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Abstract: A fractional order COVID-19 model consisting of six compartments in Caputo sense is
constructed. The indirect transmission of the virus through susceptible populations by the shedding
effect is studied. Equilibrium solutions are calculated, and basic reproduction ratio (that depends
both on direct and indirect mode of transmission), existence and uniqueness, as well as stability
analysis of the solution of the model, are studied. The paper studies the effect of optimal control
policy applied to shedding effect. The control is the observation of standard hygiene practices and
chemical disinfectants in public spaces. Numerical simulations are carried out to support the analytic
result and to show the significance of the fractional order from the biological viewpoint.
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1. Introduction

COVID-19 surfaced in the world at the end of the year 2019. It undermined many
sectors such astransport, the economy, education systems, sports, entertainment, etc. The
pandemic killed and infected many. The nature and mode of the spread of COVID-19
outbreak are still not completely understood. Researchers are geared towards finding
vaccines to curtail the spread of the virus. The idea is to limit the number of new infections
and subsequent deaths due to the pandemic. Due to the scarcity of vaccines, many countries
in the world adopt non-pharmaceutical measures such as lockdown, airport closures, use
of sanitizers and social distancing. There is a great deal of research in the literature with
regard to the pandemic, both from a theoretical and practical point of view [1–7].

It is estimated that 75% of infected individuals recover without showing serious symp-
toms and many achieve e natural recovery [8]. Throat infection, chest pain, runny nose or
nasal congestion, losing smell and taste, vomiting, diarrhea and nausea are some of the
symptoms of COVID-19. In most cases, these symptoms appear slowly. It is also believed
that elderly people can observe serious complications compared to their younger counter-
parts. On average, infected individuals spend 7–14 days before showing symptoms [9]. In
many cases, it takes 14 days before mild cases recover [10]. The transmission of COVID-19
occurs mostly via either a direct (through contaminated air by tiny droplets and airborne
particles containing the virus) or an indirect (through contaminated surfaces) method.
The virus is released from the mouth of infected individuals through either sneezing or
coughing and is shed into the environment in the form of micro-particles in the air. This
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shedding effect is of paramount significance in studying COVID-19 transmission. Although
diagnostic tests and vaccine treatments are now available to curb the spread of the disease,
the use of standard hygiene practices and chemical disinfectants in public places must still
be maintained.

Many fields of study such as epidemiology, economics and finance, aeronautical
engineering, robotics, etc., use optimal control as an effective mathematical tool to optimize
control problems [11]. However, there is little in the literature about the use of an optimal
control approach to study COVID-19, since control in a real sense varies with time [12–18].

Fractional order derivatives and fractional integrals are very important tools that are
used in the study of mathematical modeling due to their hereditary properties and ability
in memory description. In the last few decades, the fractional differential has been used in
mathematical modeling of biological phenomena [19,20]. This is because fractional calculus
can explain and process the retention and heritage properties of various materials more
accurately than integer-order models [21,22]. Due to the effectiveness of mathematical models
in studying infectious diseases, recently many scientists have been investigating mathematical
models of the COVID-19 pandemic with fractional order derivatives; they have produced
excellent results [23,24]. The Caputo fractional order derivative is based on the exponential
kernel and details on its operation and its applications can be found in [25–28]. Caputo
fractional derivative gives less noise when compared with other operators [29]. In this
paper, we use Caputo fractional order to model the spread and control of COVID-19 with
emphasis on shedding effect.

The main contribution of this paper is to mathematically demonstrate the fact that
an uninfected population can become infected by both direct and indirect methods by
the exposed or infected class. Infected and exposed individuals can contaminate the
environment by shedding pathogens. It is also our aim to show the effect of healthy hygiene
practices, i.e., using alcohol-based hand sanitizers and effective chemical disinfectants in
public areas in curbing the spread of COVID-19.

This paper is organized as follows: the introduction is given in Section 1, formulation
of the model is given in Section 2, analysis of the model is given in Section 3, construction
and analysis of the optimal control problem is given in Section 4, numerical simulation is
given in Section 5 and finally conclusions are given in Section 6.

2. Definition of Terms

In this section we give definitions of the Caputo derivative as in [30].

Definition 1. The Caputo fractional left-sided derivative is defined as

C
∗Dα

a+( f (t)) =
1

Γ(n− α)

t∫
a

(t− τ)n−α−1 dn

dτn [ f (τ)]dτ, t ≥ a

Caputo fractional right-sided derivative is defined as

C
∗Dα

b−( f (t)) =
(−1)n

Γ(n− α)

b∫
t

(τ − t)n−α−1 dn

dτn [ f (τ)]dτ, t ≤ b.

3. Formulation of the Model

We adopted and modified the model in [28]. The transmission of COVID-19 occurs
through primary and secondary routes. The primary route is through person–person
contact and the secondary route is through contaminated surfaces (shedding effect). While
much research on the control of pathogen transmission through the primary route are avail-
able in the literature, little considers the secondary route. The control of the transmission
through the secondary route involves healthy hygiene practices which include using hand
sanitizers, face masks and effective chemical disinfectants in public areas.
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The model consists of a system of fractional order differential equation in the Caputo
sense with six compartments. The compartments are: S(t), E(t), I(t), H(t), R(t) and V(t)
which stands for Susceptible, Exposed, Infected, Hospitalized, and Recovered compart-
ments, respectively. To study the shedding effect, another compartment for contaminated
surfaces is added as Virus class V(t).

First, we will consider and analyze the fractional order model in Caputo sense without
the optimal control and then in Section 5 we will introduce and analyze the optimal control
function.

The model is given below

C
0 Dα

t S(t) = Yα − βαSI − θαSV − µαS,
C
0 Dα

t E(t) = βαSI + θαSV −
(
µα + γα + ηα

1
)
E,

C
0 Dα

t I = γαE−
(
µα + πα + ξα

1 + ηα
2
)

I,
C
0 Dα

t H = πα I −
(
µα + ξα

2 + ηα
3
)

H,
C
0 Dα

t R(t) = ηα
1 E + ηα

2 I + ηα
3 H − µαR,

C
0 Dα

t V(t) = q1
αE + q2

α I − rαV,

(1)

with the following initial conditions

S(0) = a1, E(0) = a2, I(0) = a3, H(0) = a4, R(0) = a5 and V(0) = a6

The meaning of the parameters involved in the model is given in Table 1 below.

Table 1. Meaning of Parameters.

Parameter Meaning

Y Recruitment rate into susceptible class
β Transmission rate of COVID-19 from human to human
θ Transmission rate of COVID-19 from environment to human
µ Natural death rate
γ Rate at which exposed individuals move to Infected class

η1, η2, η3 Natural recovery rate in Exposed, Infected and Hospitalized classes respectively
π Rate of hospitalization

ξ1, ξ2 Rate of COVID-19 caused death in Infected and Hospitalized classes respectively
q1, q2 Rate of virus shedding from Exposed and Infected classes respectively

r Rate of sanitization
0 < α ≤ 1 Fractional order

4. Analysis of the Model

In this section, some mathematical properties of the model are explored. This consists
of positivity and boundedness, computation of Equilibria, basic reproduction number,
existence and uniqueness analysis of the solution of the model, and local stability analysis.

4.1. Positivity and Boundedness

To show positivity, considering Equation (1), we have

C
0 Dα

t S(t)
∣∣S=0 = Yα > 0,

C
0 Dα

t E(t)
∣∣E=0 = βαSI + θαSV ≥ 0,

C
0 Dα

t I(t)
∣∣I=0 = γαE ≥ 0,

C
0 Dα

t H(t)
∣∣H=0 = πα I ≥ 0, and

C
0 Dα

t R(t)
∣∣R=0 = ηα

1 E + ηα
2 I + ηα

3 H ≥ 0.

Therefore, we can observe that the solution of (1) is non-negative.
For the boundedness, we can observe that the overall dynamics of the human popula-

tion is obtained by adding the first five Equations of (1). Let

N(t) = S(t) + E(t) + I(t) + H(t) + R(t)
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Then,

C
0 Dα

t N(t) = C
0 Dα

t S(t) + C
0 Dα

t E(t) + C
0 Dα

t I(t) + C
0 Dα

t H(t) + C
0 Dα

t R(t),

which simplifies to,
C
0 Dα

t N(t) = Yα − µαN − (ξα
1 I + ξα

2 H),

hence,
C
0 Dα

t N(t) ≤ Yα − µαN.

We apply the lap-lace transform method to solve the Gronwall’s like inequality with
initial condition N(t0) ≥ 0. We have,

L
{

C
0 Dα

t N(t) + µαN
}
≤ L{Yα}.

By linearity of the Laplace transform, we get

L
{

C
0 Dα

t N(t)
}
+ µαL{N(t)

}
≤ L{Yα},

Then we get,

SαL{N(t)} −
n−1

∑
k=0

Sα−k−1Nk(t0) + µαL{N(t)} ≤ Yα

S
.

Simplifying, we get

L{N(t)} ≤ Yα

 1
S
− 1

S
1(

1 +
µα

Sα

)
+

n−1

∑
k=0

1
Sk+1

1(
1 +

µα

Sα

)Nk(t0).

Using Taylor series expansion, we have

1(
1 +

µα

Sα

) =
∞

∑
n=0

(
−µα

Sα

)n

Therefore,

L{N(t)} ≤ Yα

(
1
S
− 1

S

∞

∑
n=0

(
−µα

Sα

)n
)
+

n−1

∑
k=0

1
Sk+1 Nk(t0)

∞

∑
n=0

(
−µα

Sα

)n

Taking, Laplace inverse, we get

N(t) ≤ Yα −Yα
∞

∑
n=0

−(µαtα)n

Γ(αn + 1)
+

n−1

∑
k=0

∞

∑
n=0

−(µαtα)n

Γ(αn + k + 1)
tk Nk(t0).

Substituting the Mittag-Leffler function, we get

N(t) ≤ Yα[1− E1(−µαtα)] +
n−1

∑
k=0

Ek+1(−µαtα)tk Nk(t0).

where E1(−µαtα), Ek+1(−µαtα) are the series of Mittag-Leffler functions which converge
for any argument; hence we say that the solution to the model is bounded.
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Thus we define,

ω = {(S(t), E(t), I(t), H(t), R(t)) ∈ R5
+ : S(t), E(t), I(t), H(t), R(t)

≤ Yα[1− E1(−µαtα)] +
n−1
∑

k=0
Ek+1(−µαtα)tk Nk(t0)}

Hence, all solutions of (1) commencing in ω stay in ω for all t ≥ 0. Positivity of
solutions means that the population thrives, while boundedness means that the population
growth is restricted naturally due to limited resources.

4.2. Equilibria and Basic Reproduction Number

The equilibrium solutions are obtained by equating the equations in the model to zero
and solving the system simultaneously. We obtain two equilibrium solutions; disease free
and endemic equilibrium solutions.

i. Disease free equilibrium (E0)

E0 = {S0, E0, I0, H0, R0, V0} =
{

Yα

µα
, 0, 0, 0, 0, 0

}
ii. Endemic equilibrium (E1)

E1 = {S1, E1, I1, H1, R1, V1},

where,

S1 =
rα
(
πα + ηα

2 + µα + ξα
1
)(

µα + ηα
1 + γα

)
E1

βαγαrα + θα
(
qα

1
(
πα + ηα

2 + µα + ξα
1
)
+ qα

2γα
) ,

I1 =
γαE1

πα + ηα
2 + µα + ξα

1
,

H1 =
γαπαE1(

ηα
3 + µα + ξα

2
)(

πα + ηα
2 + µα + ξα

1
) ,

R1 =
1

µα

[
ηα

1 +
ηα

3 παγα(
ηα

3 + µα + ξα
2
)(

πα + ηα
2 + µα + ξα

1
) + ηα

2 γα

πα + ηα
2 + µα + ξα

1

]
E1,

V1 =
1
rα

[
qα

1 +
qα

2γα

πα + ηα
2 + µα + ξα

1

]
E1,

and E1 is defined as

E1 =
1(

µα + ηα
1 + γα

) [Yα −
µαrα

(
πα + ηα

2 + µα + ξα
1
)(

µα + ηα
1 + γα

)
βαγαrα + θα

(
qα

1
(
πα + ηα

2 + µα + ξα
1
)
+ qα

2γα
)]

4.3. Computation of Basic Reproduction Ratio

In this section, a threshold quantity called basic reproduction ratio is computed using
the method of next generation matrix. Consider the following Equations from (1):

C
0 Dα

t E(t) = βαSI + θαSV −
(
µα + γα + ηα

1
)
E,

C
0 Dα

t I = γαE−
(
µα + πα + ξα

1 + ηα
2
)

I,
C
0 Dα

t V(t) = q1E + q2 I − rV.
(2)
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Let Ai(X) and Bi(X) be the rate of appearance of new infection and rate of other
transitions in the ith compartment respectively. Then

Ai(X) =

βαSI + θαSV
0
0

, and Bi(X)

=

 (
µα + γα + ηα

1
)
E

−γαE +
(
µα + πα + ξα

1 + ηα
2
)

I
−q1

αE− q2
α I + rαV

.

Then Equation (2) can be written as

.
X = Ai(X)− Bi(X), i = 1, 2, 3.

Now, define

A =

(
∂Ai
∂xj

)
(E0) =

0
Yαβα

µα

θαβα

µα

0 0 0
0 0 0

, and

B =

(
∂Bi
∂xj

)
(E0) =

µα + γα + ηα
1 0 0

−γαE µα + πα + ξα
1 + ηα

2 0
−q1

α −q2
α rα

.

The basic reproduction ratio, which is the spectral radius of the matrix AB−1, defined
as ρ

(
AB−1), is calculated as

R0 = R1 + R2 + R3,

where
R1 =

Yαβαγα

µα
(
µα + πα + ξα

1 + ηα
2
)(

µα + γα + ηα
1
) ,

R2=
Yαθαq1

α

µαrα
(
µα + γα + ηα

1
) , and

R3 =
θαYαq2

αγα

µαrα
(
µα + πα + ξα

1 + ηα
2
)(

µα + γα + ηα
1
)

where R1, R2 and R3 are related with the endowment of direct human-to-human contact
routes, exposed-to-environment and infected-to-environment, respectively.

4.4. Existence and Uniqueness of Solution of the Model

Consider the system

S(t)− S(0) = C
0 Dα

t S(t){Yα − βαSI − θαSV − µαS},

E(t)− E(0) = C
0 Dα

t E(t)
{

βαSI + θαSV −
(
µα + γα + ηα

1
)
E
}

,

I(t)− I(0) = C
0 Dα

t I
{

γαE−
(
µα + πα + ξα

1 + ηα
2
)

I
}

,

H(t)− H(0) = C
0 Dα

t H
{

πα I −
(
µα + ξα

2 + ηα
3
)

H
}

,

R(t)− R(0) = C
0 Dα

t R(t)
{

ηα
1 E + ηα

2 I + ηα
3 H − µαR

}
,

V(t)−V(0) = C
0 Dα

t V(t){q1
αE + q2

α I − rαV},
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and
S(t)− S(0) = M(α)

∫ 1
0 (t− τ)−αF1(t, S)dτ,

E(t)− E(0) = M(α)
∫ 1

0 (t− τ)−αF2(t, E)dτ,

I(t)− I(0) = M(α)
∫ 1

0 (t− τ)−αF3(t, I)dτ,

H(t)− H(0) = M(α)
∫ 1

0 (t− τ)−αF4(t, H)dτ,

R(t)− R(0) = M(α)
∫ 1

0 (t− τ)−αF5(t, R)dτ,

V(t)−V(0) = M(α)
∫ 1

0 (t− τ)−αF6(t, V)dτ,

where
C
0 Dα

t S(t) = F1(t, S),
C
0 Dα

t E(t) = F2(t, E),
C
0 Dα

t I(t) = F3(t, I),
C
0 Dα

t H(t) = F4(t, H),
C
0 Dα

t R(t) = F5(t, R),
C
0 Dα

t V(t) = F6(t, V).

Now, we can easily show that F1, . . . , F6 satisfy Lipschitz continuity using the follow-
ing theorem

0 ≤ βαk1 + θαk2 + µα < 1,

This is a contraction.

Proof.

‖F1(t, S)− F1(t, S1)‖
= ‖Yα − βαS(t)I(t)− θαS(t)V(t)− µαS(t)−Yα

+βαS1(t)I(t) + θαS1(t)V(t) + µαS1(t)‖
= ‖ − βα I(t)(S(t)− S1(t))− θαV(t)(S(t)− S1(t))− µα(S(t)− S1(t))‖
≤ βα‖I(t)‖‖S(t)− S1(t)‖+ θαV(t)‖S(t)− S1(t)‖+ µα‖S(t)− S1(t)‖

≤ (βαk1 + θαk2 + µα)‖S(t)− S1(t)‖
≤ L1‖S(t)− S1(t)‖,

where L1 = βαk1 + θαk2 + µα , k1 ≥ ‖I(t)‖and k2 ≥ ‖V(t)‖. �

Similarly, we find the remaining Lipschitz constants L2, . . . , L6 show the Lischitz
continuity and contraction of F2, . . . , F6.

Recursively, let

p1n(t) = Sn(t)− Sn−1(t)

=
2(1− α)

(2− α)M(α)
(F1(t, Sn−1)− F1(t, Sn−2))

+
2α

(2− α)M(α)

t∫
0
(F1(ϑ, Sn−1)− F1(ϑ, Sn−2))dϑ,

p2n(t) = En(t)− En−1(t)

=
2(1− α)

(2− α)M(α)
(F2(t, En−1)− F2(t, En−2))

+
2α

(2− α)M(α)

t∫
0
(F2(ϑ, En−1)− F2(ϑ, En−2))dϑ,
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p3n(t) = In(t)− In−1(t)

=
2(1− α)

(2− α)M(α)
(F3(t, In−1)− F3(t, In−2))

+
2α

(2− α)M(α)

t∫
0
(F3(ϑ, In−1)− F3(ϑ, In−2))dϑ,

p4n(t) = Hn(t)− Hn−1(t)

=
2(1− α)

(2− α)M(α)
(F4(t, Hn−1)− F4(t, Hn−2))

+
2α

(2− α)M(α)

t∫
0
(F4(ϑ, Hn−1)− F4(ϑ, Hn−2))dϑ,

p5n(t) = Rn(t)− Rn−1(t)

=
2(1− α)

(2− α)M(α)
(F5(t, Rn−1)− F5(t, Rn−2))

+
2α

(2− α)M(α)

t∫
0
(F5(ϑ, Rn−1)− F5(ϑ, Rn−2))dϑ,

p6n(t) = Vn(t)−Vn−1(t)

=
2(1− α)

(2− α)M(α)
(F6(t, Vn−1)− F6(t, Vn−2))

+
2α

(2− α)M(α)

t∫
0
(F6(ϑ, Vn−1)− F5(ϑ, Vn−2))dϑ,

with initial conditions

S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), H0(0) = H(0), R0(0) = R(0) and V0(0) = V(0)

Consider q1n and take the norm, we have

‖q1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

=‖ 2(1− α)

(2− α)M(α)
(F1(t, Sn−1)− F1(t, Sn−2))

+
2α

(2− α)M(α)

t∫
0
(F1(ϑ, Sn−1)− F1(ϑ, Sn−2))dϑ‖

Applying triangular inequality, we have

‖p1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

=
2(1− α)

(2− α)M(α)
‖F1(t, Sn−1)− F1(t, Sn−2)‖

+
2α

(2− α)M(α)
‖

t∫
0
(F1(ϑ, Sn−1)− F1(ϑ, Sn−2))dϑ‖

≤ 2(1− α)

(2− α)M(α)
L1‖Sn − Sn−1‖

+
2α

(2− α)M(α)
L1

t∫
0
‖Sn − Sn−1‖dϑ.

This implies

‖p1n(t)‖ ≤
2(1− α)

(2− α)M(α)
L1‖p1n−1(t)‖

+
2α

(2− α)M(α)
L1

t∫
0
‖p1n−1(t)‖dϑ.
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In the same way,

‖p2n(t)‖ ≤
2(1− α)

(2− α)M(α)
L2‖p2n−1(t)‖+

2α

(2− α)M(α)
L2

t∫
0
‖p2n−1(t)‖dϑ,

‖p3n(t)‖ ≤
2(1− α)

(2− α)M(α)
L3‖p3n−1(t)‖+

2α

(2− α)M(α)
L3

t∫
0
‖p3n−1(t)‖dϑ,

‖p4n(t)‖ ≤
2(1− α)

(2− α)M(α)
L4‖p4n−1(t)‖+

2α

(2− α)M(α)
L4

t∫
0
‖p4n−1(t)‖dϑ,

‖p5n(t)‖ ≤
2(1− α)

(2− α)M(α)
L5‖p5n−1(t)‖+

2α

(2− α)M(α)
L5

t∫
0
‖p5n−1(t)‖dϑ,

‖p6n(t)‖ ≤
2(1− α)

(2− α)M(α)
L6‖p6n−1(t)‖+

2α

(2− α)M(α)
L6

t∫
0
‖p6n−1(t)‖dϑ.

Hence, we have

Sn(t) =
n
∑

i=1
p1i(t),

En(t) =
n
∑

i=1
p2i(t),

In(t) =
n
∑

i=1
p3i(t),

Hn(t) =
n
∑

i=1
p4i(t),

Rn(t) =
n
∑

i=1
p5i(t),

Vn(t) =
n
∑

i=1
p6i(t).

The following theorem gives the condition for the existence of the solution:

Theorem 1. The solution exists if t1exists, such that the following inequality is true,

2(1− α)

(2− α)M(α)
Li +

2αt1

(2− α)M(α)
Li < 1, i = 1, . . . , 6

Proof. Recursively, we have

‖p1n(t)‖ ≤ ‖Sn(0)‖
[

2(1− α)

(2− α)M(α)
L1 +

2α

(2− α)M(α)
L1

]n
,

‖p2n(t)‖ ≤ ‖En(0)‖
[

2(1− α)

(2− α)M(α)
L2 +

2α

(2− α)M(α)
L2

]n
,

‖p3n(t)‖ ≤ ‖In(0)‖
[

2(1− α)

(2− α)M(α)
L3 +

2α

(2− α)M(α)
L3

]n
,

‖p4n(t)‖ ≤ ‖Hn(0)‖
[

2(1− α)

(2− α)M(α)
L4 +

2α

(2− α)M(α)
L4

]n
,

‖p5n(t)‖ ≤ ‖Rn(0)‖
[

2(1− α)

(2− α)M(α)
L5 +

2α

(2− α)M(α)
L5

]n
,

‖p6n(t)‖ ≤ ‖Vn(0)‖
[

2(1− α)

(2− α)M(α)
L6 +

2α

(2− α)M(α)
L6

]n

�
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Hence solutions exist and are continuous. To show that the functions above construct
the solutions, consider

S(t)− S(0) = Sn(t)−M1n(t),
E(t)− E(0) = En(t)−M2n(t),
I(t)− I(0) = In(t)−M3n(t),

H(t)− H(0) = Hn(t)−M4n(t),
R(t)− R(0) = Rn(t)−M5n(t).
V(t)−V(0) = Vn(t)−M6n(t).

Hence,

‖M1n(t)‖ = ‖
2(1− α)

(2− α)M(α)
(F1(t, Sn−1)− F1(t, Sn−2)) +

2α

(2− α)M(α)

t∫
0
(F1(ϑ, Sn−1)− F1(ϑ, Sn−2))dϑ‖

≤ 2(1− α)

(2− α)M(α)
‖F1(t, Sn−1)− F1(t, Sn−2)‖+

2α

(2− α)M(α)
‖

t∫
0
(F1(ϑ, Sn−1)− F1(ϑ, Sn−2))dϑ‖

≤ 2(1− α)

(2− α)M(α)
L1‖S− Sn−1‖+

2α

(2− α)M(α)
L1‖S− Sn−1‖t.

Carrying out the procedure, we get

‖M1n(t)‖ ≤
[

2(1− α)

(2− α)M(α)
+

2αt
(2− α)M(α)

]n+1
L1

n+1h.

At t = t1, we get

‖M1n(t)‖ ≤
[

2(1− α)

(2− α)M(α)
+

2αt1

(2− α)M(α)

]n+1
L1

n+1h

Taking limit as n→ ∞, we get

‖M1n(t)‖ → 0.

Similarly, we have

‖M2n(t)‖, ‖M3n(t)‖, ‖M4n(t)‖, ‖M5n(t)‖, ‖M6n(t)‖ → 0.

To show uniqueness, assume we have some other solutions, S1(t), E1(t), I1(t), H1(t), R1(t),
and V1(t), then

‖S(t)− S1(t)‖
(

1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
≤ 0.

The completion of the proof is given by the following theorem.

Theorem 2. If (
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
> 0,

then the solution is unique.

Proof. Consider

‖S(t)− S1(t)‖
(

1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
≤ 0

Since, (
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
> 0,
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Then
‖S(t)− S1(t)‖ = 0

Hence,
S(t) = S1(t)

�

This is true for the remaining solutions.

4.5. Stability Analysis of the Equilibria

Here, we show the local stability of Disease-free equilibrium (E0) and Endemic equi-
librium (E1) respectively. For details see [31,32].

Consider the Jacobian matrix obtained from (1), we have

J =


−βα I − θαV − µα 0 −βαS 0 −θαS

βα I + θαV −
(
µα + γα + ηα

1
)

βαS 0 θαS
0 γα −

(
µα + πα + ξα

1 + ηα
2
)

0 0
0 0 πα −

(
µα + ξα

2 + ηα
3
)

0
0 qα

1 qα
2 0 −rα

. (3)

Theorem 3. Disease-free equilibrium (E0) is locally asymptotically stable whenR0 < 1.

Proof. Consider (3) at (E0), we have

J
(

E0
)
=


−µα 0 −βαS0 0 −θαS0

0 −
(
µα + γα + ηα

1
)

βαS0 0 θαS0
0 γα −

(
µα + πα + ξα

1 + ηα
2
)

0 0
0 0 πα −

(
µα + ξα

2 + ηα
3
)

0
0 qα

1 qα
2 0 −rα

.

�

The Eigen–values are

λ1 = −µα, λ2 = −(µα + ηα
3 + ξα

2),

λ3, λ4 and λ5 can be found by solving the polynomial equation,

λ3 + λ2[(µα+ πα + ξα
1 + ηα

2 ) + (µα + γα + ηα
1 ) + rα]

+λ[(µα + πα + ξα
1 + ηα

2 )(µ
α + γα + ηα

1 ) + (µα + πα + ξα
1 + ηα

2 )r
α

+(µα + γα + ηα
1 )r

α − qα
1θαS0 − γαβαS0]

+[(µα + πα + ξα
1 + ηα

2 )(µ
α + γα + ηα

1 )r
α

−[(µα + πα + ξα
1 + ηα

2 )q
α
1θαS0 + γαβαS0rα + γαβαS0qα

1θαS0]] = 0.

By Routh-Hurwitz criterion, Eigen-values of f (s) = a0s3 + a1s2 + a2s + a3, are all
negative if a1 > 0, a3 > 0, and a1a2 > a3.

In this case,

a1 = (µα + πα + ξα
1 + ηα

2 ) + (µα + γα + ηα
1 ) + rα > 0,

a3 = (µα + πα + ξα
1 + ηα

2 )(µ
α + γα + ηα

1 )r
α

−[(µα + πα + ξα
1 + ηα

2 )q
α
1θαS0 + γαβαS0rα

+γαβαS0qα
1θαS0] > 0,
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if [(
µα + πα + ξα

1 + ηα
2
)
qα

1θαS0 + γαβαS0rα + γαβαS0qα
1θαS0

](
µα + πα + ξα

1 + ηα
2
)(

µα + γα + ηα
1
)
rα

< 1.a1a2 − a3 > 0,

if a3

a1a2
< 1.

In conclusion, all the Eigen-values are negative if R0 < 1.

Theorem 4. Endemic equilibrium (E1) is locally asymptotically stable whenR0 > 1.

Proof. Consider (3) at (E1), we have

J
(

E1
)
=


−βα I1 − θαV1 − µα 0 −βαS1 0 −θαS1

βα I1 + θαV1 −
(
µα + γα + ηα

1
)

βαS1 0 θαS1
0 γα −

(
µα + πα + ξα

1 + ηα
2
)

0 0
0 0 πα −

(
µα + ξα

2 + ηα
3
)

0
0 qα

1 qα
2 0 −rα

.

�

The Eigen values are λ1 = −
(
µα + ηα

3 + ξα
2
)
, and λ2, λ3, λ4 and λ5 can be found by

solving the polynomial equation,

λ4 + λ3[(µ
α+ πα + ξα

1 + ηα
2
)
+ (βα I1 + θαV1 + µα) + rα +

(
µα + γαηα

1
)
]

+λ2
[
βαS1 +

(
µα + πα + ξα

1 + ηα
2
)
(βα I1 + θαV1 + µα) +

(
µα + πα + ξα

1 + ηα
2
)
rα

+
(
µα + πα + ξα

1 + ηα
2
)(

µα + γαηα
1
)
+ (βα I1 + θαV1 + µα)µα

+(βα I1 + θαV1 + µα)
(
µα + γαηα

1
)
+
(
µα + γαηα

1
)
rα −

((
µα + ξα

2 + ηα
3
)
θαS1

)
]

+λ[βαS1rα + βαS1(βα I1 + θαV1 + µα)

+
(
µα + πα + ξα

1 + ηα
2
)
(βα I1 + θαV1 + µα)

(
rα +

(
µα + γαηα

1
))

+rα
(
µα + γαηα

1
)((

µα + πα + ξα
1 + ηα

2
)
+ (βα I1 + θαV1 + µα)

)
+
(
µα + ξα

2 + ηα
3
)

θαS1βα I1 + θαV1)

−
(
γαqα

2θαS1 + βαS1(βα I1 + θαV1) +
(
µα + πα + ξα

1 + ηα
2
)
θαS1

(
µα + ξα

2 + ηα
3
)

+θαS1
(
µα + ξα

2 + ηα
3
)
(βα I1 + θαV1 + µα))]

+[γαqα
2θαS1(βα I1 + θαV1) + rαβαS1(βα I1 + θαV1 + µα)

+(βα I1 + θαV1 + µα)
(
µα + πα + ξα

1 + ηα
2
)
rα
(
µα + γα + ηα

1
)

+
(
µα + πα + ξα

1 + ηα
2
)
θαS1

(
µα + ξα

2 + ηα
3
)
(βα I1 + θαV1)

−
[(

µα + πα + ξα
1 + ηα

2
)
θαS1

(
µα + ξα

2 + ηα
3
)
(βα I1 + θαV1 + µα)

+rαβαS1(βα I1 + θαV1) + γαqα
2θαS1(βα I1 + θαV1 + µα)]] = 0

By the Routh-Hurwitz stability criterion, the remaining Eigen values of f (s) = a0s4 +
a1s3 + a2s2 + a3s + a4, are all negative if

a1 > 0, a3 > 0, a4 > 0, and a1a2a3 − a3
2 + a1

2a4 > 0

Clearly, all the Eigen-values are negative if R0 > 1.

5. Optimal Control Analysis

The formation and analysis of optimal control function is given in this chapter.
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5.1. Formation of Optimal Control Problem

The dynamics of the control system can be described by the following system of
Fractional order differential equation in the Caputo sense

C
0 Dα

t S(t) = Yα − βαSI − θαSV − µαS +∅uV,
C
0 Dα

t E(t) = βαSI + θαSV −
(
µα + γα + ηα

1
)
E,

C
0 Dα

t I = γαE−
(
µα + πα + ξα

1 + ηα
2
)

I,
C
0 Dα

t H = πα I −
(
µα + ξα

2 + ηα
3
)

H,
C
0 Dα

t R(t) = ηα
1 E + ηα

2 I + ηα
3 H − µαR,

C
0 Dα

t V(t) = q1
αE + q2

α I − rαV −∅uV,

(4)

where u = is the observation of standard hygiene practices and chemical disinfectants in
public spaces.

The objective function to be minimized is given as:

J(u) =
∫ t f

0
(aV + bu2)dt, (5)

The objective here is minimizing V at the same time to minimize the cost of the control
u. Hence, we need to get the optimal control u∗ such that:

J(u∗) = min
u
{J(u)|u ∈ Ω}. (6)

The set containing control is:

Ω =
{

u :
[
0, t f

]
→ [0, ∞) Lebesgue measurable

}
.

The expense of minimizing V is represented by the term aV. Likewise, all the expenses
associated with the control u is represented by bu2. The sufficient conditions required for
the optimal control to be fulfilled can be found by using the most popular PMP. The said
principle can be used to turn Equations (3) and (5) into a point-wise minimizing problem
of the Hamiltonian H with respect to u as stated below:

H = aV + bu2 + λ{q1
αE + q2

α I − rαV −∅uV} (7)

where λ is the adjoint variable or co-state variable.

− dλ

dt
=

∂H
∂V

= a + λ{−rα −∅u} (8)

The transversality condition is λ
(

t f

)
= 0 , for 0 < u < 1.

From the interior of the control, we have:

∂H
∂u

= 2bu− λ∅V = 0 (9)

from where
u∗ =

1
2b

λ∅V (10)

5.2. Existence of Optimal Solutions

For the existence of the optimal control, we give the following theorem
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Theorem 5. The control values u∗ which can minimize J(u) over U are given by,

u∗ = max
{

0, min
[

1,
1
2b

λ∅V
]}

, (11)

where

u∗ =


0, i f u ≤ 0,

u, i f 0 < u < 1
1, i f u ≥ 0.

(12)

Proof. To prove the existence of the optimal control solution, we use the convexity of
the integrand of J with respect to control u for the boundedness of the solutions and the
Lipschitz property of the system of the state with respect to the variables of the state. Hence,
we apply PMP and get the following:

C
0 Dα

t λS(t) =
∂H
∂S

(13)

with λS

(
t f

)
= 0. �

We can obtain the conditions for the optimality by differentiating the Hamiltonian H
with respect to u:

∂H
∂u

= 0 (14)

The adjoint System (7) and (8) comes from the solution of Equation (4) and the optimal
controls Equation (10) can be gotten from Equation (11). The optimal system comprises
the controlled System (4) and its initial conditions, System of adjoint (7) and conditions for
transversality.

6. Numerical Scheme and Numerical Simulation and Discussions

Here, the method proposed in [33] is reviewed. Consider the proposed algorithm
using the following initial value problem (IVP):

C
0 Dα

t (y(t)) = f (t, u(t)), 0 < α < 1, t ∈ [0, T]yk(a) = yk
0. (15)

The above IVP is equivalent to the following Volterra integral equation:

y(t) = u(t) +
ρ1−α

Γ(α)

∫ t

0
(s)ρ−1(tρ − sρ)α−1ds

where

u(t) =
m−1

∑
n=0

1
ρnn!

(tρ − aρ)n
[(

x1−p d
dx

)n
y(x)

]
x=a

.

First, we assume that the solution exists on the interval [a, T]. Using the mesh points
we divide [a, T] into n subintervals equally [tk, tk+1], where k = 0, 1, . . . , N − 1,

t0 = a, tk+1 =
(

tp
k + h

) 1
p , k = 0, 1, 2, . . . , N − 1,

and h =
(Tp − ap)

N
. To solve (15) numerically, we generate the approximations yk, k =

0, 1, . . . , N. By means of the following integral equation and by assuming we already get



Axioms 2023, 12, 321 15 of 22

the approximation yi ≈ y
(
tj
)
, j = 1, 2, . . . , k, we want to approximate yk ≈ y(tk+1). The

integral equation is given as

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)

∫ tk+1

a
(s)ρ−1

(
tp
k+1 − sρ

)α−1
f (s, y(s))ds

Substituting z = (s)p, we have

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)

∫ tp
k+1

a

(
tp
k+1 − z

)α−1
f

z

1
p , y

z

1
p


dz,

equivalently,

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)

k

∑
j=0

∫ tp
j+1

tp
j

(
tp
k+1 − z

)α−1
f

z

1
p , y

z

1
p


dz. (16)

We then use the Trapezoidal quadrature rule by considering the weight function(
tp
k+1 − z

)α−1
to approximate the above integral. Using tp

j (j = 0, 1, . . . , k + 1) to replace

f

z

1
p , y

z

1
p


, we get

∫ tp
j+1

tp
j

(
tp
k+1 − z

)
α−1 f

z

1
p , y

z

1
p


dz

≈ hα

α(α + 1)
[((k− j)α+1

−(k− j− α)(k− j + 1)α) f
(
tj, y

(
tj
))

+((k− j + 1)α+1

−(k− j− α + 1)(k− j)α) f
(
tj+1, y

(
tj+1

))]
Substituting the integral into Equation (16), we obtain the following as the corrector

formula:

y(tk+1) ≈ u(tk+1) +
ρ−α

Γ(α + 2)

k

∑
j=0

aj,k+1 f
(
tj, y

(
tj
))

+
ρ−αhα

Γ(α + 2)
f
(
tj+1, y

(
tj+1

))
(17)

where

aj,k+1 =

{
kα+1 − (k− α)(k + 1)α f orj = 0

(k− j + 2)α+1 + (k− j)α+1 − 2(k− j + 1)α+1 f or 1 ≤ j < k.

Now, substituting y(tk+1) with yp(tk+1) obtained by applying the one step Adams-

Bashforth method and also substituting f

z

1
p , y

z

1
p


 with f

(
tj, y

(
tj
))

, we obtain

yp(tk+1) ≈ u(tk+1) +
ρ−αhα

Γ(α + 1)

k
∑

j=0

[
(k + 1− j)α − (k− j)α] f

(
tj, y

(
tj
))

(18)
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Hence, the predictor-corrector method is given as

yk+1 ≈ u(tk+1) +
ρ−αhα

Γ(α + 2)

k

∑
j=0

aj,k+1 f
(
tj, y

(
tj
))

+
ρ−αhα

Γ(α + 2)
f
(

tk+1, yp
k+1

)
.

To implement the above scheme, we solve Equation (1) numerically. The approxima-
tions Sk+1, Ek+1, Ik+1, Hk+1, Rk+1, Vk+1 can simply be obtained using the iterative formulas
above for N ∈ N and T > 0,

Sk+1 = S0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1

[
Yα − βαSj Ij − θαSjVj − µαSj

]
+

ρ−αhα

Γ(α + 2)
[Yα − βαSk+1 Ik+1 − θαSk+1Vk+1

−µαSk+1]

Ek+1 = E0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1[β

αSj Ij + θαSjVj

−
(
µα + γα + ηα

1
)
Ej]

+
ρ−αhα

Γ(α + 2)
[βαSk+1 Ik+1 + θαSk+1Vk+1

−
(
µα + γα + ηα

1
)
Ek+1

]
,

Ik+1 = I0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1

[
γαEj −

(
µα + πα + ξα

1 + ηα
2
)

Ij
]

+
ρ−αhα

Γ(α + 2)
[
γαEk+1 −

(
µα + πα + ξα

1 + ηα
2
)

Ik+1
]
,

Hk+1 = H0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1

[
πα Ij −

(
µα + ξα

2 + ηα
3
)

Hj
]

+
ρ−αhα

Γ(α + 2)
[
πα Ik+1 −

(
µα + ξα

2 + ηα
3
)

Hk+1
]
,

Rk+1 = R0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1

[
ηα

1 Ej + ηα
2 Ij + ηα

3 Hj − µαRj
]

+
ρ−αhα

Γ(α + 2)
[
ηα

1 Ek+1 + ηα
2 Ik+1 + ηα

3 Hk+1 − µαRk+1
]
,

Vk+1 = V0 +
ρ−αhα

Γ(α + 2)

k
∑

j=0
aj,k+1

[
q1

αEj + q2
α Ij − rαVj

]
+

ρ−αhα

Γ(α + 2)
[q1

αEk+1 + q2
α Ik+1 − rαVk+1].

where h =
Tp

N
and

Sp
k+1 ≈ S0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][Yα − βαSj Ij − θαSjVj − µαSj

]

Ep
k+1 ≈ E0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][βαSj Ij + θαSjVj − (µα + γα + ηα

1 )Ej
]
,

Ip
k+1 ≈ I0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][γαEj − (µα + πα + ξα

1 + ηα
2 )Ij

]
,
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Hp
k+1 ≈ H0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][πα Ij − (µα + ξα

2 + ηα
3 )Hj

]
,

Rp
k+1 ≈ R0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][ηα

1 Ej + ηα
2 Ij + ηα

3 Hj − µαRj
]
,

Vp
k+1 ≈ V0 +

ρ−αhα

Γ(α + 1)

k

∑
j=0

[
(k + 1− j)α − (k− j)α][q1

αEj + q2
α Ij − rαVj

]
.

For the numerical simulation, we use the following parameter values from [28]; Y =
130, β = 0.11, θ = 0.025, µ = 0.0395, γ = 0.0689, η1 = 0.157, η2 = 0.098, η3 = 0.0714, π =
0.009, ξ1 = 0.015, ξ2 = 0.015, q1 = 0.001, q2 = 0.000398, r = 0.06, α ∈ (0, 1].

Figure 1 depicts the dynamics of the model. It can clearly be seen that, without
shedding effect control, the susceptible populations all go to extinction, whereas infected
exposed populations and viral populations proliferate. This clearly shows the need for the
application of shedding effect control measures to control the pandemic.
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Figure 1. Dynamics of the model.

Figure 2 shows the extinction of the variation susceptible population. This means if no
control of the shedding effect is observed, subsequently all people in the population will
become infected.

From Figure 3, it can be observed that application of shedding effect control increases
the susceptible population. It is clear that there may be a decrease in the population which
can be attributed to direct infection of the disease, but the control prevents the population
from extinction.

Figure 4 compares the exposed population with and without shedding effect control.
It can clearly be seen that application of the control measure has a positive effect on the
exposed class as it minimizes it. The proliferation of the disease can be attributed to the
direct infection.
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Figure 2. Dynamics of susceptible population without control.
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Figure 5 compares the infected population with and without shedding effect control.
It can clearly be seen that application of the control measure has a positive effect on the
infected class as it minimizes it. The proliferation of the disease can be attributed to the
direct infection.
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Figure 5. Comparing the dynamics of infected population with and without control.

Figure 6 shows the influence of the variation in the fractional-order α on the biological
behavior of the infected population. It is clear from this Figure that the population has a
decreasing effect when α is increased from 0.2 to 1. Hence, the memory effect can be seen
clearly.
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Daily infected cases for Nigeria are used to fit the model. The data are collected
from daily new infected cases for Nigeria from 30 January 2020 to 10 April 2020, which is
available at the WHO website [34]. Some parameter values were estimated to give the best
fit for the model. We fit the curve for daily confirmed cases in Figure 7.
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To disclose the plenary scenario of the error analysis, a tabular exposure of the statisti-
cal ingredients of error analysis, including minimum value, maximum value, average, and
standard deviation (SD) of the relative errors (RE), is provided in Table 2.

Table 2. Error Analysis of the data prediction for the Infected population.

Minimum Value of
RE (%)

Maximum Value of
RE (%) Average RE (%) SD of RE (%)

0.064410718 5.380764019 1.623503267 1.386483902

From the table the error indicated that the result demonstrated better validation of the
model in comparison with real data.

7. Summary and Conclusions

This work consists of the transmission dynamics of COVID-19 represented using a
fractional order SIR model in the Caputo sense. The model integrates the indirect mode
of transmission of COVID-19 which is caused as a result of shedding effect. The indirect
mode of transmission of the virus through shedding is an essential factor that needs to
be studied. Equilibrium solutions, basic reproduction ratio (that depends both on direct
and indirect mode of transmission), existence and uniqueness of the solution of the model
and their stabilities were studied. The paper studied the effect of optimal control policy
applied to shedding effect. The control is the observation of standard hygiene practices
and chemical disinfectants in public spaces. Numerical simulations were carried out and
the significance of the fractional order from the biological point of view was established.
By applying shedding effect control, it was clear that while the population of susceptible
individuals is increased, the populations of exposed and infected individuals are drastically
decreased.

The public must follow the government rules or public health care policies to mitigate
the spread of the virus. The limitation of this work lies in the absence of more reliable data.
This is because more accurate data is needed to obtain better prediction.
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We recommend that the fractal approach be used in future to consider the analysis of
the model.
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