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Abstract: This article considers heat transfer in a solid body with temperature-dependent thermal
conductivity that is in contact with a tank filled with liquid. The liquid in the tank is heated by
hot liquid entering the tank through a pipe. Liquid at a lower temperature leaves the tank through
another pipe. We propose a one-dimensional mathematical model that consists of a nonlinear PDE
for the temperature along the solid body, coupled to a linear ODE for the temperature in the tank,
the boundary and the initial conditions. All equations are converted into a dimensionless form
reducing the input parameters to three dimensionless numbers and a dimensionless function. A
steady-state analysis is performed. To solve the transient problem, a nontrivial numerical approach is
proposed whereby the differential equations are first discretized in time. This reduces the problem
to a sequence of nonlinear two-point boundary value problems (TPBVP) and a sequence of linear
algebraic equations coupled to it. We show that knowing the temperature in the system at time level
n − 1 allows us to decouple the TPBVP and the corresponding algebraic equation at time level n.
Thus, starting from the initial conditions, the equations are decoupled and solved sequentially. The
TPBVPs are solved by FDM with the Newtonian method.

Keywords: nonlinear; coupled PDE-ODE system; heat equation; TPBVP; finite difference method

MSC: 65M06; 65M20; 65M22; 65L10; 35K20

1. Introduction

This work investigates transient heat transfer in a solid body [1] with temperature-
dependent thermal conductivity. The body is in thermal contact with a tank filled with
a liquid at temperature T. Through one pipe, liquid at a higher temperature is entering
the tank. Through another pipe, liquid at temperature T is leaving the tank. Thus, the
liquid in the tank is being heated. Systems like this are encountered in engineering and
chemical engineering equipment, e.g., in hydronic heating devices and continuous stirred-
tank reactors (CSTR) [2,3]. Due to the symmetry of the considered system, the temperature
u in the solid body depends on one spatial variable only; hence, the problem is one-
dimensional. Since the thermal conductivity of the sloid depends on u, the heat equation
for the solid body is a nonlinear partial differential equation (PDE). Due to its importance,
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the equation has been studied extensively. Various numerical methods for solving the
equation have been developed [4–7]. For particular cases, analytical techniques have
been proposed [8–10]. At the liquid–solid contact surface, we apply a convection boundary
condition [11]. This condition connects the temperature T in the bulk of the liquid with the
temperature u and the temperature gradient ∂u/∂x at the surface. In this work, we assume
that the liquid in the tank is well stirred so that the temperature in the liquid remains
essentially uniform in space throughout the process (perfect mixing, ideal CSTR [2,3]).
Consequently, the energy-balance equation of the tank leads to a first-order linear ordinary
differential equation (ODE) for the temperature in the liquid T(t), where t is the time. The
equation contains the unknown temperature u at the liquid–solid contact surface. Thus,
we get a system with a coupled PDE and ODE. Coupled PDE-ODE systems are important
in science and engineering and are often studied in connection with control problems of
electromagnetic, mechanical, and chemical-reaction coupling [12–17]. Examples of systems
modeled by coupled PDEs and ODEs can be found in [18–20]. In general, decoupling the
PDE and the ODE is not a trivial task, and if possible, leads to a hard-to-handle integro-
differential system [12]. In the literature, there are mainly two strategies for numerical
solutions of nonlinear PDE-ODE systems. In the first strategy, called coupled, the PDE
and the ODE are solved together. Broadly speaking, there are two ways to do this. We
can discretize the whole system in the considered space-time domain, e.g., by using the
finite difference method (FDM), and then solve the obtained nonlinear algebraic system
using an iterative method, e.g., the Newtonian method. Alternatively, we can first linearize
the whole system and then solve the obtained sequence of linear PDE-ODE subsystems,
e.g., by FDM or the finite element method (FEM). Examples of techniques associated with
the first strategy include the nonlinear multigrid method [7,21], the full approximation
scheme (FAS) [22], the Newton multigrid method [23,24], and Newton-type linearization-
based methods [25]. The second strategy, called decoupled, in the context of the considered
problem, is the following. A guess is made for the temperature u on the contact surface
as a function of time. Using this guess, we can solve the ODE, obtaining the temperature
in the liquid T(t). By substituting T(t) into the boundary condition (BC), we can solve
the PDE, subject to the BC, separately from the ODE. The solution provides us with a new
function for the temperature u at the surface. The procedure is repeated until convergence.
In fact, the method is a fixed-point iteration method. Examples of problems solved by the
second strategy can be found in [26–28]. This method is not recommended for strongly
coupled systems.

In this work, we propose a new method to solve the coupled nonlinear PDE-ODE
system that does not fall into either of the described strategies. First, analogously to the
technique used in [29–31], the system is discretized in time using an implicit finite dif-
ference scheme. This results in a fully discretized ODE and a semi-discretized PDE. The
equations discretized in this way, together with the boundary conditions, can be converted
into a sequence of nonlinear two-point boundary value problems (TPBVP) [32–39] for the
unknown temperature in the solid and a sequence of linear algebraic equations for the
unknown temperature in the liquid. This, as shown in the article, effectively decouples
the PDE and the ODE because knowing the temperature in the liquid and along the solid
body at time level n− 1 allows us to decouple and solve the TPBVP and the correspond-
ing algebraic equation at time level n. Thus, by starting from the initial conditions and
sequentially decoupling and solving the TPBVPs and the algebraic equations, we obtain
the solution of the problem. Note that the method is essentially different from the method
of lines (MOL) [11,40], which is a traditional numerical approach to solving parabolic (and
other) PDEs, because the MOL first discretizes the PDE in space. This yields a system of
first-order ODEs with initial conditions, i.e., an initial value problem (IVP). Then, to solve
the IVP, one can use Runge–Kutta methods or other appropriate IVP techniques. Contrary
to this approach, we first discretize the equations in time, thereby reducing the problem
to a sequence of nonlinear TPBVPs. To solve the TPBVPs, we apply the FDM with the
Newtonian method [34–36], but many other methods can be used. An advantage of the
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proposed approach is that at each time level, we only have to solve one nonlinear TPBVP.
The Jacobian matrix for the Newtonian method is only N × N, where N is the number of
the space mesh-points. The method is unconditionally stable, fast, and easy to implement.

This article is structured in the following way. Section 2 presents the physical system
and the proposed mathematical model. In Section 3, all equations are converted into a
dimensionless form, and the mathematical problem is formulated in terms of the dimension-
less equations. A steady-state analysis is performed in Section 4. The proposed numerical
method is presented in Section 5. In this section, we convert the PDE-ODE system into a
sequence of TPBVPs. How to solve the TPBVPs through the FDM is shown in Section 6. In
Section 7, several computer experiments are presented, and the results are discussed.

2. Physical System and Mathematical Model

The physical system considered in the article is the following. A cylindrical solid body
is placed along the x-axis between x = 0 and x = L (Figure 1). The cylinder is laterally
insulated. The temperature in the solid body is denoted by u(x, t), where t is the time. Due
to the symmetry of the problem, the temperature is a function of one spatial variable only.
At x = 0, the body is in thermal contact with a tank of volume V filled with liquid. The area
of the contact surface is A. The temperature inside the tank is denoted by T(t). The liquid
in the tank is well stirred throughout the process, so the temperature is deemed essentially
uniform in the bulk. Through one pipe, a hot liquid at temperature Tr is entering the tank
at a constant volumetric flow rate Q. Through another pipe, a liquid at temperature T(t) is
leaving the tank at the same volumetric flow rate. Initially, the temperature in the body
and in the tank is T0, where T0 < Tr. At x = L, the temperature is kept constant at T0, but
other boundary conditions at x = L can also be applied.
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The mathematical model describing the heat transfer in the system consists of the
following equations. The heat equation for the solid body [1] is

ρcp
∂u(x, t)

∂t
=

∂

∂x

(
κ(u(x, t))

∂u(x, t)
∂x

)
, (1)

where κ is the thermal conductivity of the solid body, ρ is its density, and cp is the specific
heat capacity at constant pressure. The left-hand side of Equation (1) is the rate at which the
energy density in the solid body at position x increases. It should be equal to the negative
divergence of the heat flux vector at x, which in one dimension is just the right-hand side
of Equation (1). Equation (1) is a PDE for the unknown temperature u(x, t). In our model, κ
depends on u; hence, the PDE is nonlinear. The energy balance equation for the tank [2,3] is

d
dt

(
ρlcp,lVT(t)

)
︸ ︷︷ ︸

Rate of energy change

= ρlcp,lQ(Tr − T(t))︸ ︷︷ ︸
Rate of energy input

− AH(T(t)− u(0, t))︸ ︷︷ ︸
Rate of heat loss at the surface

, (2)

where H is the mean convective heat transfer coefficient, which is considered constant.
The density of the liquid is ρl , and its specific heat capacity at constant pressure is cp,l .
This is the well-known lumped capacitance model [1] applied to the liquid in the tank [2].
It follows naturally from the perfect mixing assumption [3], i.e., when no temperature
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gradient exists. The left-hand side of Equation (2) is the rate at which the energy in the
tank increases. It equals the rate at which energy is entering the tank with the hot incoming
liquid, minus the rate at which energy is leaving the tank with the outgoing liquid, minus
the rate at which energy is being transferred from the liquid to the solid body through the
contact surface. The transport of energy in the pipes is due to bulk motion of the fluid. This
transport mechanism is called advection. The transport of energy from the liquid to the
solid body is due to convection (convective heat transfer). Equation (2) is a linear ODE
for the unknown temperature in the tank T(t). This equation is coupled to the PDE in
Equation (1) because it contains the temperature at the contact surface u(0, t), which is an
output variable (dependent variable) of Equation (1). At x = 0, we apply the following
convection boundary condition [1,11]:

−κ(u(0, t))
∂u(x, t)

∂x

∣∣∣∣
x=0

= H(T(t)− u(0, t)). (3)

since κ depends on u, this condition is nonlinear. Note that, since Equation (3) contains the
unknown temperature in the tank T(t), we cannot solve the PDE, Equation (1), subject to
the boundary condition, Equation (3), separately from the ODE, Equation (2). Hence, the
PDE and the ODE are coupled. The initial conditions are

T(0) = T0, u(x, 0) = T0. (4)

at the right boundary, x = L, the temperature is kept constant at T0; i.e.,

u(L, t) = T0. (5)

the condition in Equation (5) is a Dirichlet boundary condition. Other boundary conditions,
e.g., a fixed flux (Neumann-like) or a convection condition (Robin-like), can also be applied
at x = L.

In the next section, in order to reduce the number of input parameters, we converted
the equations into a dimensionless form. Then, the mathematical problem is formulated in
terms of the dimensionless equations.

3. Dimensionless Equations and Formulation of the Mathematical Problem

The dimensionless temperature in the solid body and in the tank are defined as

Θ(x, t) =
u(x, t)− T0

Tr − T0
, (6)

Ψ(t) =
T(t)− T0

Tr − T0
, (7)

respectively. Note that u = T0 and T = T0 correspond to Θ = 0 and Ψ = 0, respectively;
and u = Tr and T = Tr to Θ = 1 and Ψ = 1. Let

λ(Θ(x, t)) = κ(u(x, t)). (8)

then, using Equations (6)–(8), Equations (1)–(3) become

∂Θ(x, t)
∂t

=
∂

∂x

(
λ(Θ(x, t))

ρcp

∂Θ(x, t)
∂x

)
, (9)

dΨ(t)
dt

=
1
ta
(1−Ψ(t))− 1

tc
(Ψ(t)−Θ(0, t)), (10)

−λ(Θ(0, t))
∂Θ(x, t)

∂x

∣∣∣∣
x=0

= H(Ψ(t)−Θ(0, t)), (11)



Axioms 2023, 12, 323 5 of 22

where
ta =

V
Q

, (12)

tc =
ρlcp,lV

HA
. (13)

both ta and tc have the dimension of time. The rate at which the temperature in the tank
Ψ increases equals the difference of the two terms in Equation (10). The first one is due
to energy transport by the liquid moving through the pipes (advection) and is inversely
proportional to ta. Hence, ta is a characteristic time related to advection. The second term is
due to convective heat transfer between the liquid and the solid body through the contact
surface at x = 0 and is inversely proportional to tc. Hence, tc is a characteristic time related
to convection. The right boundary condition is

Θ(L, t) = 0. (14)

the requirements that we impose on the thermal conductivity function λ(Θ) is that it is
positive and twice continuously differentiable. Let the thermal conductivity at Θ = 0 be λ0.
Then, the function λ(Θ) can be written in the form

λ(Θ) = λ0g(Θ), (15)

where g ∈ C2([0, 1]) is a dimensionless positive function with the property g(0) = 1. To con-
vert the thermal conductivity κ(u) into the form Equation (15), we have to solve Equation
(6) for u and substitute it into Equation (8), thereby getting λ(Θ). Then, g(Θ) = λ(Θ)/λ0,
where λ0 = λ(0). Often, in engineering handbooks, the thermal conductivity is given in the
form κ = κ0 ϕ

(
u/ure f

)
, where ure f is some reference temperature. Then,

λ0 = κ0 ϕ
(

T0/ure f

)
. More information on temperature-dependent thermal conductiv-

ity can be found in [10].
The dimensionless position and the dimensionless time are defined as

ξ =
x
L

, τ =
t
t
, (16)

where

t =
ρcpL2

λ0
. (17)

the dimensionless time variable τ is the Fourier number [41] at reference temperature T0
(θ = 0). Using the new variables ξ and τ, and

θ(ξ, τ) = Θ(x, t), ψ(τ) = Ψ(t), (18)

Equations (9)–(11), the boundary condition, Equation (14), and the initial conditions yield

∂θ(ξ, τ)

∂τ
=

∂

∂ξ

(
g(θ(ξ, τ))

∂θ(ξ, τ)

∂ξ

)
, (19)

dψ(τ)

dτ
=

1
τa
(1− ψ(τ))− 1

τc
(ψ(τ)− θ(0, τ)), (20)

−g(θ(0, τ))
∂θ(ξ, τ)

∂ξ

∣∣∣∣
ξ=0

= Bi(ψ(τ)− θ(0, τ)), (21)

θ(1, τ) = 0, (22)
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ψ(0) = 0, θ(ξ, 0) = 0, (23)

where
Bi =

HL
λ0

(24)

is the Biot number [42] at reference temperature T0 (θ = 0), and

τa =
ta

t
, τc =

tc

t
(25)

are dimensionless characteristic times. In Equations (19)–(21), the parameters τa, τc, and
Bi are given positive numbers, and g ∈ C2([0, 1]) is a given positive function. We have to
find θ(ξ, τ) and ψ(τ) by solving the system of Equations (19)–(23). The system consists of a
nonlinear PDE, Equation (19); a coupled linear ODE, Equation (20); a nonlinear boundary
condition, Equation (21), which couples the PDE to the ODE; a homogenous boundary
condition, Equation (22); and initial conditions, Equation (23).

Formally, the solution of the ODE Equation (20), subject to the first initial condition in
Equation (23), can be written as

ψ(τ) =
∫ τ

0

(
1
τa

+
θ(0, s)

τc

)
e(

1
τa +

1
τc )(s−τ)ds. (26)

that Equation (26) is a solution to Equation (20) can easily be checked by direct substa-
tion. The problem with Equation (26) is that the function θ(0, s) is unknown; hence,
the integration cannot be performed. Substituting Equation (26) into the boundary con-
dition Equation (21) decouples the PDE, Equation (19), subject to boundary conditions,
Equations (21) and (22), from the ODE, Equation (20), but this leads to an integro-differential
system which is hard to handle. In Section 5, we propose a numerical approach for solving
the system of Equations (19)–(23).

4. Steady-State Analysis

Let the steady-state temperature in the tank be ψs, and in the solid body θs(ξ):

ψs = lim
τ→∞

ψ(τ), θs(ξ) = lim
τ→∞

θ(ξ, τ). (27)

since ψs is independent of time, Equation (20) becomes

1
τa
(1− ψs)−

1
τc
(ψs − θs(0)) = 0. (28)

taking into account that τa/τc = ta/tc, the equation can be written as

ta

tc
=

1− ψs

ψs − θs(0)
. (29)

since the function θs(ξ) is independent of time, the heat equation for the solid body
Equation (19) becomes

d
dξ

(
g(θs)

dθs

dξ

)
= 0. (30)

let us consider the case g(θ) ≡ 1. Then, taking into account the second boundary condition,
θs(1) = 0, the solution is

θs(ξ) = θs(0)(1− ξ). (31)

the temperature gradient is
dθs(ξ)

dξ
= −θs(0). (32)
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therefore, the convection boundary condition, Equation (21), becomes

Bi =
θs(0)

ψs − θs(0)
. (33)

Equation (33), which holds for g(θ) ≡ 1, and Equation (29), uniquely determine
the steady-state temperature in the tank ψs and on the liquid–solid surface θs(0). As an
example, in Figure 2, we show the steady-state temperature profile for the case where
Bi = 3 and ta/tc = 2; hence, by Formulas (29) and (33), ψs = 2/3 and θs(0) = 1/2. On the
right, the temperature intervals [0, θs(0)], [θs(0), ψs], and [ψs, 1] are depicted. The ratio of
the length of the lower interval to the length of the middle interval equals the Biot number,
Bi, Equation (33)—i.e., three. The ratio of the length of the upper interval to the length of
the middle interval equals the ratio ta/tc in Equation (29), i.e., two.
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Figure 2. Steady-state temperature profile for g(θ) ≡ 1, Bi = 3, and ta/tc = 2.

5. Implicit Time Discretization and Sequential Decoupling

We introduce a time-mesh τn = n∆τ, n = 0, 1, 2, . . ., where ∆τ is the time-step, and
discretize the PDE, Equation (19), and the ODE, Equation (20), by replacing the time
derivatives with the backward finite differences. At τ = τn, n ≥ 1, we have

θ(ξ, τn)− θ(ξ, τn−1)

∆τ
+ O(∆τ) =

d
dξ

(
g(θ(ξ, τn))

dθ(ξ, τn)

dξ

)
, (34)

ψ(τn)− ψ(τn−1)

∆τ
+ O(∆τ) =

1
τa
(1− ψ(τn))−

1
τc
(ψ(τn)− θ(0, τn)), (35)

where τa and τc are defined in Equation (25). The proposed discretization scheme is implicit.
This ensures unconditional stability of the numerical method. Let ψn−1 and the function
θn−1(ξ) be some suitable approximations for ψ(τn−1) and θ(ξ, τn−1). By dropping the
O(∆τ) terms in Equations (34) and (35) and supplementing the two equations with the
boundary conditions Equations (21) and (22) at τ = τn, we obtain

θn(ξ)− θn−1(ξ)

∆τ
= ∂θ g(θn(ξ))

(
dθn(ξ)

dξ

)2
+ g(θn(ξ))

d2θn(ξ)

dξ2 , (36)

−g(θn(0))
dθn(ξ)

dξ

∣∣∣∣
ξ=0

= Bi(ψn − θn(0)), (37)

θn(1) = 0, (38)

ψn − ψn−1

∆τ
=

1
τa
(1− ψn)−

1
τc
(ψn − θn(0)), (39)

where ψn and θn(ξ) are approximations for ψ(τn) and θ(ξ, τn), respectively. Equation (36) is
a nonlinear second-order ODE for the unknown function θn(ξ). The ODE in Equation (36),
together with the boundary conditions of Equations (37) and (38), constitute a nonlinear
TPBVP. Equation (39) is a linear algebraic equation for the unknown ψn. Note that the
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TPBVP in Equations (36)–(38) contains the unknown ψn, and Equation (39) contains the
unknown θn(0); hence, Equations (36)–(38) and Equation (39) are coupled. Unlike the
original system in Equations (19)–(22), however, the system in Equations (36)–(39) allows
easy decoupling, provided ψn−1 is known. First, we express Equation (39) in the form

ψn = R
(

ψn−1

∆τ
+

1
τa

+
θn(0)

τc

)
, (40)

where

R =

(
1

∆τ
+

1
τa

+
1
τc

)−1
. (41)

substituting ψn Equation (40) into the first boundary condition of Equation (37), the TPBVP
in Equations (36)–(38) is transformed into

d2θn(ξ)

dξ2 = f
(

θn(ξ),
dθn(ξ)

dξ
; θn−1(ξ)

)
, (42)

−g(θn(0))
dθn(ξ)

dξ

∣∣∣∣
ξ=0

= Bi
(

R
(

ψn−1

∆τ
+

1
τa

+
θn(0)

τc

)
− θn(0)

)
, (43)

θn(1) = 0, (44)

where, for convenience, we have rewritten Equation (36) in the form of Equation (42) by
introducing the function

f
(

θn(ξ),
dθn(ξ)

dξ
; θn−1(ξ)

)
=

1
g(θn(ξ))

(
θn(ξ)− θn−1(ξ)

∆τ
− ∂θ g(θn(ξ))

(
dθn(ξ)

dξ

)2
)

. (45)

since ψn−1 in Equation (43) is just a known number, the TPBVP in Equations (42)–(44),
unlike Equations (36)–(38), contains only the unknown θn(ξ); hence, it is no longer coupled
to the algebraic equation in Equation (39). If θn−1(ξ) is given, we can solve the TPBVP in
Equations (42)–(44), obtaining θn(ξ). Then, using θn(0) in Equation (40), we can obtain
ψn. In other words, by knowing the temperature in the tank and along the solid body at
time level n− 1, we can decouple and solve the TPBVP Equations (42)–(44), obtaining the
temperature along the solid body at time level n. Then, using the temperature on the liquid–
solid contact surface at time level n, we can find, using Equation (40), the temperature
in the tank at time level n. For n = 1, 2, . . . . Equations (42)–(44) represent a sequence of
TPBVPs, and Equation (40) is a sequence of algebraic equations. Starting from the initial
conditions ψ0 = 0, θ0(ξ) = 0, we can solve the TPBVP of Equations (42)–(44) at time level
n = 1 and obtain θ1(ξ), and then, using Equation (40), ψ1. Next, using ψ1 and θ1(ξ), we
can solve the TPBVP for n = 2, obtaining θ2(ξ) and then ψ2, and so on. Thus, sequentially,
we decouple and solve the TPBVPs and the algebraic equations. This is the essence of the
proposed numerical method. In fact, using the described procedure, the solution of the
nonlinear coupled PDE-ODE system of Equations (19)–(23) comes down to solving, at each
time level n, the nonlinear TPBVP of Equations (42)–(44).

In the literature, there are many methods for numerical solutions of nonlinear TPB-
VPs [32–39]. Some of them linearize the ODE, e.g., by quasi-linearization [37] or Picard lin-
earization [35], and then solve the sequence of linear sub-problems by some linear method,
e.g., the collocation method [33] or the linear shooting-method [34]. Other methods rely on
replacing the TPBVP with a sequence of initial value problems, e.g., the shooting by New-
tonian method (nonlinear shooting method) [38] and the shooting-projection method [39].
The finite difference method (FDM) [34–36] is another important method whereby the ODE
is first discretized using finite differences, and then the obtained nonlinear system is solved
iteratively, e.g., by the Newtonian method. In this paper, we adopt the FDM because it is
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reliable, it is easy to implement, and it can handle a large variety of boundary conditions,
including the nonlinear condition of Equation (43). Not all available nonlinear methods
are appropriate for problems such as Equations (42)–(44), so as explained in [29], caution
should be exercised when choosing the particular numerical technique.

6. Solving the TPBVP via the FDM

We are going to solve the TPBVP in Equations (42)–(44) by the FDM with the Newton
iteration method for the solution of the arising nonlinear algebraic systems. For the
Newtonian method, we will need the partial derivatives of the function f in Equation (45),
so we calculate them here. The partial derivative of f with respect to the first variable θn is

∂1 f
(

θn(ξ),
dθn(ξ)

dξ
; θn−1(ξ)

)
=

1

(g(θn(ξ)))
2

((
1

∆τ
− ∂2

θθ g(θn(ξ))

(
dθn(ξ)

dξ

)2
)

g(θn(ξ))

−
(

θn(ξ)− θn−1(ξ)

∆τ
− ∂θ g(θn(ξ))

(
dθn(ξ)

dξ

)2
)

∂θ g(θn(ξ))

)
=

1
g(θn(ξ))

(
1

∆τ
− ∂2

θθ g(θn(ξ))

(
dθn(ξ)

dξ

)2

− f
(

θn(ξ),
dθn(ξ)

dξ
; θn−1(ξ)

)
∂θ g(θn(ξ))

)
.

(46)

the partial derivative of f with respect to the second variable dθn/dξ is

∂2 f
(

θn(ξ),
dθn(ξ)

dξ

)
= −2∂θ g(θn(ξ))

g(θn(ξ))

dθn(ξ)

dξ
. (47)

6.1. Discretizing the TPBVP with the FDM

We introduce the space mesh:

ξi = (i− 1)∆ξ, i = 1, 2, . . . , N, ∆ξ =
1

N − 1
. (48)

using the central difference approximations for dθn(ξ)/dξ and d2θn(ξ)/dξ2, the ODE of
Equation (42) is discretized on the mesh in Equation (48):

θn,i+1 − 2θn,i + θn,i−1

(∆ξ)2 = f (θn,i,Dθn,i; θn−1,i), i = 2, 3, . . . , N − 1. (49)

where

Dθn,i =
θn,i+1 − θn,i−1

2∆ξ
. (50)

in Equation (49) the unknowns θn,i approximate θn(ξi) with approximation error O
(
(∆ξ)2

)
.

The boundary condition, Equation (43), using O
(
(∆ξ)2

)
forward difference approximation

for the first derivative dθn(ξ)/dξ, yields

−g(θn,1)Dθn,1 = Bi
(

R
(

ψn−1

∆τ
+

1
τa

+
θn,1

τc

)
− θn,1

)
, (51)

where
Dθn,1 =

−θn,3 + 4θn,2 − 3θn,1

2∆ξ
. (52)

the second boundary condition is
θn,N = 0. (53)
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altogether, Equations (49), (51), and (53) make a system of N algebraic equations for the N
unknowns θn,i, i = 1, 2, . . . , N. The system is nonlinear.

6.2. Solving the Nonlinear System via the Newton Method

We introduce the vector Fn = [Fn,1, Fn,2, . . . , Fn,N ]
T with components

Fn,i = θn,i+1 − 2θn,i + θn,i−1 − (∆ξ)2 f (θn,i,Dθn,i; θn−1,i), i = 2, 3, . . . , N − 1, (54)

Fn,1 = ∆ξ

(
g(θn,1)Dθn,1 + Bi

(
R
(

ψn−1

∆τ
+

1
τa

+
θn,1

τc

)
− θn,1

))
, Fn,N = θn,N . (55)

using Equations (54) and (55), the nonlinear system in Equations (49), (51), and (53) can be
written as

Fn(θn) = 0, (56)

where θn = [θn,1, θn,2, . . . , θn,N ]
T . Let θ(k)

n be an approximation of θn. By expanding Fn(θn)

in Equation (56) around θ
(k)
n , we get

Fn

(
θ
(k)
n

)
+ J(k)n

(
θn − θ

(k)
n

)
+ · · · = 0 (57)

where J(k)n is the Jacobian of Fn with respect to θn evaluated at θ(k)
n :

J(k)n =
∂Fn

∂θn

(
θ
(k)
n

)
. (58)

by replacing in Equation (57) θn by θ
(k+1)
n and dropping the higher order terms, we obtain

θ
(k+1)
n = θ

(k)
n + δθ

(k)
n , k = 0, 1, 2, . . . (59)

where
δθ

(k)
n = −

(
J(k)n

)−1
Fn

(
θ
(k)
n

)
. (60)

this is the Newtonian iteration formula. In Equation (59), θ(k+1)
n is the next, in general

better, approximation of θn. As an initial approximation θ
(0)
n , we use θn−1, i.e., the solution

obtained at the previous time level.
Starting from θ

(0)
n , we can find each next approximation θ

(k+1)
n , k = 0, 1, . . ., using

Equation (59). If the sequence is convergent, then the limiting vector θn = limθ
(k)
n , k→ ∞

is a solution to the system in Equations (49), (51), and (53). In practice, the iteration
process is terminated when

∥∥∥δθ(k)
n

∥∥∥ < ε, where ‖·‖ is some suitably chosen norm, e.g., the
maximum norm, and ε is some small number. This inequality is called a stopping criterion.
The vector θ(k+1)

n is taken as an approximate solution to the system.
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6.3. Calculating the Elements of the Jacobian

Using Equation (54), we get the nonzero elements of rows i = 2, 3 . . . , N − 1 of the
Jacobian equation—Equation (58):

J(k)n(i,i−1) =
∂Fn,i

∂θn,i−1

∣∣∣∣
θn=θ

(k)
n

=

∂

∂θn,i−1

(
θn,i+1 − 2θn,i + θn,i−1 − (∆ξ)2 f (θn,i,Dθn,i; θn−1,i)

)∣∣∣∣
θn=θ

(k)
n

=

1− (∆ξ)2
(

∂1 f (θn,i,Dθn,i; θn−1,i)
∂θn,i

∂θn,i−1
+ ∂2 f (θn,i,Dθn,i)

∂Dθn,i

∂θn,i−1

)∣∣∣∣
θn=θ

(k)
n

=

= 1 +
∆ξ

2
∂2 f
(

θ
(k)
n,i ,Dθ

(k)
n,i

)
= 1 +

∆ξ

2
p(k)n,i ,

(61)

J(k)n(i,i) =
∂Fn,i

∂θn,i

∣∣∣∣
θn=θ

(k)
n

=

∂

∂θn,i

(
θn,i+1 − 2θn,i + θn,i−1 − (∆ξ)2 f (θn,i,Dθn,i; θn−1,i)

)∣∣∣∣
θn=θ

(k)
n

=

−2− (∆ξ)2
(

∂1 f (θn,i,Dθn,i; θn−1,i)
∂θn,i

∂θn,i
+ ∂2 f (θn,i,Dθn,i)

∂Dθn,i

∂θn,i

)∣∣∣∣
θn=θ

(k)
n

=

−2− (∆ξ)2∂1 f
(

θ
(k)
n,i ,Dθ

(k)
n,i

)
= −2− (∆ξ)2q(k)n,i ,

(62)

J(k)n(i,i+1) =
∂Fn,i

∂θn,i+1

∣∣∣∣
θn=θ

(k)
n

=

∂

∂θn,i+1

(
θn,i+1 − 2θn,i + θn,i−1 − (∆ξ)2 f (θn,i,Dθn,i; θn−1,i)

)∣∣∣∣
θn=θ

(k)
n

=

1− (∆ξ)2
(

∂1 f (θn,i,Dθn,i; θn−1,i)
∂θn,i

∂θn,i+1
+ ∂2 f (θn,i,Dθn,i)

∂Dθn,i

∂θn,i+1

)∣∣∣∣
θn=θ

(k)
n

=

1− ∆ξ

2
∂2 f
(

θ
(k)
n,i ,Dθ

(k)
n,i

)
= 1− ∆ξ

2
p(k)n,i .

(63)

in the above formulas,

Dθ
(k)
n,i =

θ
(k)
n,i+1 − θ

(k)
n,i−1

2∆ξ
, i = 2, 3, . . . , N − 1, (64)

q(k)n,i = ∂1 f
(

θ
(k)
n,i ,Dθ

(k)
n,i ; θn−1,i

)
=

1

g
(

θ
(k)
n,i

)( 1
∆τ
− ∂2

θθ g
(

θ
(k)
n,i

)(
Dθ

(k)
n,i

)2
− f

(
θ
(k)
n,i ,Dθ

(k)
n,i ; θn−1,i

)
∂θ g
(

θ
(k)
n,i

))
,

(65)

p(k)n,i = ∂2 f
(

θ
(k)
n,i ,Dθ

(k)
n,i

)
= −

2∂θ g
(

θ
(k)
n,i

)
g
(

θ
(k)
n,i

) Dθ
(k)
n,i , (66)

where

f
(

θ
(k)
n,i ,Dθ

(k)
n,i ; θn−1,i

)
=

1

g
(

θ
(k)
n,i

)
 θ

(k)
n,i − θn−1,i

∆τ
− ∂θ g

(
θ
(k)
n,i

)(
Dθ

(k)
n,i

)2
. (67)
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the first row of the Jacobian equation, Equation (58), concerns the first boundary condition.
Using the first equation in Equation (55), we obtain the nonzero elements of the first row:

J(k)n(1,1) =
∂Fn,1

∂θn,1

∣∣∣∣
θn=θ

(k)
n

=

∆ξ

(
∂θ g(θn,1)Dθn,1 + g(θn,1)

∂Dθn,1

∂θn,1
+ Bi

(
R
τc
− 1
))∣∣∣∣

θn=θ
(k)
n

=

1
2

∂θ g
(

θ
(k)
n,1

)(
−θ

(k)
n,3 + 4θ

(k)
n,2 − 3θ

(k)
n,1

)
− 3

2
g
(

θ
(k)
n,1

)
+ Bi

(
R
τc
− 1
)

∆ξ,

(68)

J(k)n(1,2) =
∂Fn,1

∂θn,2

∣∣∣∣
θn=θ

(k)
n

= ∆ξ

(
g(θn,1)

∂Dθn,1

∂θn,2

)∣∣∣∣
θn=θ

(k)
n

= 2g
(

θ
(k)
n,1

)
, (69)

J(k)n(1,3) =
∂Fn,1

∂θn,3

∣∣∣∣
θn=θ

(k)
n

= ∆ξ

(
g(θn,1)

∂Dθn,1

∂θn,3

)∣∣∣∣
θn=θ

(k)
n

= −1
2

g
(

θ
(k)
n,1

)
. (70)

the last row of the Jacobian concerns the second boundary condition. Using the second
equation in Equation (55), we obtain the only nonzero element of the last row:

J(k)n(N,N)
=

∂Fn,N

∂θn,N

∣∣∣∣
θn=θ

(k)
n

= 1. (71)

7. Computer Experiments and Discussion

In this section, we apply the proposed numerical approach to solve several examples
and discuss the obtained results. A MATLAB implementation of the numerical method is
given in Appendix A.

Example 1

In this example, we consider dimensionless thermal conductivity of the form

g(θ) = eµθ . (72)

problems with exponential dependence of the thermal conductivity on the temperature can
be found in [43,44]. Such dependence occurs in some materials, e.g., in silicon [43].

In the first experiment, we used Bi = 1 and

τa

τc
= 1, (73)

where τa and τc are the dimensionless characteristic times defined in Equation (25). The
considered time interval is

[
0, τf

]
, where τf = 5. The time interval is discretized by

M = 51 mesh-points; hence, the time-step is ∆τ = 0.1. The space-step is ∆ξ = 0.02. At
each time level, the Newton iteration is ended when the maximum norm of the difference
between two successive approximate solutions has become less than ε = 10−6.

Figure 3 shows the transient solution for τa = 1, τc = 1, and µ = −2, 0, 2. The results
were obtained by the MATLAB program given in Appendix A.

To interpret the results, let us consider the steady-state temperature profiles. At steady
state, the heat flux −g(θs)dθs/dξ should be the same at any ξ ∈ [0, 1] (see Equation (30)).
Hence, for a thermal conductivity value that decreases with temperature, we expect the
magnitude of the temperature gradient to be high in regions where the temperature is high.
This compensates for the low thermal conductivity in these regions. In regions where the
temperature is low, we expect low values for the temperature gradient. Conversely, for a
thermal conductivity that increases with temperature, the magnitude of the temperature
gradient should be high in regions with low temperatures, and vice versa. When the thermal
conductivity does not depend on the temperature, we expect a constant temperature
gradient. Thus, since for µ = −2, the thermal conductivity equation, Equation (72), is a



Axioms 2023, 12, 323 13 of 22

decreasing function of temperature, we get a convex steady-state temperature profile. For
µ = 0, since Equation (72) is constant, the steady-state temperature profile is a straight line.
For µ = 2, since Equation (72) is an increasing function, the steady-state profile is concave.
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views are shown, i.e., the temperature profiles at times τ = 0.1, 0.2, . . . , 5.0.

Next, we investigate how the temperature in the tank and on the liquid–solid contact
surface changes with the time τ for Bi = 1, a fixed ratio of τa/τc = 1, and variable values of
τa. Results are shown in Figure 4. As can be seen in the figure, although the values of the
steady-state temperatures for given g(θ) are uniquely determined by the Biot number and
the ratio of the characteristic times, the individual values of τa and τc are important and
control the rate and manner by which the steady-state is approached. The larger the value
of τa, the slower the approach.
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Figure 4. The temperature in the tank ψ (black) and on the contact surface of liquid–solid-body θ|ξ=0
(blue) as a function of the time τ for τa = τc = 0.5, τa = τc = 1, and τa = τc = 1.5 (the three curves in
each bundle). The thermal conductivity is g(θ) = eµθ , µ = −2, 0, 2.

Finally, we present the dimensionless heat flux −g(θ)∂θ/∂ξ through the liquid–solid
contact surface, i.e., at ξ = 0, and the dimensionless heat flux through the right boundary,
i.e., at ξ = 1, as a function of the time τ for Bi = 0.1, 1, 10, and τa = τc = 0.5. To increase
the accuracy, we have refined the mesh by using N = 501 space points and M = 501 time
points. The results are shown in Figure 5.

Note that, in order to get the heat flux, we have to multiply the dimensionless heat flux
by H(Tr − T0)/Bi. Hence, in Figure 5, it is misleading to compare directly the magnitudes
of the fluxes for different Biot numbers. As the results show, the heat flux through the liquid–
solid contact surface initially increases quickly, and at about τ = 3 practically “reaches” the
steady-state. The corresponding heat flux through the right boundary initially increases
very slowly but soon catches up and “reaches”, with some delay, the same steady-state
value. Although not clearly visible in the figure, close inspection and quantitative results
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show that the time derivative of the heat flux through the right boundary at τ = 0 is
practically zero. For a fixed Biot number, the steady-state value of the heat flux increases
with µ. The increase for Bi = 0.1, 1 is almost negligible, but the increase for Bi = 10 is
considerable. As can be seen in the figure, for Bi = 10, the steady-state flux for µ = 2 is more
than three times greater than the steady-state flux for µ = −2. We can say that the fluxes
are more strongly influenced by the nonlinearity parameter µ for high Biot numbers. An
interesting phenomenon can be observed for Bi = 10 and µ = −2. Instead of monotonically
increasing with time, the heat flux through the liquid–solid contact surface first reaches
a maximum and then decreases towards the steady-state value. The phenomenon is not
exclusive for high values of Bi and low values of µ, but depending on the values of τa and
τc, can be observed for other values of Bi and µ. To investigate the phenomenon, we have
conducted an experiment for Bi = 1, a fixed ratio of τa/τc = 1, and different values of τa.
The results are shown in Figure 6.
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Figure 5. The dimensionless heat flux through the contact surface liquid–solid-body (blue) and
through the right boundary (green) as a function of the time τ for τa = τc = 0.5 and three different
Biot numbers. The thermal conductivity is g(θ) = eµθ , µ = −2, 0, 2.
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Figure 6. The dimensionless heat flux through the contact surface liquid–solid-body (blue) and
through the right boundary (green) as a function of the time τ for Bi = 1, a fixed ratio of τa/τc = 1,
and τa = 1, 1/2, 1/4, 1/8, 1/16 (the top blue and the top green curves correspond to τa = 1/16). The
thermal conductivity is g(θ) = eµθ , µ = −2, 0, 2.

The results indicate that decreasing the value of τa while keeping the Biot number and
the ratio τa/τc fixed, results in a higher and sharper local maximum (peak) in the heat flux
through the liquid–solid contact surface. At the same time, the peak shifts towards smaller
times. Note that decreasing the characteristic time τa means that the rate of the energy
transfer by advection is increased. This can be achieved by increasing the volumetric flow
rate Q. Decreasing τa while keeping the ratio τa/τc fixed means that the characteristic time
τc must also be decreased; i.e., the rate of convective heat transfer must be increased. This
can be achieved by increasing H, e.g., by increasing the intensity of the stirring.

Example 2

In this example, we consider the transient behavior of the system for the case

g(θ) ≡ 1. (74)
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the considered time interval is τ ∈ [0, 5], and the time-discretization step ∆τ = 0.1. The
final state reached in each experiment is very close to the steady state, so we can investigate
the relationship between the dimensionless numbers Bi, ta/tc and the final temperature
reached in the tank and on the contact surface, and compare the results with those predicted
in Section 4. In the experiments, we used three different Biot numbers:

Bi =
1
4

, 1, 4. (75)

for each Biot number, we have used: (i) τa = 1/2, τc = 2 (ta/tc = 1/4), (ii) τa = 1, τc = 1
(ta/tc = 1), and (iii) τa = 2, τc = 1/2 (ta/tc = 4).

Each graph in Figure 7 shows the time evolution of the temperature profile in the
solid body (color) and in the tank (black) for a given Biot number Bi and ratio ta/tc. As the
results indicate, the temperature in the tank reaches high values when ta/tc is small. This
is to be expected since large values of tc, relative to ta, imply a low rate of convective heat
transport. Thus, the energy in the tank cannot be transferred fast enough from the tank to
the solid body, and the liquid in the tank gets heated considerably. For a fixed Biot number,
the lower the value of ta/tc, the higher the steady-state temperature in the tank. As usual,
low values of Bi imply a low magnitude of the temperature gradient in the solid body,
and high values of Bi, high magnitude of the temperature gradient. Finally, from Figure 7,
one can observe that the steady-state temperature in the tank, ψs, and at the surface, θs(0),
satisfy, as discussed in Section 4, Equations (29) and (33).
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Figure 7. Temperature profiles at times τ = 0.1, 0.2, . . . , 5.0 for three different Bio numbers and three
different ratios of the characteristic times. The thermal conductivity is g(θ) ≡ 1.

To investigate the convergence of the method, we obtained approximations of the
temperature in the tank ψl and on the liquid–solid surface θl |ξ=0 at time τ = 1 for

Nl = 2l+1 + 1, l = 1, 2, . . . , 6, (76)

where Nl is the number of space mesh points. The number of time mesh points used in the
experiment is M = 10, 001. The Biot number is Bi = 1, and the characteristic times are are
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τa = 1 and τc = 1. Since the exact solution is not available, we assumed that for l = 9, the
numerical results are sufficiently close to the exact values, and calculated the errors as

El = |ψl − ψ9|, el =
∣∣∣ θl |ξ=0 − θ9|ξ=0

∣∣∣, l = 1, 2, . . . , 6. (77)

The results are shown in Tables 1 and 2. Clearly, since refining the mesh by increasing
the number of sub-intervals twice reduces the error four times, the method is second-order
accurate with respect to the space step ∆ξ. This means that we can achieve high accuracy
using a relatively small number of space mesh-points, and hence, a small Jacobian.

Table 1. Approximation ψl of the temperature in the tank at time τ = 1 and the corresponding error
El for different numbers of space mesh points Nl .

l Nl−1 ψl El El−1/El

1 4 0.500861 0.001146
2 8 0.500007 0.000292 3.93
3 16 0.499788 0.000074 3.97
4 32 0.499733 0.000018 3.99
5 64 0.499719 0.000005 4.00
6 128 0.499716 0.000001 4.04

Table 2. Approximation θl |ξ=0 of the temperature on the liquid–solid surface at time τ = 1 and the
corresponding error el for different number of space mesh-points Nl .

l Nl−1 θl|ξ=0 el el−1/el

1 4 0.225643 0.001918
2 8 0.224178 0.000452 4.24
3 16 0.223835 0.000109 4.15
4 32 0.223752 0.000027 4.08
5 64 0.223732 0.000007 4.05
6 128 0.223727 0.000002 4.07

When the heat equation is discretized in time using explicit Euler method and in space
using central finite differences, we get FDM with the forward time center space (FTCS)
scheme [45]. For the case considered in this example, Equation (74), the FTCS method is
numerically stable if and only if the following condition is satisfied:

r = ∆τ/(∆ξ)2 ≤ 1/2. (78)

to compare the stability of our numerical scheme with the FTCS, we solve the problem for
Bi = 1, τa = τc = 1; and (i) ∆τ = 10−3, ∆ξ = 10−1, i.e., r = 0.1; (ii) ∆τ = 10−1, ∆ξ = 10−1,
i.e., r = 10; (iii) ∆τ = 10−1, ∆ξ = 10−3, i.e., r = 105. The solutions are shown in Figure 8.
Obviously, unlike FTCS, the method is unconditionally stable.
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Example 3

In this example, we consider three thermal conductivity functions g(θ) (Figure 9). The
first one is a decreasing function of temperature, the second one is increasing, and the third
reaches a maximum at about θ = 1/4 and then decreases to a value about 1/5 of its value at
θ = 0. Accordingly, the obtained steady-state temperature profiles are convex, concave, and
a profile with inflexion (Figure 10). In the experiment, we used dimensionless parameters
Bi = 4, τa = 1/2, τc = 2.
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Figure 9. Thermal conductivity functions g(θ) = 1/(4θ + 1) (green), g(θ) =
√

24θ + 1 (blue), and

g(θ) = exp
(

1− 16(θ − 1/4)2
)
+ θ/5 (red).
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Figure 10. In the top row, the temperature in the tank ψ(τ) (black) and the temperature in the solid
body θ(ξ, τ) (color) for various thermal conductivity functions g(θ) are shown. In the bottom row,
the corresponding temperature profiles at times τ = 0.1, 0.2, . . . , 5.0 are shown.

8. Conclusions

This article considered a PDE-ODE model for nonlinear heat transfer with convection
heating at the boundary. For the solution of the coupled PDE-ODE system, a new numerical
method was proposed that reduces the system to a sequence of TPBVPs. The method is
unconditionally stable, easy to implement, and fast. Computer experiments were performed
with various values of the input parameters, demonstrating their influences on the heat
transfer process. The steady-state temperatures are uniquely determined by the thermal
conductivity function, the Biot number, and the ratio of the two characteristic times. The
individual values of the characteristic times, however, control the rate and manner in
which the steady state is approached. The smaller the characteristic times, the faster
the approach. For small values of the characteristic times, an interesting phenomenon is
observed whereby the heat flux through the liquid–solid contact surface reaches a maximum
and then decreases towards the steady-state value. Decreasing the characteristic times
makes the maximum higher and sharper and shifts it to the smaller times.
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Nomenclature

Symbol Description Unit
t time s
x position m
u(x, t ) temperature in the solid body at position x and time t K
T(t) temperature in the tank and of the outgoing liquid at time t K
Tr temperature of the incoming liquid K
T0 initial temperature in the tank and along the solid body K
κ(u) thermal conductivity of the solid body at temperature u W/(m·K)
ρ density of the solid body kg/m3

ρl density of the liquid kg/m3

cp specific heat capacity (at constant pressure) of the solid body J/(kg·K)
cp,l specific heat capacity (at constant pressure) of the liquid J/(kg·K)

L length of the solid body m
A area of the contact surface liquid—solid body m2

V volume of the tank m3

Q volumetric flow rate of the incoming/outgoing liquid m3/s
H mean convective heat transfer coefficient W/

(
m2·K

)
Θ(x, t) = (u(x, t)− T0)/(Tr − T0), dimensionless temperature in the solid body
Ψ(t) = (T(t)− T0)/(Tr − T0), dimensionless temperature in the tank
λ(Θ) = κ(u), thermal conductivity of the solid body at Θ W/(m·K)
λ0 = λ(0), thermal conductivity of the solid body at Θ = 0 W/(m·K)
g(Θ) = λ(Θ)/λ0, dimensionless thermal conductivity of the solid body at Θ
ta = V/Q, characteristic time related to advection through the pipes s
tc = ρlcp,lV/(HA), characteristic time related to convection in the tank s
t = ρcpL2/λ0, characteristic time related to conduction in the solid body s
ξ = x/L, dimensionless position
τ = t/t, dimensionless time (Fourier number at θ = 0)
θ(ξ, τ) = Θ(x, t), dimensionless temperature in the solid body at ξ and τ

ψ(τ) = Ψ(t), dimensionless temperature in the tank at τ

g(θ) = g(Θ), dimensionless thermal conductivity of the solid body at θ

τa = ta/t, dimensionless characteristic time related to advection
τc = tc/t, dimensionless characteristic time related to convection
Bi = HL/λ0, Biot number at reference temperature θ = 0

Appendix A

The appendix provides a MATLAB implementation of the proposed numerical al-
gorithm. The presented code was used for solving example 1 in Section 6. It can easily
be altered to solve the other examples. To see the temperature in the tank and on the
surface, and the heat fluxes through the boundary surfaces as functions of time, one has to
uncomment the last six lines in the code.
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MATLAB code:

function main
mu=-2;
N=51; dx=1/(N-1);
M=51; tf=5; dt=tf/(M-1);
ta=1; tc=1; Bi=1; R=(1/dt+1/ta+1/tc)ˆ(-1);
t=dt*(0:M-1)';
x=dx*(0:N-1)';
T=zeros(M,1); Y=zeros(N,M); F=zeros(N,1);
J=zeros(N,N); J(N,N)=1;
for m=2:M % time level
y=Y(:,m-1);
delta=1;
while(delta>0.000001) % FDM + Newton
g=exp(mu*y(1)); gy=mu*g;
F(1)=g*(4*y(2)-3*y(1)-y(3))/2+dx*Bi*(R*(T(m-1)/dt+1/ta+y(1)/tc)-y(1));
F(N)=y(N);
J(1,1)=gy*(4*y(2)-3*y(1)-y(3))/2-3*g/2+dx*Bi*(R/tc-1);
J(1,2)=2*g; J(1,3)=-g/2;
for i=2:N-1
g=exp(mu*y(i)); gy=mu*g; gyy=mu*gy;
Dy=(y(i+1)-y(i-1))/(2*dx);
f=((y(i)-Y(i,m-1))/dt-gy*Dy*Dy)/g;
q=(1/dt-gyy*Dy*Dy-f*gy)/g;
p=-2*gy*Dy/g;
F(i)=y(i+1)-2*y(i)+y(i-1)-dx*dx*f;
J(i,i-1)=1+dx*p/2;
J(i,i)=-2-dx*dx*q;
J(i,i+1)=1-dx*p/2;

end
dy=-J\F; y=y+dy; % Newton iteration
delta=norm(dy,Inf);

end
T(m)=R*(T(m-1)/dt+1/ta+y(1)/tc);
Y(:,m)=y;
end
plot3(0,0,1); hold on;
xlim([-0.5 1]); ylim([0 tf]); zlim([0 1]);
a=zeros(1,m);
plot3([-.5+a;-.05+a],[t';t'],[T';T'],'k');
mesh(x,t,Y');
% plot3(-.5+a,t,T,'k');
% plot3(a,t,Y(1,:)','b');
% Flux_left=Bi*(T-Y(1,:)');
% plot3(a,t,Flux_left,'b');
% Flux_right=(-exp(mu*Y(N,:)).*(3*Y(N,:)-4*Y(N-1,:)+Y(N-2,:)))'/(2*dx);
% plot3(1+a,t,Flux_right,'g');

end

The notation used in the article and the corresponding variables used in the MATLAB
code is shown in Table A1.
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Table A1. Notation and corresponding MATLAB variables.

Notation in Article MATLAB Variable

µ mu
M M
N N
τf tf
τa ta
τc tc
∆τ dt
∆ξ dx
Bi Bi
R R
n + 1 m
i i
τn t(m)
ξi x(i)
ψn T(m)
θn,i Y(i,m)
θn Y(:,m)
θn−1 Y(:,m-1)

θ
(k)
n y

δθ
(k)
n dy

Fn

(
θ
(k)
n

)
F

J(k)n J∣∣∣∣∣∣δθ(k)
n

∣∣∣∣∣∣
∞

delta

θ
(k)
n,i

y(i)

g
(

θ
(k)
n,i

)
g

∂θ g
(

θ
(k)
n,i

)
gy

∂2
θθ g(θ(k)n,i ) gyy

Dθ
(k)
n,i

Dy

f
(

θ
(k)
n,i ,Dθ

(k)
n,i ; θn−1,i

)
f

q(k)n,i
q

p(k)n,i
p
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