Ea : 1 ≤ a ≤ 2n} is Gθ-orthonormal,

−2 ∑
a, σ

gαβ ( f ∗gΘ)(aσEa , Tα) ( f ∗gΘ)(Tβ , JEa)

= −2 ∑
a, σ

gαβ ( f ∗gΘ)(aσEa , Tα) Gθ(Tβ , JEa)

= −2i ∑
a, σ

gαβ ( f ∗gΘ)(aσEa , Tα) Gθ(Tβ , Ea)

so that

gαβ
2n

∑
a=1

g f
Θ
(

B( f )(Tβ , Ea) B( f )(Ea , Tα)
)

=
1
2 ∑

a, σ

traceGθ
ΠH(M)

[
( f ∗gΘ)(aσEa , · )⊗ ( f ∗gΘ)(aσEa , · )

]
−2i ∑

a, σ

gαβ ( f ∗gΘ)(aσTβ , Tα). (257)

Starting again from

( f ∗gΘ)(aξ X, Y) = ( f ∗gΘ)(aξY, X)− 2 Ω(X, Y)Θ f (ξ)

for X = Tα, Y = Tβ, and ξ = ξσ, one has

( f ∗gΘ)(aσTα , Tβ) = ( f ∗gΘ)(aσTβ , Tα) + 2 i gαβ Θ f (ξσ)

or, by contraction with gαβ,

gαβ ( f ∗gΘ)(aσTα , Tβ) = gβα ( f ∗gΘ)(aσTβ , Tα) + 2 i n Θ f (ξσ),

yielding
traceGθ

ΠH(M)

(
f ∗gΘ

)
(aσ · , · )

= 2 gβα ( f ∗gΘ)(aσTβ , Tα) + 2 i n Θ f (ξσ). (258)

Finally, the identity

( f ∗gΘ)(aξ X, Y) = g f
Θ
(

B( f )(X, Y), ξ
)
, X, Y ∈ H(M)
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furnishes
traceGθ

ΠH(M) ( f ∗gΘ)(aξ · , · ) = g f
Θ
(

H( f ), ξ
)
. (259)

Therefore, the identities (258) and (259) yield

2 gβα ( f ∗gΘ)(aσ Tβ , Tα) = g f
Θ
(

H( f ), ξσ

)
− 2 i n Θ f (ξσ). (260)

Substitution from (260) into (257) gives

gβα ∑
a

g f
Θ
(

B( f )(Tβ , Ea), B(Ea , Tα)
)

=
1
2 ∑

a, b, σ

[(
f ∗gΘ

)(
aσ Ea , Eb

)]2
− 2 n ∑

σ

[
Θ f (ξσ)

]2 − i Θ f (H( f )
)
. (261)

Note that
2k

∑
σ=1

[
Θ f (ξσ)

]2
= ∑

σ

g f
Θ
(
T f

A , ξσ

)2
= ‖T⊥A ‖2

g f
Θ

.

Again, by (252) for V = Eb and W = Tα,

U(Eb , Tα) = U(Tα , Eb)− 2 i Gθ(Eb , Tα) T⊥A

so that
gαβ ∑

a
( f ∗gΘ)

(
U(Tβ , Ea), U(Ea , Tα)

)
= gαβ ∑

a
( f ∗gΘ)

(
U(Tβ , Ea), U(Tα , Ea)

)
−2 i gαβ ∑

a
( f ∗gΘ)

(
U(Tβ , Ea), T⊥A

)
Gθ(Ea , Tα)

=
1
2 ∑

a
traceGθ

ΠH(M) ( f ∗gΘ)
(
U( · , Ea), ( · , Ea)

)
−2 i gαβ ∑

a
θ
(
U(Tβ , Ea)

)
Gθ(Ea , Tα)

or
gαβ ∑

a
( f ∗gΘ)

(
U(Tβ , Ea), U(Ea , Tα)

)
=

1
2 ∑

a,b

∥∥U(Eb , Ea)
∥∥2

f ∗gΘ
− 2 i gαβ θ

(
U(Tβ , Tα)

)
. (262)

Substitution from (253) into (262) yields, by θ(T) = 1 and

θ(T>A ) = 1− ‖T⊥A ‖2
g f

Θ
, ( f ∗gΘ)(V, T>A ) = θ(V),

gβα ∑a g f
Θ
(

B( f )(Tβ , Ea), B(Ea , Tα)
)

= 1
2 ∑a, b, σ

[(
f ∗gΘ

)(
aσ Ea , Eb

)]2
− i θ

(
traceGθ

ΠH(M) U
)
+ 2 n ‖T⊥A ‖2

g f
Θ

.
(263)

Finally, let us substitute from (261) and (263) into (254) so as to obtain

R = 2n(λ + n + 1) +
1
2

(∥∥H( f )
∥∥2

g f
Θ
+
∥∥traceGθ

ΠH(M) U
∥∥2

f ∗gΘ

)
−1

2 ∑
a, b

{
∑
σ

[
( f ∗gΘ)(aσ Ea , Eb)

]2
+
∥∥U(Ea , Eb)

∥∥2
f ∗gΘ

}
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−i(n− 1)
{

Θ f (H( f )
)
+ θ
(
traceGθ

ΠH(M) U
)}

,

and the last term vanishes because of

Θ f (B( f )(X, Y)
)
+ θ
(
U(X, Y)

)
= g f

Θ
(

B( f )(X, Y), T⊥A
)
+ θ(∇>XY)

= g f
Θ
(

B( f )(X, Y), T⊥A
)
+ ( f ∗gΘ)(∇>XY, T>A )

by the pseudohermitian Gauss equation

= g f
Θ
(

D f
X f∗Y, T⊥A

)
+ g f

Θ( f∗∇>XY, f∗T>A )

= g f
Θ
(

D f
X f∗Y, T⊥A

)
+ g f

Θ(D f
X f∗Y, f∗T>A )

by T⊥A + f∗T>A = T f
A

= g f
Θ
(

D f
X f∗Y, T f

A
)
= Θ f (D f

X f∗Y
)
= 0

for any X, Y ∈ H(M), because H(A) is parallel with respect to D. We may conclude that

R = 2n(λ + n + 1) + 1
2

(∥∥H( f )
∥∥2

g f
Θ
+
∥∥traceGθ

ΠH(M) U
∥∥2

f ∗gΘ

)
− 1

2 ∑a, b

{
∑σ

[
( f ∗gΘ)(aσ Ea , Eb)

]2
+
∥∥U(Ea , Eb)

∥∥2
f ∗gΘ

}
,

(264)

yielding the inequality

R ≤ 2n(λ + n + 1) +
1
2

(∥∥H( f )
∥∥2

g f
Θ
+
∥∥traceGθ

ΠH(M) U
∥∥2

f ∗gΘ

)
with equality if and only if B( f )(Ea , Eb) = 0 and U(Ea , Eb) = 0. Theorem 1 is proved.

12. Final Comments and Open Problems

Proper holomorphic maps of balls Φ : BN → BN+1, N ≥ 2, and their boundary
values f : S2N−1 → S2N+1 are fairly well understood from the point of view of complex
analysis of functions of several complex variables. Here, BN+1 = {Z ∈ CN+1 : |Z| < 1}.
For instance, by a classic result of S.M. Webster (see [11]), if N ≥ 3 and Φ is C3 up to
the boundary, then Φ is linear fractional. While Webster’s theorem does not apply to the
case n = 2 (Alexander’s map Φ(z, w) =

(
z2 ,
√

2 z w , w2) is indeed a counterexample;
see [33]), proper holomorphic maps Φ : B2 → B3 that are C3 up to the boundary were fully
classified by J.J. Faran up to spherical equivalence (see [34]). [Two maps Φ, Ψ : B2 → B3
are spherically equivalent if Ψ = ζ ◦Φ ◦ ξ−1 for some ξ ∈ Hol(B2) and ζ ∈ Hol(B3).] Let
O(2, 3) be the set of all proper holomorphic maps from B2 into B3. Let P(2, 3) consist of all
Φ ∈ O(2, 3) such that Φ extends holomorphically past the boundary of B2, and let P∗(2, 3)
be the corresponding quotient space, modulo spherical equivalence. Faran’s result is that

P∗(2, 3) =
{
F, A0 , A1 , I

}
,

ΦF ∈ F, ΦAt ∈ At , ΦI ∈ I, t ∈ {0, 1},

ΦF(z, w) =
(
z3 ,
√

3 z w, w3), ΦA0(z, w) =
(
z2 ,
√

2 z w, w2),
ΦA1(z, w) =

(
z, zw, w2), ΦI(z, w) =

(
0, z, w

)
,

for any (z, w) ∈ B2. Let Cb be the boundary values of the class C ∈ P∗(2, 3); i.e., Cb
consists of all maps f : S3 → S5 such that j2 ◦ f = Φ ◦ j1 as Φ ranges over C. Here,
jN : S2N+1 → CN+1 denotes the inclusion. When it comes to pseudohermitian geometry,
however, the properties of the maps f ∈ Cb are not well understood so far. That is, aside



Axioms 2023, 12, 329 81 of 82

from the natural CR structures, when one endows S3 and S5 with the standard Riemannian
metrics (coinciding with the Webster metrics) associated with the canonical choice of contact
forms θ = i

2 (∂− ∂)|z|2 and Θ = i
2 (∂− ∂)|Z|2, the study of the geometry of the second

fundamental form of maps f ∈ Cb is an open problem. A pioneering paper in this direction
is [35], aiming to find subelliptic harmonic representatives of Cb for each of the four classes
C ∈ P∗(2, 3) (see Corollary 1 in [35], p. 1470).

A classification of CR maps f : S3 → Λ+ × iR3, where Λ+ = {(x1 , x2 , x3) ∈ R3 :
x2

1 + x2
2− x2

3 = 0, x3 > 0}, was undertaken by M. Reiter and D-N. Son (see [36]), whose list,
similar to Faran’s list, consists of four algebraic maps and classifies the proper holomorphic
maps Φ : B2 → D (with D ⊂ C3 biholomorphically equivalent to the bounded symmetric
domain D3 =

{
Z ∈ C3 : |Z| < 1, 1− 2|Z|2 +

∣∣Zτ Z
∣∣2 > 0

}
; see, e.g., [37]) that extend

past the boundary of B2. It is an open problem to investigate the geometry of the second
fundamental form of the CR maps in Reiter and Son’s list. Two of the maps in the list
admit higher dimensional analogs Φ : Bn → • and are rigid when n ≥ 4, in the sense of
M. Xiao and Y. Yuan [38]. A parallel between the Xiao–Yuan rigidity theory (op. cit.) and
the pseudohermitian analog to classical Riemannian rigidity (see, e.g., Theorem 6.2 in [10],
Volume II, p. 43) for CR immersions f : M→ S2N+1 will require a pseudohermitian version
of the Codazzi equation to be derived, by an elementary asymptotic analysis, as ε→ 0+,
from the Codazzi Equation (95) for the isometric immersion f : (M, gε( f ))→ (S2N+1 , gA

ε ).
The Authors are grateful to the anonymous referee for suggesting a connection between
the present paper and the work by Y. Li et al. [39].
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