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Abstract: In reliability and survival analysis, the time-to-failure data play an important role in the
development of the reliability and life characteristics of the products. In some cases, these kinds
of data are modeled using a competing risks model. The problem of conducting comparative life
testing under a competing risks model when the units come from different lines of production
has recently been addressed. In this paper, we address this problem when the life of the unit is
distributed using the Gompertz distribution, noting that the units come from two lines of production
and two independent causes of failure are activated. The data are collected under a joint generalized
type-II hybrid censoring scheme. Maximum likelihood estimators of the unknown parameters are
derived, along with the corresponding asymptotic confidence intervals. We also adopt two bootstrap
confidence intervals. Using independent gamma priors, the Bayes estimators relative to squared
error loss function are obtained with credible intervals. The properties and quality of estimators are
measured by performing a Monte Carlo simulation study. Finally, a real-life data set is analyzed to
discuss the applicability of the proposed methods to real phenomena. The optimal plan with respect
to comments on the numerical results is discussed in the conclusion.

Keywords: gompertz distribution; competing risks model; joint censoring schemes; generalized
type-II hybrid censoring scheme; maximum likelihood; parametric bootstrap; Bayes methods

1. Introduction

There are many situations in life-testing and reliability experiments in which units
are lost or removed from the test before failure. The data observed from such experiments
are called censored data. To save time and costs, censored data are used. Type-I and
Type-II censoring schemes are the two most frequently used censoring schemes. In Type-I
censoring, failures are observed until the pre-determined time τ (time censoring), while in
Type-II censoring (failure censoring), when the time of r failures is reached, the experiment
is terminated, where r is specified before experimenting with n items on the test: 0 < r < n.
Various modified censoring schemes such as progressive censoring and multiply censoring
are also available and are used to analyze the lifetime data. In different situations, it is
more common to provide the optimal test period and the corresponding number of failures
needed for statistical inference. A mixture of Type-I and Type-II censoring schemes is
known as a hybrid censoring scheme (HCS). This type of scheme has received considerable
attention among practitioners. Several HCSs have been introduced in the literature. For
example, Childs et al. [1] introduced the generalized Type-I and Type-II HCSs, Kundu and
Joarder [2] introduced the progressively Type-II HCSs, and Balakrishnan et al. [3] and Lone
and Panahi [4] introduced unified HCSs.

Axioms 2023, 12, 322. https://doi.org/10.3390/axioms12040322 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12040322
https://doi.org/10.3390/axioms12040322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2788-8946
https://orcid.org/0000-0001-5630-0203
https://orcid.org/0000-0002-3511-3326
https://orcid.org/0000-0001-5154-7477
https://doi.org/10.3390/axioms12040322
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12040322?type=check_update&version=3


Axioms 2023, 12, 322 2 of 22

In real-life experiments, a product can fail for a variety of reasons, and these reasons
are referred to as competing risks since we can only observe the product failing for one
reason but not the others. In reliability and survival analysis, this kind of observations are
modeled by a competing risks model. When using the competing risks models, our goal
is to assess the risk of a particular cause in relation to other potential causes for failure.
This model has been used earlier by different authors; for example, Cox [5] discussed the
competing risks model using the exponential populations.

Several properties of a competing risks model have been presented by Crowder [6], Bal-
akrishnan and Han [7], Modhesh and Abd-Elmougod [8], Bakoban and Abd-Elmougod [9],
Debnath and Mohiuddine [10] and Alghamdi [11]. Recently, the characteristics of the com-
peting risks model under the accelerated life test model were discussed by many authors; for
example, Ganguly and Kundu [12] and Hanaa and Neveen [13]. A joint censoring scheme
(JCS) may occur while conducting comparative life tests on products from different lines of
production under the same conditions. This type of censoring scheme has been discussed by
different authors. For example, Rao et al. [14] developed the rank order theory under JCS,
while Johnson and Mehrotra, [15] presented the most locally powerful rank tests under JCS.
Mehrotra and Bhattacharyya [16] used JCS to explore the problem of measuring the equality
of two exponential distributions. The confidence intervals using JCS regarding the exponen-
tial distribution were developed by Mehrotra and Bhattacharyya [17]. Balakrishnan and
Rasouli [18] and Rasouli and Balakrishnan [19] developed the exact likelihood inferences
for the exponential distributions under JSCs and progressive JSCs. The estimation and
prediction of two exponential distributions are discussed in the work of Shafay et al. [20].
Recently, this problem has been handled by Algarni et al. [21], Mondal-Kundu [22], Mondal-
Kundu [23], Almarashi et al. [24], Tahani el al. [25] and Abdulaziz et al. [26]. To describe
human mortality and provide actuarial tables, the Gompertz distribution was developed.
This distribution is widely used as a life time distribution in demography, actuarial, biology,
and medical research and plays a vital role in modelling survival times. Many product ’s
life times are modelled in reliability and survival studies by an increasing hazard rate or
a Gompertz distribution. Assuming skewness and kurtosis of this distribution are fixed
constants and independent of the distribution parameters, the Gompertz distribution has
been used to obtain age-specific fertility rates. Comparative life tests are adopted for prod-
ucts deriving from different lines of production under the same conditions in the presence
of the competing risks model. The problem of inference of unknown quantities in the
population is formulated using the population characteristics and censoring methodologies.
Here, we discuss these problems when the failure time of population units has a Gompertz
lifetime distribution with a CDF given by

F(t) = 1− exp
(
− θ

β
(exp(βt)− 1)

)
, t > 0, θ, β > 0. (1)

The Gompertz distribution has density function that is in zero mode when 0 < β ≤ θ
and hence monotonically decreases at (0, ∞). However, if β > θ, then take the mode
tmod = ( 1

β ) log( β
θ ); hence, it increases in (0, tmod) and decreases in (tmod, ∞). For more

details, see Soliman et al. [27,28]. The statistical inference of Gompertz distribution for
independent competing risks model was developed by Lodhi et al. [29] and for dependent
competing risks model was developed by Wang et al. [30]. Gompertz distribution reduces
to exponential distribution when β→ 0. As far as we know, no works were observed under
joint Type-II GHCS in the case of Gompertz distribution. In this paper, we adopted the joint
Type-II GHCS in comparative Gompertz populations in the presence of a competing risks
model. We used different methods of estimation: the ML, bootstrap and Bayes methods.
The model parameters and reliability of the system were estimated using point and interval
estimates. Different tolls such as MSE and coverage percentage were used to assess and
compare the results through Monte Carlo simulation studys. Finally, we analysed a real
data set to demonstrate our goals.
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The rest of the article is organized as follows: A description of a generalized hybrid
censoring scheme is presented in Section 2. The model and its assumptions are formulated
in Section 3. In Section 4, using joint Type-II GHC competing risks data, we discuss the
maximum likelihood estimation MLE of the parameters, as well as the reliability and
failure rate functions. Based on the asymptotic normality of the MLEs, the approximate
confidence intervals were obtained in the same section. Two bootstrap confidence intervals
(based on bootstrap-p and bootstrap-t methods) are discussed in Section 5. The Bayes
estimations under squared error loss function and gamma priors are obtained in Section 6.
An assessment and comparison of the results, using a Monte Carlo simulation study, are
reported in Section 7. Section 8 deals with a real-life data set for illustration purposes.
Finally, conclusions and concluding remarks are discussed in Section 9.

2. Generalized Hybrid Censoring Scheme

For HCS, suppose that (τ, m) are the ideal test time and the corresponding number
of failures. Hence, in Type-I HCS the test is terminated at min(τ, Tm), where Tm is the
failure time of m-th failure. The test is terminated at max(τ, Tm) in Type-II HCS. For an
extensive review of HCSs, see Childs et al. [1], Gupta and Kundu [31], Zhang et al. [32],
Kundu and Pradhan [33] and Algarn et al. [34]. The problems of the low expected number
of failures and long test time are still present in Type-I and Type-II HCSs. To solve these
problems, Chanrasekar et al. [35] established the generalized hybrid censoring scheme
(GHCS), which can be described as follows:

Type-I GHCS: Consider a life testing experiment with n units, two fixed positive
integers (m1, m2) and the ideal test time τ that was previously proposed, such that 1 <
m1 < m2 ≤ n. When the test is running, the failure time Ti, i ≥ 1 is recorded until the failure
Tm1 is observed. Hence, if Tm1 < τ, then the test is terminated at ω, where ω =min(Tm2 , τ).
If Tm1 > τ, the test is terminated at ω = Tm1 . Therefore, the data under Type-I GHCS are
t=(t1, t2, . . . , tk), where the number of failed units k and the corresponding test termination
time ω are defined by (k, ω) = (m1, Tm1) if Tm1 ≥ τ, (k, ω) = (m2, Tm2), if Tm1 < Tm2 ≤ τ,
(k, ω) = (m1 ≤ k ≤ m2, τ) , if Tm1 < τ < Tm2 . For more details, see Chakrabarty et al. [36].

Type-II GHCS: Assume that n units are involved in the experiment. The two times
(τ1, τ2), 0 < τ1 < τ2 ≤ ∞ and the integer number m have been proposed previously. When
the test is running the failure time Ti, i ≥ 1 is recorded until the time τ1 is observed. If Tm
< τ1, then the test is terminated at ω = τ1. However, if τ1 < Tm < τ2, the test is terminated
at ω = Tm and if τ1 < τ2 < Tm, the test is terminated at ω = τ2. Therefore, the data under
Type-II GHCS: t ={t1, t2, . . . , tk}, where k is the number of failed units. The integer number
k and the corresponding test terminated time ω are defined by (k, ω) = (k > m, τ1), if
Tm < τ1, (k, ω) = (m, Tm) if τ1 < Tm < τ2 and (k, ω) = (k < m, τ2), if τ1 < τ2 < Tm. In
this paper, we adopted Type-II GHCS, which guarantees to terminate the experiment at
a pre-fixed time τ2 >τ1, with τ1 and τ2 as the shortest and longest test times, respectively.
The time τ2 is the absolute longest time for which the experiment is allowed to continue,
which is suitable for many applications. Hence, experiments using Type-II GHCS are
guaranteed to be completed by time τ2, which is the suitable time for which the researcher
is willing to continue the experiment. The possibility of removing units from the test, other
than the last point, is not available in two GHCS schemes (Type-I and Type-II). However, the
possibility of removing survival units from the test is available in generalized progressive
censoring schemes (GPCSs); see Balakrishnan [37], Balakrishnan and Cramer [38] and
Elsherpieny et al. [39].

3. Modeling

Suppose that, from a population consisting of two lines Ω1 and Ω2, the joint random
sample of size N = n1 + n2 is randomly selected as (n1 from Ω1 and n2 from Ω2). We
considered only two potential causes of failure, and we adopted Type-II GHCS with two
times (τ1, τ2), 0 < τ1 < τ2 ≤ ∞ and the integer number m. During the experiment,
the failure time Ti, unit type ηi ={1, 0} (where 1 means the unit from the line Ω1 and 0
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the unit from the line Ω2) and the cause of failure ρi = {1, 2} (failure under causes one
or two) were recorded. When the first failure was observed, we recorded (t1, η1, ρ1);
when the second failure was observed, (t2, η2, ρ2) was recorded. Under Type-II GHCS,
the number of failure units and the corresponding test termination time were denoted
by (k, ω), respectively. The experiment was continued until the time τ1. If, Tm < τ1 then
the test was terminated at ω = τ1. However, if τ1 < Tm < τ2, the test was terminated at
ω = Tm and if τ1 < τ2 < Tm, the test was terminated at ω = τ2. Therefore, the observed
joint Type-II GHC competing risks data were defined by: t = {(t1, η1, ρ1), (t2, η2, ρ2),
. . . , (tk, ηk, ρk)}, where (k, ω) = (k > m, τ1), if Tm < τ1, (k, ω) = (m, Tm) if τ1 < Tm < τ2
and (k, ω) = (k < m, τ2), if τ1 < τ2 < Tm. The proposed model under joint Type-II GHC
competing risks data t included the following assumptions

1. The number of failures taken from line Ω1 is given by k1 =
k
∑

i=1
ηi and those from line

Ω2 are given by k2 =
k
∑

i=1
(1− ηi).

2. The number of failures taken from line Ω1 under cause j is given by m1j =
k
∑

i=1
ηi ∗

δ(ρ = j) and those from line Ω2 are given by m2j =
k
∑

i=1
(1− ηi) ∗ δ(ρ = j).

3. The latent failure time Ti is defined by Ti = min(Tis1, Tis2), and s is used to define the
unit type, i = 1, 2, . . . , k.

4. The i-th failure time Tisj of the line Ωs and cause j, i = 1, 2, . . . , k has the Gompertz
lifetime distribution with CDF given by

Fsj(t) = 1− exp
(
−

θsj

βs
(exp(βst)− 1)

)
, t > 0, θsj, βs > 0, s, j = 1, 2. (2)

5. The latent failure time Ti = min(Tis1, Tis2) has a Gompertz lifetime distribution with a
CDF given by

F(t) = 1− exp
(
− (θs1 + θs2)

βs
(exp(βst)− 1)

)
, t > 0, θsj, βs > 0. (3)

6. The integer number of failure msj is obtained from the line Ωs under j; s, j = 1, 2 have

the binomial distribution B
(

ks,
θsj

θs1+θs2

)
.

7. The likelihood function of the joint Type-II GHC competing risks data t ={(t1, η1,
ρ1), (t2, η2, ρ2), . . . , (tk, ηk, ρk)}, see Abdulaziz et al. [26] is given by

L(t|Θ) ∝
k

∏
i=1

{[
[ f11(ti)S12(ti)]

δ(ρi=1)[ f12(ti)S11(ti)]
δ(ρi=2)

]ηi

×
[
[ f21(ti)S22(ti)]

δ(ρi=1)[ f22(ti)S21(ti)]
δ(ρi=2)

]1−ηi
}

× [S11(ω)S12(ω)]n1−k1 [S21(ω)S22(ω)]n2−k2 , (4)

where fsj(.) and Ssj(.) are the density and reliability functions of type s and cause j,
where s, j = 1, 2 and δ(ρi = j) are defined by

δ(ρ = j) =
{

1, ρ = j
0, ρ 6= j

, j = 1, 2, (5)
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4. Maximum Likelihood Estimation

The likelihood function (4), under joint Type-II GHC competing risks data t ={(t1, η1,
ρ1), (t2, η2, ρ2), . . . , (tk, ηk, ρk)} of Gompertz distribution (2) is reduced to

L(Θ|t) ∝ θm11
11 θm12

12 θm21
21 θm22

22 exp

{
β1

k

∑
i=1

ηiti + β2

k

∑
i=1

(1− ηi)ti −
θ11 + θ12

β1

k

∑
i=1

ηi exp(β1ti)

− θ21 + θ22

β2

k

∑
i=1

(1− ηi) exp(β2ti)−
(n1 − k1)(θ11 + θ12)

β1
exp(β1ω)

− (n2 − k2)(θ21 + θ22)

β2
exp(β2ω) +

n1(θ11 + θ12)

β1
+

n2(θ21 + θ22)

β2

}
, (6)

where Θ is the model parameter vector, Θ = {θ11, θ12, θ21, θ22, β1, β2}. The natural loga-
rithms of the function (6) are given by

`(Θ|t) ∝ m11 log θ11 + m12 log θ12 + m21 log θ21 + m22 log θ22 + β1

k

∑
i=1

ηiti + β2

k

∑
i=1

(1− ηi)ti

− θ11 + θ12

β1

k

∑
i=1

ηi exp(β1ti)−
θ21 + θ22

β2

k

∑
i=1

(1− ηi) exp(β2ti)

− (n1 − k1)(θ11 + θ12)

β1
exp(β1ω)− (n2 − k2)(θ21 + θ22)

β2
exp(β2ω)

+
n1(θ11 + θ12)

β1
+

n2(θ21 + θ22)

β2
. (7)

4.1. Point Estimations

The MLE depends on the form of the likelihood equations, which can be obtained
from the log-likelihood function (7) after taking the partial derivatives with respect to the
parameters and equating these to zero. The first partial derivatives of (7) with respected to
θsj, s, j = 1, 2 are given by

∂`(Θ|t)
∂θ1j

=
m1j

θ1j
− 1

β1

k

∑
i=1

ηi exp(β1ti)−
n1 − k1

β1
exp(β1ω) +

n1

β1
= 0, (8)

and
∂`(Θ|t)

∂θ2j
=

m2j

θ2j
− 1

β2

k

∑
i=1

(1− ηi) exp(β2ti)−
n2 − k2

β2
exp(β2ω) +

n2

β2
= 0. (9)

Hence, the MLEs of the parameters θsj given βs are given by

θ̂sj(β1) =
msjβs

Ds
, s, j = 1, 2 (10)

where

D1 =
k

∑
i=1

ηi exp(β1ti) + (n1 − k1) exp(β1ω)− n1, (11)

and

D2 =
k

∑
i=1

(1− ηi) exp(β2ti) + (n2 − k2) exp(β2ω)− n2. (12)

The likelihood equations with respected to βs, s = 1, 2 are given by
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∂`(Θ|t)
∂β1

=
θ11 + θ12

β2
1

{
k

∑
i=1

ηi(1− β1ti) exp(β1ti) + (n1 − k1)(1− β1w) exp(β1ω)− n1

}

+
k

∑
i=1

ηiti =0 (13)

and

∂`(Θ|t)
∂β2

=
θ21 + θ22

β2
2

{
k

∑
i=1

(1− ηi)(1− β2ti) exp(β2ti) + (n2 − k2)(1− β2w) exp(β2ω)

−n2}+
k

∑
i=1

(1− ηi)ti = 0, (14)

The likelihood Equations (13) and (14) have shown that the ML estimators of the
model parameters βs, s = 1, 2 are reduced to two non-linear equations, which require an
iteration method to solve.

Theorem 1. For a given msk > 0, s, k = 1, 2, the conditional ML estimators of parameters βs are
presented by

βi+1
s = h(βi

s), (15)

where

h(βi
s) =



(m11+m12)

D1
k
∑

i=1
ηiti

{
k
∑

i=1
ηi(β1ti − 1) exp(β1ti) + n1(β1ω− 1) exp(β1ω) + n1

}
, s = 1

(m21+m22)

D2
k
∑

i=1
(1−ηi)ti

{
k
∑

i=1
(1− ηi)(β1ti − 1) exp(β1ti) + n1(β1ω− 1) exp(β1ω) + n2

}
, s = 2

(16)

Proof. From the iteration relation in (15) and fixed point method, the iteration is stopped
after |βi+1

s − βi
s| is sufficiently small. For fixed point theorem and its applications one can

refer to Abdul Mannan et al. [40]. By substituting from (10) into (13) and (14). Using the
properties of the operator-function in (16), we can immediately obtain the proof.

Remark 1. The iteration procedure needs a suitable initial value, which can be obtained using the
profile likelihood function given by

g(β1, β2|t) = m11 log
m11β1

D1
+ m12 log

m12β1

D1
+ m21 log

m21β2

D2
+ m22 log

m22β2

D2

+ β1

k

∑
i=1

ηiti + β2

k

∑
i=1

(1− ηi)ti − (m11 + m12 + m21 + m22). (17)

The ML estimate of parameters θsj can be obtained from (10) by substituting the values of βs

by β̂s. Using the invariance property of MLEs, the ML estimators of reliability function and the
corresponding failure rate function can be obtained from

Ŝsj(t) = exp

(
−

θ̂sj

β̂s
(exp(β̂st)− 1)

)
, (18)

and
ĥsj(t) = θ̂sj exp(β̂st), (19)
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in which we replace θsj and βs with their MLEs

Remark 2. It should be noted that it is more difficult to formulate the exact distributions of θ̂1j and
θ̂2j, which are specified as a combination of discrete and continuous distributions; see Kundu and
Joarder [2]. The estimators of the parameters, reliability and failure rate functions are formulated
with respect to the value of integers msj. Therefore, when using the value of m1j = (0 or k1), and
m2j = (0 or k2), the estimates θ̂1j and θ̂2j, respectively, are not exist.

4.2. Interval Estimate

In many cases, providing an interval of values that may contain the parameter’s true
value with some degree of certainty is preferable to only reporting a point estimate of the
unknown parameter. As the exact distributions of the MLEs are difficult to determine,
in this subsection, we investigate the asymptotic confidence intervals of ACIs based on
the asymptotic normality of MLEs. The definition of the Fisher information matrix in
the literature provides the negative expectation of the second partial derivatives of the
log-likelihood function. The asymptotic confidence intervals are formulated with respect
to the Fisher information matrix of the model parameters. However, in different cases,
the problem of obtaining the expectation of second partial derivatives is more serious,
especially in models with high-dimensional cases. Therefore, the observed information
matrix was adopted as the natural alternative to the Fisher information matrix. The
observed information matrix of the model parameters Θ = {θ11, θ12, θ21, θ22, β1, β2} is
defined by the formula

i(Θ|t)−
(

∂2`(Θ|t)
∂Θi∂Θl

)
, i, l = 1, 2, . . . , 6, (20)

where the second derivatives are given by

∂2`(Θ|t)
∂β2

1
=

θ11 + θ12

β3
1

{
k

∑
i=1

ηi

[
−(β1ti)

2 + 2β1ti − 2
]

exp(β1ti)

+(n1 − k1)
[
−(β1w)2 + 2β1w− 2

]
exp(β1w)− n1

}
, (21)

∂2`(Θ|t)
∂β2

2
=

θ21 + θ22

β3
2

{
k

∑
i=1

(1− ηi)
[
−(β2ti)

2 + 2β2ti − 2
]

exp(β2ti)

+(n2 − k2)
[
−(β2w)2 + 2β2w− 2

]
exp(β2w)− n2

}
, (22)

∂2`(Θ|t)
∂θ2

sj
=
−msj

θ2
sj

∣∣∣∣∣
s, j=1,2

, (23)

∂2`(Θ|t)
∂θsj∂θil

= 0, For each sj 6= il, (24)

∂2`(Θ|t)
∂β1∂θ1j

=
∂2`(Θ|t)
∂θ1j∂β1

=
1
β2

1

{
k

∑
i=1

ηi(1− β1ti) exp(β1ti) + (n1 − k1)(1− β1ω) exp(β1ω)

−n1

β2
1

}
, j = 1, 2, (25)
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∂2`(Θ|t)
∂β2∂θ2j

=
∂2`(Θ|t)
∂θ2j∂β2

=
1
β2

2

{
k

∑
i=1

(1− ηi)(1− β2ti) exp(β2ti) +
n2

β2
2
(1− β2ω) exp(β2ω)

−n2

β2
2

}
, j = 1, 2, (26)

and

∂2`(Θ|t)
∂β1∂θ2j

=
∂2`(Θ|t)
∂β2∂θ1j

=
∂2`(Θ|t)
∂θ2j∂β1

=
∂2`(Θ|t)
∂θ1j∂β2

=
∂2`(Θ|t)
∂β1∂β2

=
∂2`(Θ|t)
∂β2∂β1

= 0. (27)

The observed information matrix at the estimate value of model parameters Θ̂ = {θ̂11,
θ̂12, θ̂21, θ̂22, β̂1, β̂2} is denoted by i0(Θ|t)

i0(Θ|t) = −
(

∂2`(Θ|t)
∂Θi∂Θl

)
Θ̂={θ̂11,θ̂12,θ̂21,θ̂22,β̂1,β̂2}

, i, l = 1, 2, . . . , 6, (28)

For the model parameter Θ = {θ11, θ12, θ21, θ22, β1, β2}, ,the approximate distribution
of MLE Θ̂ is such that (Θ̂−Θ) has a normal N(Θ, i0(Θ|t) distribution, where (i−1

0 (Θ|t)
denotes the inverse of the observed Fisher information matrix. The approximate (1− 2α)%
confidence intervals of the model parameters are given by

θ11 ∓ zαe11, θ12 ∓ zαe23
θ21 ∓ zαe33, θ22 ∓ zαe44
β1 ∓ zαe55, β2 ∓ zαe66

, (29)

where eii, i = 1, . . . , 6 are non-zero values of the elements of diagonal of i−1
0 (Θ|t) and the

value of zα is a standard normal value computed under the significance level α.
Equation (29) has shown that the lower bound of interval estimate can be of a negative

value. Hence, the asymptotic distribution of logΘi, i = 1, 2, . . . , 6 can be described by the
delta method of the logarithmic transformation; see [41,42].

The pivotal Z =
logΘi−logΘ̂i

Var(logΘ̂i)
has normal properties, with mean 0 and variance 1.

Therefore, 100(1− 2α)% approximate interval estimators of Θ = {θ11, θ12, θ21, θ22, β1, β2}
can be defined by Θ̂i

exp
(

γα

√
Var( log Θ̂i)

) , Θ̂i exp
(

γα

√
Var( log Θ̂i)

), (30)

where Var(log Θ̂i) = Var(Θ̂i)

Θ̂i
and i = 1, 2, . . . , 6; for more details, see Shih and Emura [43].
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5. Bootstrap Confidence Intervals

The bootstrap method is a resampling technique for statistical inference that can be
used to construct confidence intervals (CIs) for the model parameters. In the literature,
the bootstrap technique is frequently used to gauge an estimator’s bias and variance. This
technique is widely used in calibrate hypothesis tests. There are two types of bootstrap
techniques, parametric and nonparametric techniques; see Davison and Hinkley [44] and
Efron and Tibshirani [45]. In the parametric bootstrap technique, the percentile bootstrap-p
and bootstrap-t techniques are applied; see Efron [46] and Hall [47]. In this section, we
adopted the percentile bootstrap-p and bootstrap-t techniques to formulate the confidence
intervals of the model parameters, which can be implemented with the following algorithm
(Algorithm 1).

Algorithm 1 Percentile bootstrap-p and bootstrap-t confidence interval.

Step 1:For given the original joint competing risks Type-II GHC data t ={(t1, η1, ρ1), (t2, η2,
ρ2), . . . , (tk, ηk, ρk)}, compute the ML estimates of the model parameters Θ̂= {θ̂11,
θ̂12, θ̂21, θ̂22, β̂1, β̂2}.

Step 2:Generate two samples of size n1 from Gompertz(β̂1, θ̂11 + θ̂12) and sample of size n2

from Gompertz(β̂2, θ̂21 + θ̂22).
Step 3:For a given (τ1, τ2) and m, generate the joint Type-II GHC competing risks data

defined by t∗={(t∗1 , η1, ρ1), (t∗2 , η2, ρ2), . . . , (t∗k , ηk, ρk)}.
Step 4:Using the bootstrap sample t∗, compute the integers k, k1, k2 and determine the

termination time ω.
Step 5:The numbers of failure msj (obtained from the line Ωs under the obtained j, where

s, j = 1, 2) are generated from the binomial distribution with parameters ks and
θsj

θs1+θs2
.

Step 6:The bootstrap estimates Θ̂∗= {θ̂∗11, θ̂∗12, θ̂∗21, θ̂∗22, β̂∗1, β̂∗2} are computed using (10)
and (15).

Step 7:Repeat Steps (2–6) N times.

Step 8:The resulting bootstrap estimates are arranged in ascending order, (Θ̂∗(1)i , Θ̂
∗(2)
i ,

. . . , Θ̂
∗(N)
i ), i = 1, 2, . . . , 6.

Percentile bootstrap confidence interval (PBCI)
Let z(z) = P(Θ̂∗i 6 z), i = 1, 2, . . . , 6 be the empirical cumulative distribution

function of Θ̂∗i ; then, the point bootstrap estimate of Θi is given by

Θ̂i(boot) =
1
N

N

∑
i=1

Θ̂
∗(i)
i . (31)

The corresponding 100(1− 2α)% PBCIs are given by

(Θ̂
∗(Nα)
i , Θ̂

∗(N(1−α)
i ), (32)

where Θ̂∗i = z−1(z).
Bootstrap-t confidence interval (BTCI)

From the ascending order sample (Θ̂
∗(1)
i , Θ̂

∗(2)
i , . . . , Θ̂

∗(N)
i ), i = 1, 2, . . . , 6, we built

the order statistics values ∆∗(1)i < ∆∗(2)i < · · · < ∆∗(N)
i , where

∆∗[l]i =
Θ̂
∗(i)
i − Θ̂i√

var
(

Θ̂
∗(i)
i

) , l = 1, 2, . . . , N, i = 1, 2, 3, 4, 5, 6. (33)
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Hence, 100(1− 2α)% BTCIs are given by(
∆̃∗iboot-t(α), ∆̃∗iboot-t(1−α)

)
, (34)

where ∆̃∗lboot-t is given by

∆̃∗iboot-t = ∆̂∗i +
√

Var(∆̂∗i )z
−1(z), (35)

and z−1(z) = P(∆̂∗i 6 z) is the cumulative distribution function of ∆̂∗i .

6. Bayesian Approach

In this section, to obtain the joint Type-II GHC competing risks data t ={(t1, η1,
ρ1), (t2, η2, ρ2), . . . , (tk, ηk, ρk)}, we consider the problem of the Bayesian estimation of
model parameters. We assume that the prior distributions for the unknown parameters are
independent gamma priors. Therefore, the prior information formulated for the parameter
vector Θ = {θ11, θ12, θ21, θ22, β1, β2} as

Θi ∝ Θ
ai−1
i exp(−biΘi), Θi > 0, ai, bi > 0, i = 1, 2, 3, 4, 5, 6. (36)

Hence, the joint prior density function of the model parameters is given by

Π∗(Θ) =
6

∏
i=1

bai
i

Γ(ai)
Θ

ai−1
i exp(−biΘi). (37)

The joint posterior density function of the model parameters is given by

Π(Θ|t) = Π∗(Θ)× L(Θ|t)∫
Θ

Π∗(Θ)× L(Θ|t)× dΘ
∝ Π∗(Θ)× L(Θ|t). (38)

Inserting (6) and (37) in (38) and ignoring the additive constant, the joint posterior
density can be expressed as

Π(Θ|t)∝ θm11+a1−1
11 θm12+a2−1

12 θm21+a3−1
21 θm22+a4−1

22 βa5−1
1 βa6−1

2 exp

{
β1

k

∑
i=1

ηiti

+β2

k

∑
i=1

(1− ηi)ti −
θ11 + θ12

β1

k

∑
i=1

ηi exp(β1ti)−
θ21 + θ22

β2

k

∑
i=1

(1− ηi) exp(β2ti)

− (n1 − k1)(θ11 + θ12)

β1
exp(β1ω)− (n2 − k2)(θ21 + θ22)

β2
exp(β2ω) +

n1(θ11 + θ12)

β1

+
n2(θ21 + θ22)

β2
− b1θ11 − b2θ12 − b3θ21 − b4θ22 − b5β1 − b6β2

}
. (39)

Under the squared error loss (SEL) function, the Bayes estimate of the parameter is
the posterior mean. Then, the Bayes estimate of the parameters or any function of the
parameters, such as reliability or failure rate functions, say Ψ(Θ), is given by

Ψ̂B(Θ) =
∫
Θ

Ψ(Θ)Π(Θ|t)dΘ. (40)
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Equation (40) shows that the Bayes estimate of Ψ(Θ) needs to compute a high-
dimensional integral. Appropriate numerical methods could be used to approximate
Bayesian estimation.

One of the most common methods applied in this paper is the Markov Chain Monte
Carlo method (MCMC method). Compared with traditional methods, the MCMC method
is more flexible and provides an alternative approach to parameter estimation. The key
to the MCMC technique is obtaining posterior distribution in the empirical form and
generating MCMC samples from the posterior distribution, and then computing Bayes
estimators and constructing the associated credible intervals. Therefore, we describe this
technique as follows.

From Equation (39), the posterior full conditional density functions of the parameters
and data can be obtained as

Πj(θ1j|Θ−θ1j
,t) ∝ θ

m1j+aj−1
1j exp

{
−bjθ1j −

θ1j

β1

k

∑
i=1

ηi exp(β1ti)−
(n1 − k1)θ1j

β1
exp(β1ω)

+
n1θ1j

β1

}
, (41)

Πj+2(θ2j|Θ−θ2j
,t) ∝ θ

m1j+aj+2−1
2j exp

{
−bj+2θ2j −

θ2j

β2

k

∑
i=1

(1− ηi) exp(β2ti)

−
(n2 − k2)θ2j

β2
exp(β2ω) +

n2θ2j

β2

}
, (42)

Π5(β1|Θ−β1
,t)∝ βa5−1

1 exp

{
β1

k

∑
i=1

ηiti −
θ11 + θ12

β1

k

∑
i=1

ηi exp(β1ti)

− (n1 − k1)(θ11 + θ12)

β1
exp(β1ω)− b5β1 +

n1(θ11 + θ12)

β1

}
, (43)

and

Π6(β2|Θ−β2
,t)∝ βa6−1

2 exp

{
β2

k

∑
i=1

(1− ηi)ti −
θ21 + θ22

β2

k

∑
i=1

(1− ηi) exp(β2ti)

−n2(θ21 + θ22)

β2
exp(β2ω)− b6β2 +

n2(θ21 + θ22)

β2

}
, (44)

where j = 1, 2 and, for example, (θ11|Θ−θ11 , t) mean (θ11|θ12, θ21, θ22, β1, β2, t). The full
conditional posterior distributions show that the posterior distribution is reduced to four
gamma distributions, for which any conventional methods of generating random numbers
can be used. And two general unknown functions make it impossible to generate random
samples directly from the conditional posterior distributions. Therefore, to generate random
samples from the two unknown distributions, the Metropolis–Hastings (M–H) algorithm
with normal proposal distribution can be used; see [48]. The following steps describe the
algorithm used to generate from the posterior distribution (Algorithm 2).
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Algorithm 2 Gibbs with M-H sampler algorithms.

Step 1:Begin with the indicated number J = 1 and the initial parameter values Θ(0)= {θ̂11,
θ̂12, θ̂21, θ̂22, β̂1, β̂2}.

Step 2:The values θ
(J)
1j and θ

(J)
2j are generated from gamma distributions given by (40)

and (41), respectively, j = 1, 2.
Step 3:The values β

(J)
j generated under M–H algorithms with a normal proposal distri-

bution with a mean β
(J−1)
j and variance ej+4 j+4, obtained from an approximate

information matrix, j = 1, 2, as follows

(I) For the index j = 1, 2, begin with starting points β
(J−1)
j , where β

(0)
j = β̂ j.

(II) Generate a candidate sample points β
(∗)
j , from N(β(J−1)

j , ej+4 j+4), as proposal
distributions.

(III) Compute the probability (the acceptance probability) from (43) and (44)

Pj

(
β
(J−1)
j , β

(∗)
j

)
= min

1,
Πj+4(β

(∗)
j |Θ−1,t)

Πj+4(β
(J−1)
j |Θ−1,t)

. (45)

(IV) Generate Uj from uniform (0, 1).

(V) If Uj ≤ Pj

(
β
(J−1)
j , β

(∗)
j

)
, we accept the candidate sample points β

(∗)
j as β

(J)
j .

Otherwise, the values β
(∗)
j are rejected and β

(J)
j = β

(J−1)
j is set.

Step 4:Put J = J + 1
Step 5:Repeat steps (2–4) N times.

Step 6:Put the generated parameter vector Θ
(J)
i in ascending order; for example, Θ

[J]
i ,

i = 1, 2, . . . , 6.

6.1. MCMC Bayesian Point Estimations

The initial simulated variants of the algorithm are often discarded at the start of the
analysis (burn-in time) to eliminate the bias caused by the initially selected value. Suppose
that the number of iterations needed to reach the stationary distribution is N∗ (burn-in).
In all computations, we take the number N∗ = 1000 iteration. Hence, the Bayes point
estimator when using the MCMC method is given by

Ψ̂B(Θ) = EΠ(Ψ(Θ)|t) = 1
N−N∗

N

∑
l=N∗+1

Ψ
(

Θ
(l)
i

)
, i = 1, 2, . . . , 6. (46)

The corresponding variance in the Bayes estimate is given by

V̂(Ψ(Θ)|t) = 1
N−N∗

N

∑
l=N∗+1

(
Ψ
(

Θ
(l)
i

)
− Ψ̂B(Θ)

)2
. (47)

6.2. MCMC Bayesian Interval Estimations

To establish the two-sided credible intervals of Ψ(Θ); sort Ψ
(

Θ
(l)
i

)
, i = 1, 2, 3, 4, 5, 6; j =

N∗ + 1, N∗ + 2, . . . , N. in ascending order. Hence, 100(1− 2α)% credible intervals of Ψ(Θ)
can be constructed as: (

Ψ(Θ)α(N−N∗), Ψ(Θ)(1−α)(N−N∗)

)
. (48)



Axioms 2023, 12, 322 13 of 22

7. Simulation Studies

In this section, the estimation results obtained and developed in this paper are assessed
and compared using the Monte Carlo simulation study. In our study, we assessed the effect
of changing sample size N = n1 + n2, and affected sample size m, two times (τ1, τ2) and
parameters vector Θ = (θ11, θ12, θ21, θ22, β1, β2). Therefore, we adopted two sets of pa-
rameter values Θ1 = {0.05, 0.1, 0.07, 0.12, 0.4, 0.5} and Θ2 = {0.2, 0.3, 0.4, 0.2, 1.0, 1.0}. For
the censoring schemes, different combinations were adopted and are shown in Tables 1–4.
The prior information was selected using the relation (prior mean ' ai

bi
), where ai and bi

are hyper-parameters of gamma prior. The point estimate were tested by computing the
mean squared error (MSE). The interval estimates were evaluated using average length
(AL) criterion, as well as the coverage probabilities (CPs). Using the Bayesian approach,
we adopted.

Table 1. MSEs of the parameter estimates for the choose Θ1 = {0.05, 0.1, 0.07, 0.12, 0.4, 0.5}.

(n1, n2, m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

(25, 25, 30) (2.0, 6.0) ML 0.0345 0.0728 0.0421 0.0854 0.2310 0.3523
Boot 0.0488 0.0897 0.0564 0.1324 0.3380 0.5201
BayesP1 0.0311 0.0704 0.0398 0.0822 0.2289 0.3510
BayesP2 0.0241 0.0589 0.0255 0.0645 0.2009 0.3324

(25, 25, 40) (2.0, 6.0) ML 0.0321 0.0707 0.0390 0.0831 0.2287 0.3504
Boot 0.0459 0.0871 0.0535 0.1301 0.3347 0.5172
BayesP1 0.0291 0.0684 0.0375 0.0800 0.2251 0.3500
BayesP2 0.0219 0.0554 0.0221 0.0619 0.1880 0.3303

(25, 25, 30) (2.0, 8.0) ML 0.0327 0.0713 0.0392 0.0841 0.2279 0.3511
Boot 0.0448 0.0869 0.0525 0.1307 0.3351 0.5168
BayesP1 0.0294 0.0682 0.0366 0.0805 0.2251 0.3503
BayesP2 0.0224 0.0551 0.0221 0.0615 0.1883 0.3311

(40, 40, 50) (2.0, 8.0) ML 0.0285 0.0677 0.0352 0.0805 0.2244 0.3451
Boot 0.0418 0.0850 0.0501 0.1275 0.3315 0.5128
BayesP1 0.0262 0.0651 0.0345 0.0762 0.2214 0.3462
BayesP2 0.0184 0.0511 0.0181 0.0576 0.1842 0.3259

(40, 40, 65) (2.0, 8.0) ML 0.0241 0.0628 0.0309 0.0765 0.2205 0.3411
Boot 0.0379 0.0801 0.0428 0.1225 0.3282 0.5100
BayesP1 0.0219 0.0609 0.0311 0.0721 0.2171 0.3429
BayesP2 0.0142 0.0471 0.0155 0.0527 0.1811 0.3215

Table 2. AL and CP of the parameter estimates for the chosen Θ1 = {0.05, 0.1, 0.07, 0.12, 0.4, 0.5}.

(n1 , n2 , m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

AL CP AL CP AL CP AL CP AL CP AL CP
(25, 25, 30) (2.0, 6.0) ML 0.145 0.88 0.321 0.89 0.185 0.89 0.374 0.87 1.254 0.89 1.452 0.88

Boot-p 0.170 0.89 0.355 0.90 0.221 0.89 0.399 0.86 1.280 0.89 1.772 0.89
Boot-t 0.119 0.89 0.300 0.90 0.154 0.91 0.342 0.89 1.228 0.90 1.418 0.89
BayesP1 0.137 0.88 0.318 0.88 0.172 0.89 0.366 0.89 1.241 0.90 1.438 0.90
BayesP2 0.082 0.91 0.274 0.90 0.119 0.91 0.315 0.90 1.202 0.90 1.379 0.91

(25, 25, 40) (2.0, 6.0) ML 0.122 0.90 0.302 0.91 0.164 0.90 0.351 0.89 1.229 0.89 1.425 0.90
Boot-p 0.148 0.89 0.325 0.90 0.188 0.90 0.365 0.89 1.251 0.89 1.741 0.90
Boot-t 0.089 0.92 0.269 0.92 0.117 0.93 0.311 0.92 1.200 0.91 1.379 0.91
BayesP1 0.112 0.89 0.289 0.91 0.142 0.960 0.331 0.91 1.219 0.93 1.405 0.92
BayesP2 0.066 0.92 0.249 0.92 0.089 0.91 0.287 0.93 1.181 0.92 1.351 0.91
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Table 2. Cont.

(n1 , n2 , m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

(25, 25, 30) (2.0, 8.0) ML 0.129 0.91 0.311 0.91 0.158 0.91 0.355 0.89 1.233 0.88 1.417 0.91
Boot-p 0.151 0.88 0.321 0.91 0.192 0.89 0.361 0.88 1.244 0.90 1.729 0.91
Boot-t 0.085 0.91 0.271 0.92 0.112 0.91 0.315 0.91 1.197 0.92 1.375 0.93
BayesP1 0.115 0.89 0.287 0.90 0.133 0.92 0.318 0.91 1.211 0.91 1.399 0.93
BayesP2 0.062 0.91 0.241 0.91 0.085 0.92 0.291 0.92 1.178 0.91 1.348 0.92

(40, 40, 50) (2.0, 6.0) ML 0.091 0.92 0.281 0.93 0.142 0.92 0.325 0.91 1.211 0.92 1.401 0.94
Boot-p 0.124 0.90 0.311 0.91 0.162 0.92 0.343 0.91 1.232 0.94 1.715 0.93
Boot-t 0.071 0.93 0.251 0.91 0.100 0.91 0.292 0.95 1.178 0.94 1.362 0.93
BayesP1 0.100 0.90 0.277 0.91 0.121 0.92 0.317 0.92 1.202 0.92 1.381 0.93
BayesP2 0.047 0.95 0.228 0.91 0.055 0.93 0.262 0.94 1.157 0.91 1.332 0.94

(40, 40, 65) (2.0, 8.0) ML 0.075 0.91 0.263 0.94 0.118 0.92 0.303 0.93 1.191 0.94 1.382 0.92
Boot-p 0.101 0.91 0.301 0.92 0.151 0.90 0.324 0.92 1.214 0.91 1.700 0.91
Boot-t 0.054 0.94 0.236 0.92 0.084 0.93 0.275 0.92 1.151 0.92 1.338 0.94
BayesP1 0.089 0.92 0.255 0.93 0.101 0.92 0.300 0.94 1.187 0.91 1.359 0.94
BayesP2 0.025 0.91 0.207 0.92 0.035 0.94 0.241 0.94 1.135 0.92 1.309 0.96

Non-informative prior (P1) and informative prior (P2), where P1 ≡ (ai, bi) = (0.0001,
0.0001), and P2 = {(0.5, 5), (0.5, 4), (1, 6), (1, 4), (1, 3), (2, 4)} for θ1 and P2 = {(1, 3),
(2, 5), (2, 4), (1, 3), (2, 2), (3, 2)} for θ2 are selected. For the MCMC method, we reported
11,000 iterations and the first 1000 iterations were discarded. The simulation results were
formulated according to the following algorithm (Algorithm 3).

Algorithm 3 Monte Carlo simulation study.

Step 1:From Gompertz distribution with two parameters θs1 + θs2 and βs generate samples
of size n1 and n2, s = 1, 2,, respectively.

Step 2:From the joint sample of size n = n1 + n2 and for given censoring parameters m, τ1,
τ2. If, Tm < τ1; then, k ≥ m and the test is terminated at ω = τ1. However, if τ1 < Tm
< τ2, k = m and the test is terminated at ω = Tm and if τ1 < τ2 < Tm, k ≤ m and
the test is terminated at ω = τ2.

Step 3:From step 2, the number of failures k, test termination time ω and failure times are
generated. Hence, the observed joint Type-II GHC competing risks data are obtained.

Step 4:The two values k1 and k2 (number of units from the first and second line in joint
Type-II GHC competing risks data) are observed.

Step 5:The integer numbers msj, s, j = 1, 2 are generated from binomial distributions.
Step 6:We obtain various estimates by considering 1000 replications of samples. Steps (1–4)

are repeated 1000 times.
Step 7:For each sample, the MLE, bootstrap and Bayes estimate are computed.
Step 8:The values of each MSE, AL and CP are computed, and the results are reported in

Tables 1–4.

Discussion: Recently, the problem of obtaining adequate information about the com-
peting lifetime distributions and their parameters it has been of interest to many authors.
Therefore, the reliability experimenter may resort to censoring techniques. In this paper,
we proposed joint Type-II GHCS. The behavior of different estimation methods under
different censoring schemes can be obtained from a simulation study. The numerical results
presented in Tables 1–4 show that the proposed model and the methods of estimation work
well. The quality of the proposed model did not change for different model parameters.
We summarize some points that describe the capabilities and the behavior of estimators
as follows.
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1. The values of MSEs decrease when sample size n1 + n2 or effected sample size
m increases.

2. The model quality improves at increasing τ1 and τ2.
3. The results under classical ML and non-informative Bayes estimation are both closed.
4. Informative prior Bayes estimates present the best estimation.
5. Estimation results under two Gompertz distribution parameters are more acceptable.
6. Interval estimations are more acceptable using bootstrap-t and informative

Bayes estimation.

Table 3. MSEs of the parameter estimates for the Θ2 = {0.2, 0.3, 0.4, 0.2, 1.0, 1.0}.

(n1, n2, m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

(25, 25, 30) (0.3, 6.0) ML 0.1262 0.1895 0.2541 0.0678 0.4521 0.5742
Boot 0.1310 0.1952 0.2598 0.0751 0.4660 0.5789
BayesP1 0.1254 0.1882 0.2537 0.0661 0.4509 0.5729
BayesP2 0.1142 0.1751 0.2410 0.0556 0.4390 0.5642

(25, 25, 40) (0.3, 6.0) ML 0.1228 0.1866 0.2505 0.0645 0.4482 0.5715
Boot 0.1284 0.1919 0.2571 0.0715 0.4628 0.5761
BayesP1 0.1219 0.1861 0.2511 0.0633 0.4481 0.5700
BayesP2 0.1114 0.1725 0.2379 0.0526 0.4354 0.5609

(25, 25, 30) (0.3, 0.9) ML 0.1231 0.1872 0.2511 0.0641 0.4491 0.5709
Boot 0.1287 0.1924 0.2568 0.0708 0.4622 0.5767
BayesP1 0.1225 0.1866 0.2515 0.0639 0.4487 0.5705
BayesP2 0.1117 0.1719 0.2366 0.0522 0.4358 0.5613

(40, 40, 50) (0.3, 0.9) ML 0.1135 0.1461 0.2415 0.0608 0.4451 0.5671
Boot 0.1239 0.1885 0.2540 0.0677 0.4591 0.5719
BayesP1 0.1181 0.1822 0.2471 0.0600 0.4449 0.5662
BayesP2 0.1075 0.1681 0.2329 0.0488 0.4315 0.5571

(40, 40, 65) (0.3, 0.9) ML 0.1102 0.1427 0.2385 0.0587 0.4422 0.5645
Boot 0.1211 0.1861 0.2515 0.0641 0.4565 0.5691
BayesP1 0.1155 0.1800 0.2442 0.0569 0.4422 0.5636
BayesP2 0.1041 0.1652 0.2303 0.0454 0.4287 0.5552

Table 4. AL and CP of the parameter estimates for Θ2 = {0.2, 0.3, 0.4, 0.2, 1.0, 1.0}

(n1, n2, m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

AL CP AL CP AL CP AL CP AL CP AL CP
(25, 25, 30) (0.3, 0.6) ML 0.542 0.88 0.741 0.89 1.254 0.89 0.547 0.87 3.245 0.89 2.989 0.89

Boot-p 0.665 0.86 0.854 0.89 1.452 0.89 0.645 0.88 3.345 0.90 3.214 0.89
Boot-t 0.490 0.90 0.694 0.91 1.201 0.90 0.500 0.91 3.191 0.90 2.914 0.90
BayesP1 0.511 0.89 0.707 0.90 1.222 0.89 0.519 0.89 3.215 0.89 2.951 0.90
BayesP2 0.425 0.91 0.624 0.91 1.110 0.89 0.421 0.90 3.100 0.90 2.798 0.91

(25, 25, 40) (0.3, 0.6) ML 0.502 0.90 0.708 0.90 1.211 0.89 0.502 0.90 3.211 0.89 2.941 0.91
Boot-p 0.628 0.90 0.817 0.89 1.422 0.89 0.619 0.89 3.312 0.91 3.187 0.89
Boot-t 0.462 0.90 0.671 0.92 1.175 0.91 0.475 0.91 3.167 0.92 2.887 0.92
BayesP1 0.477 0.89 0.682 0.91 1.200 0.89 0.491 0.90 3.182 0.90 2.912 0.91
BayesP2 0.392 0.93 0.589 0.93 1.081 0.92 0.387 0.92 3.69 0.92 2.764 0.96

(25, 25, 30) (0.3, 0.9) ML 0.511 0.92 0.704 0.91 1.217 0.89 0.508 0.91 3.215 0.90 2.947 0.92
Boot-p 0.624 0.89 0.821 0.91 1.428 0.90 0.612 0.90 3.308 0.92 3.191 0.85
Boot-t 0.457 0.90 0.670 0.93 1.182 0.90 0.469 0.95 3.162 0.90 2.891 0.93
BayesP1 0.472 0.92 0.687 0.92 1.205 0.90 0.488 0.91 3.188 0.93 2.917 0.94
BayesP2 0.387 0.94 0.580 0.91 1.088 0.91 0.381 0.93 3.64 0.91 2.755 0.93



Axioms 2023, 12, 322 16 of 22

Table 4. Cont.

(n1, n2, m) (τ1, τ2) θ11 θ12 θ21 θ22 β1 β2

(40, 40, 50) (0.3, 0.9) ML 0.461 0.92 0.674 0.93 1.174 0.92 0.469 0.93 3.170 0.91 2.912 0.93
Boot-p 0.591 0.92 0.800 0.91 1.389 0.90 0.594 0.92 3.281 0.92 3.141 0.91
Boot-t 0.422 0.93 0.625 0.94 1.131 0.92 0.448 0.94 3.129 0.96 2.851 0.94
BayesP1 0.439 0.91 0.648 0.93 1.164 0.92 0.435 0.92 3.144 0.93 2.874 0.95
BayesP2 0.354 0.92 0.562 0.94 1.047 0.91 0.355 0.95 3.514 0.94 2.724 0.92

(40, 40, 65) (0.3, 0.9) ML 0.418 0.95 0.634 0.92 1.141 0.95 0.432 0.93 3.144 0.94 2.888 0.92
Boot-p 0.554 0.94 0.771 0.93 1.351 0.92 0.571 0.93 3.248 0.96 3.109 0.92
Boot-t 0.392 0.93 0.600 0.91 1.092 0.95 0.415 0.95 3.094 0.92 2.815 0.91
BayesP1 0.414 0.92 0.614 0.93 1.127 0.91 0.411 0.94 3.119 0.94 2.848 0.92
BayesP2 0.317 0.93 0.527 0.94 1.001 0.92 0.325 0.94 3.489 0.93 2.687 0.95

8. Real Data Analysis

Real datasets obtained from laboratory experiments were used to discuss the results of
this paper. This data presented by Hoel [49] describe the survival time of male mice under
a conventional laboratory environment. The test time considered an age of 5–6 weeks and
male mice were exposed to radiation dose of 300 roentgens. These data were analyzed by
Pareek et al. [50], Sarhan et al. [51] and Cramer and Schmiedt [52]. Data obtained under
progressive first failure of compertz population were analyzed by Soliman et al. [27,28].
In this section, we considered two groups of radiated male mice, as shown in Table 5. For
causes of failure, we considered Thymine Lymphoma as the first cause and the other causes
were considered the second cause of failure. The data were divided by 1000 for simplicity
of computation. To generate the joint Type-II GHC competing risks sample, the following
algorithms were used (Algorithm 4).

Table 5. Two groups of failure for the laboratory radiation male mice Ω1 and Ω2.

Thymic Lymphoma

Ω1 159 189 191 198 200 207 220 235 245 250 256 261 265 266
280 343 356 383 403 414 428 432

Other causes

Ω1 40 42 51 62 163 179 206 222 228 252 249 282 324 333
341 366 385 407 420 431 441 461 462 482 517 517 524 564
567 586 619 620 621 622 647 651 686 761 763

Thymic Lymphoma

Ω2 158 192 193 194 195 202 212 215 229 230 237 240 244 247
259 300 301 321 337 415 434 444 485 496 529 537 624 707
800

Other causes

Ω2 136 246 255 376 421 565 616 617 652 655 658 660 662 675
681 734 736 737 757 769 777 800 807 825 855 857 864 868
870 870 873 882 895 910 934 942 1015 1019
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Algorithm 4 Generate joint Type-II GHC competing risks data.

Step 1:Suppose that the censoring scheme has m = 70, τ1 = 0.2, τ2 = 0.4 and (n1, n2) = (61,
67).

Step 2:For the joint sample of size n = n1 + n2 given in Tables 5 and 6 and the corresponding
censoring scheme, we observed that, τ1 < τ2 < Tm.

Step 3:Hence, the value of k = 58 < m and the test was terminated at ω = τ2 = 0.4.
Step 4:For the joint Type-II GHC data of zise 58 given in Table 7, we obtained k1 = 35 from

the first line and k2 = 23 from the second line, and (m11, m12, m21, m22) = (18, 17, 19,
4).

Using the joint Type-II GHCS presented by Table 6, we plotted the profile log-likelihood
function (16) as in Figure 1. The maximum values need to begin with initial values of the
parameters β1 and β2, showing that the iteration can be run with initial values that are
almost in the neighborhood of the maximum values in Figure 1; therefore, the initial values
were taken to be (β1, β2) = (5, 6). For Bayes estimation, we adopted non-informative prior
with ai = bi = 0.0001, i = 1, 2, . . . , 6. For the MCMC approach in Bayes method, we ran the
chain 11,000 with the first 1000 values as burn-in. The MCMC approach that describes the
empirical posterior distribution is shown in Figures 2–7. Hence, the results of the ML point
and interval estimates and different Bayes estimates were computed and the results are
presented in Tables 7 and 8.

Table 6. Jointly type-II GHCS competing risks sample from Hoal data with m = 50.

ti 0.04 0.042 0.051 0.062 0.136 0.158 0.159 0.163 0.179 0.189 0.191 0.192 0.193 0.194
ηi 1 1 1 1 0 0 1 1 1 1 1 0 0 0
ρi 2 2 2 2 2 1 1 2 2 1 1 1 1 1

ti 0.195 0.198 0.2 0.202 0.206 0.207 0.212 0.215 0.22 0.222 0.228 0.229 0.23 0.235
ηi 0 1 1 0 1 1 0 0 1 1 1 0 0 1
ρi 1 1 1 1 2 1 1 1 1 2 2 1 1 1

ti 0.237 0.24 0.244 0.245 0.246 0.247 0.249 0.25 0.252 0.255 0.256 0.259 0.261 0.265
ηi 0 0 0 1 0 0 1 1 1 0 1 0 1 1
ρi 1 1 1 1 2 1 2 1 2 2 1 1 1 1

ti 0.266 0.28 0.282 0.3 0.301 0.321 0.324 0.333 0.337 0.341 0.343 0.356 0.366 0.376
ηi 1 1 1 0 0 0 1 1 0 1 1 1 1 0
ρi 1 1 2 1 1 1 2 2 1 2 1 1 2 2

ti 0.383 0.385
ηi 1 1
ρi 1 2

Table 7. Point estimates with 95% CIs of the parameters.

Pa. (.)ML (.)Boot (.)B-MCMC ACI Boot-p Boot-t CI

θ11 0.3365 0.5412 0.4675 (0.0501, 0.6228) (0.0472, 1.3214) (0.1784, 0.9115) (0.1903, 0.9029)
θ12 0.3178 0.4578 0.4442 (0.0450, 0.5905) (0.1472, 0.8897) (0.1954, 0.8874) (0.1782, 0.8789)
θ21 0.3156 0.4652 0.4636 (0.0006, 0.6306) (0.0015, 0.9541) (0.1924, 0.8556) (0.1778, 0.8789)
θ22 0.0664 0.1243 0.1184 (-0.0216, 0.1545) (0.0824, 0.4123) (0.0336, 0.2911) (0.0298, 0.2824)
β1 5.1907 5.3254 4.1962 (2.1508, 8.2306) (2.3652, 8.4562) (1.4215, 7.1921) (1.3725, 7.0651)
β2 4.5269 4.7771 3.3093 (0.8129, 8.2408) (0.9112, 8.7214) (0.741, 6.4007) (0.6402, 6.4894)

Table 8. Point estimates of the reliability and failure rates at t = 0.1.

Method R11 R12 R21 R22 h11 h12 h21 h22

(.)ML 0.9569 0.9592 0.9609 0.9916 0.5654 0.5340 0.4963 0.1045
(.)Bayes 0.9448 0.9475 0.9478 0.9864 0.6869 0.6523 0.6213 0.1588
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Figure 1. Profile log-likelihood function (y-axis) of (β1, x-axis) and (β2, z-axis).

Figure 2. Trace (Left) and histogram (Right) plots of the parameter θ11.

Figure 3. Trace (Left) and histogram (Right) plots of the parameter θ12.
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Figure 4. Trace (Left) and histogram (Right) plots of the parameter θ21.

Figure 5. Trace (Left) and histogram (Right) plots of the parameter θ22.

Figure 6. Trace (Left) and histogram (Right) plots of the parameter β1.

Figure 7. Trace (Left) and histogram (Right) plots of the parameter β2.

9. Conclusions

Inference under various censoring techniques is crucial for life testing. Here, the
problem of statistical inferences under a joint censoring scheme for Gompertz distribution
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is considered. Various inferences for unknown parameters of the proposed model were
obtained from classical and Bayesian methods. We proposed that Gompertz units have
two independent causes of failure, which can be determined using a competing risks
model. Classical ML and bootstrap methods were used. Additionally, by using the Bayes
technique and the MCMC method, the point and interval estimates were computed based
on informative and non-informative priors. The asymptotic confidence intervals and
Bayes credible intervals were also discussed. We used real data analysis and Monte Carlo
simulation studies to assess and discuss the results. From the numerical result, we observed
that the MLEs and non-informative Bayes estimations were closed. The Bayes method and
bootstrap-t under informative prior P1 worked better than other methods. The numerical
results generally showed that using an informative prior distribution in Bayes computations
produces superior results to likelihood estimates. The estimates obtained under MCMC
method also performed well for all sample sizes and affected sample size in terms of MSEs
and interval average widths. The study demonstrated that the comparative Gompertz
distributions has good flexibility for modeling joint samples of survival times of male mice
under a conventional laboratory environment. Finally, we can say that the proposed model
and proposed method of estimation work well. Therefore, our results are very important
in the field of comparative life testing, especially when units fail due to several causes
of failure.
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