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Abstract: The Ayala-Gilpin (AG) kinetics system is one of the famous mathematical models of
ecosystem. This model has been widely concerned and studied since it was proposed. This paper
stresses on a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales.
In the sense of time scale, our model unifies and generalizes the discrete and continuous cases. Firstly,
with the aid of the auxiliary function having only two zeros in the real number field, we apply
inequality technique and coincidence degree theory to obtain some sufficient criteria which ensure
that this model has periodic solutions on time scales. Meanwhile, the global asymptotic stability of
the periodic solution is founded by employing stability theory in the sense of Lyapunov. Eventually,
we provide an illustrative example and conduct numerical simulation by means of MATLAB tools.
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1. Introduction

This paper mainly deals with the following nonlinear competitive periodic Ayala-
Gilpin ecosystem with distributed lags on time scale

U∆(ς) = r1(ς)− c11(ς)[eU (ς)]θ1 − c12(ς)

×
∫ 0
−ξ1(ς)

k1(s)eV(ς+s)∆s− φ1(ς)e−U (ς), ς ∈ T,
V∆(ς) = r2(ς)− c22(ς)[eV(ς)]θ2 − c21(ς)

×
∫ 0
−ξ2(ς)

k2(s)eU (ς+s)∆s− φ2(ς)e−V(ς), ς ∈ T,
U (ς) = ϕ1(ς), V(ς) = ϕ2(ς), ς ∈ (−ξ, 0] ∩T,

(1)

where T is a time scale, ∆ is the delta (or Hilger) derivative on T, U (ς) and V(ς) are
the quantity densities of two vying species at moment ς, ri(ς)(i = 1, 2) stands for the
intrinsic birth rate, c11(ς) and c22(ς) are the intraspecific competition rates, c12(ς) and
c21(ς) are the interspecific competition rates, the kernel function of distributed-lags is given
by ki(ς)(i = 1, 2), ξi(ς) > 0(i = 1, 2) is the distributed-lag function, φi(ς)(i = 1, 2) is the
manual control term, the constants θi > 0(i = 1, 2) measures the nonlinear interferences
within species, ϕi(ς)(i = 1, 2) is the initial function, ξ = max{supς∈T ξ1(ς), supς∈T ξ2(ς)}.

The proposal of the model is related to the famous experimental study of Drosophila
competition. Combined with the experimental study of Drosophila competition, Ayala,
Gilpin and Eherenfeld [1] put forward the following nonlinear dynamic model in 1973.

dU (ς)
dς = r1U (ς)

[
1−

(
U (ς)
K1

)θ1 − c12
V(ς)
K2

]
,

dV(ς)
dς = r2V(ς)

[
1−

(
V(ς)
K2

)θ2 − c21
U (ς)
K1

]
,

(2)
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where ri > 0(i = 1, 2) represents inherent growth ratios. Ki > 0(i = 1, 2) stands for
the maximum capacity of environment to species. The constant θi(i = 1, 2) measures
the nonlinear interferences within species. c12 > 0 and c21 > 0 mean the vying rate
among species.

The nonlinear interferences within species are measured by constants θ1 > 0 and
θ2 > 0. c12 > 0 and c21 > 0 are the measures of competition between species.

When θ1 = θ2 = 1, (2) becomes the below Lotka-Volterra competitive model
dU (ς)

dς = r1U (ς)
[
1− U (ς)K1

− c12
V(ς)
K2

]
,

dV(ς)
dς = r2V(ς)

[
1− V(ς)K2

− c21
U (ς)
K1

]
.

(3)

Therefore, the Ayala-Gilpin model is a generalization of Lotka-Volterra model. The pa-
rameters θ1 and θ2 can take any positive real number. Therefore, Ayala-Gilpin model has
been widely favored since it was proposed. The kinetics properties of Ayala-Gilpin model
have been extensively explored. In [2–7], the authors dealt with the persistence, extinction
and attraction of AG-system. Amdouni et al. [8] investigated the existence and global
exponential stability of pseudo almost periodic solutions for a generalized competitive
AG-model. Korobenko et al. [9] handled the evolutionary stability of a diffusion AG-model.
Zhao [10,11] studied the multiplicity of almost periodic solution and local exponential
stability for two AG-systems with harvest term. If the time-lag, impulse and random effects
are considered in the AG-system, many excellent results have been achieved (see [12–20]).
with the exception of the classical AG-system, some extended AG-systems have also been
studied (see [4,6,8,9,14,16,20–22]).

Moreover, the model (1) is more suitable for the actual situation of ecosystem. For
example, the predation process is not instantaneous, but takes a period of time to complete.
At the same time, the number of predators can not be increased immediately after predators
prey. Therefore, time lag is common in the whole process of predation and transformation.
As we all know, the environment of the ecosystem often presents certain periodic changes
over time. For the harmonious coexistence of people and ecosystem, sometimes it is
necessary to protect and intervene the ecosystem manually.

From the perspective of mathematical theory, it is also of great value to study model (1).
According to the definition of time scale, the model (1) contains difference case and differen-
tial case. Indeed, when T = N+, the model (1) becomes the following difference equation

U (ς + 1)−U (ς) = r1(ς)− c11(ς)[eU (ς)]θ1 − c12(ς)

×
0
∑

s=−ξ1(ς)
k1(s)eV(ς+s) − φ1(ς)eU (ς), ς ∈ N+,

V(ς + 1)− V(ς) = r2(ς)− c22(ς)[eV(ς)]θ2 − c21(ς)

×
0
∑

s=−ξ2(ς)
k2(s)eU (ς+s) − φ2(ς)eV(ς)

]
, ς ∈ N+,

U (ς) = ϕ1(ς), V = ϕ2(ς), ς ∈ N+.

(4)

When T = R, let x(ς) = eU (ς), y(ς) = eV(ς), then the model (1) becomes the following
differential equation

dx(ς)
dς = x(ς)

[
r1(ς)− c11(ς)[x(ς)]θ1 − c12(ς)

×
∫ 0
−ξ1(ς)

k1(s)y(ς + s)ds
]
− φ1(ς), ς ∈ R,

dy(ς)
dς = y(ς)

[
r2(ς)− c22(ς)[y(ς)]θ2 − c21(ς)

×
∫ 0
−ξ2(ς)

k2(s)x(ς + s)ds
]
− φ2(ς), ς ∈ R,

x(ς) = eϕ1(ς), y(ς) = eϕ2(ς), ς ∈ R.

(5)

In addition, a complex number set like T =
⋃+∞

n=−∞[n + 1
4 , n + 1

2 ] ∪ {n} is also a time
scale. In 1988, Hilger first raised the time scale theory in his Ph.D. thesis [23], aiming at
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unifying difference and differential. For further study of time scale theory, please refer
to the monographs [24,25] To the best my knowledge, no one has studied the periodic
solution and stability of AG-system on time scales. Consequently, it is worthwhile to study
the periodic dynamic behavior of (1).

The highlights of our work and the differences from previous published works are
mainly manifested in two aspects. (i) We study the dynamic properties of AG-system
in the sense of time scales, which can unify the differential and difference forms of AG-
systems within the same framework. However, most previous studies on AG-systems
have focused on the case of continuous differential equations (see some of them [6–16,22]).
Previous papers dealing with pure difference AG-systems are rare. some of their papers
involved discrete AG-systems containing impulsive terms (see [2,17,21]). (ii) Our model (1)
is the closest to classical model (2). The model (1) only adds control harvest terms and
distribution lags based on classical model (2). Compared to model (1), some previous
papers on generalized AG-systems have made many modifications to classical model (2).
For example, Wang et al. [4] added random terms and multiple species to their model.
In [6,14,16], the authors not only added multiple species to their models, but also added
nonlinear measures θij(i 6= j) to the inter species competition term. In [20,21], the authors
added Lévy and Markovian jumps to their models.

The surplus framework of the manuscript is arranged as follows. We mainly introduce
the basic concepts and results of time scales, important assumptions and necessary proposi-
tions in Section 2. Section 3 focuses on finding the sufficient conditions for the existence of
periodic solutions to system (1). In Section 4, the Lyapunov functional is applied to discuss
the global asymptotic stability of system (1). Section 5 provides an example and numerical
simulation to verify our main results. In the last Section 6, we made a brief conclusion
and outlook.

2. Preliminaries

This section first concisely reviews the elementary knowledge of calculus on time
scale. The following statements are taken from Refs. [24,25].

φ 6= T ⊂ R is called a time scale if T is closed. Define some operators as follows:

σ(ς) = inf{ι ∈ T : ι > ς}, ρ(ς) = sup{ι ∈ T : ι < ς}, µ(ς) = σ(ς)− ς, ∀ ς ∈ T,

then, we call that σ is jumping forward, ρ is jumping backward, and µ is the graininess.
For ς ∈ T, if ς > infT and ρ(ς) = ς (ς < supT and σ(ς) = ς), then we call that

ς is left-dense (right-dense). If ρ(ς) < ς (σ(ς) > ς), then we call that ς is left-scattered
(right-scattered). In addition, we have

Tk =

{
T \ {M}, T achieves a left-scattered maximum M,
T, otherwise,

and

Tk =

{
T \ {m}, T reachs a right-scattered minimum m,
T, otherwise.

For v > 0, we call that a time scale T is v-periodic, provided that ∀ ς ∈ T⇒ ς+v ∈ T.
Obviously, if T is v-periodic, then T is unbounded above.

Definition 1. We call that u : T → R is regulated iff limt→ς+ u(t) and limt→ς− u(t) all exist
(finite), ∀ ς ∈ T.

Definition 2. We call that u : T → R is rd-continuous iff, for all right-dense point. ς ∈ T, we
have limt→ς+ u(t) = u(ς), and for all left-dense point ι ∈ T, we have that limt→ι− u(t) = u(ι−)
exists (finite). We denote the collection of all rd-continuous functions u : T→ R as Crd(T,R).
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Definition 3. Let u : T → R and ς ∈ Tk. We call that a number u∆(ς) (if exists) is the
∆-derivative of u at ς iff, for a given ∀ ε > 0, there has δ > 0 such that

|[u(σ(ς))− u(ι)]− u∆(ς)[σ(ς)− ι]| < ε|σ(ς)− ι|, ∀ ι ∈ (ς− δ, ς + δ) ∩T.

The collection of first-order ∆-differentiable functions is denoted by

C1
rd(T,R) = {u : T→ R : u∆(ς) exists, and u∆(ς) ∈ Crd(T,R), ∀ ς ∈ R}.

According to the above definitions, one easily knows that u is ∆-differentiable⇒ u is
continuous⇒ u is rd-continuous⇒ u is regulated.

Lemma 1. If u is regulated, then there is a ∆-differentiable function U with differentiable region D
that contents

U∆(ς) = u(ς), ∀ ς ∈ D.

Definition 4. Assume that u : T→ R is regulated, then we have the following concepts.

(1) We call that any function U as in Lemma 1 is a ∆-antiderivative of u.
(2) We define the ∆-indefinite integral of u as∫

u(ς)∆ς = U(ς) + c,

where an arbitrary constant c is a ∆-integral constant.
(3) We define the ∆-definite integral as

∫ β

α
u(ς)∆ς = U(β)−U(α), ∀ α, β ∈ T.

Lemma 2. Let α, β ∈ T, λ1, λ2 ∈ R, u, v ∈ Crd(T,R), then we have the followings

(1)
∫ β

α [λ1u(ς) + λ2v(ς)]∆ς = λ1
∫ β

α u(ς)∆ς + λ2
∫ β

α v(ς)∆ς.
(2) ∀ α ≤ ς < β, u(ς) ≥ 0⇒

∫ β
α u(ς)∆ς ≥ 0.

(3) ∀ ς ∈ {ς ∈ T : α ≤ ς < β}, |u(ς)| ≤ v(ς)⇒ |
∫ β

α u(ς)∆ς| ≤
∫ β

α v(ς)∆ς.

Lemma 3 ([26]). For two Banach spaces X, Z, and nonempty bounded open subset Ω ⊂ X, define
some operators L : X → Z, N : X× [0, 1] → Z, Q : Z → Z and J : Z → Z. Assume that L is
zero index Fredholm type,N is L-compact,Q is projected, and J is homotopy. Further suppose that

(a) For all 0 < η < 1, if x is a solution of Lx = ηN (x, η), then x /∈ ∂Ω ∩Dom(L);
(b) If x ∈ ∂Ω ∩Ker(L), then QN (x, 0)x 6= 0;
(c) deg(JQN (x, 0), Ω ∩Ker(L), 0) 6= 0.

Then there has at least a x∗ ∈ Ω ∩Dom(L) meeting with Lx∗ = N (x∗, 1).

Lemma 4 ([11]). Let α, β, γ, ϑ > 0, F(x) = αe(1+ϑ)x− βex +γ. Assume that ϑα−
1
ϑ

(
β

1+ϑ

) 1+ϑ
ϑ

>

γ. Then we have the followings

(1) There exists a unique x0 = 1
ϑ ln

[ β
α(1+ϑ)

]
∈ R such that

Fmin = F(x0) = −ϑα−
1
ϑ

(
β

1 + ϑ

) 1+ϑ
ϑ

+ γ < 0,

and for all x1 < x2, F(x1) > F(x2) when x1, x2 ∈ (−∞, x0], F(x1) < F(x2) when
x1, x2 ∈ [x0,+∞).

(2) There are only two x∗1 , x∗2 ∈ R with x∗1 < x∗2 such that F(x∗1) = F(x∗2) = 0.
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Now let’s introduce some symbols.

min{[0,+∞) ∩T} , κ, Iv = [κ, κ + v] ∩T, sup
ς∈Iv

w(ς) , w,

inf
ς∈Iv

w(ς) , w,
1
v

∫
Iv

w(s)∆s =
1
v

∫ κ+v

κ
w(s)∆s , ŵ,

where w(ς + v) = w(ς), ∀w ∈ Crd(T,R). The whole paper needs the following basic
assumptions.

(H1)Assume that 0 < r1(ς), r2(ς), ξ1(ς), ξ2(ς), φ1(ς), φ2(ς), c11(ς), c22(ς), c12(ς), c21(ς),

ϕ1(ς), ϕ2(ς), k1(ς), k2(ς) ∈ Crd(T,R) are all v-periodic, and satisfy
∫ 0
−ξ k1(s)∆s < ∞,∫ 0

−ξ k1(s)∆s < ∞, where ξ = max{ξ1, ξ2}.

3. Existence of Periodic Solution on Time Scales

In the portion, we shall put to use Lemma 3 to argue that system (1) has a periodic
solution. Set X = Z = W1 ⊕W2, where W1 = {w(ς) ≡ (C1, C2)

T ∈ R2},

W2 =
{

w(ς) = (w1(ς), w2(ς))
T : wj(ς) ∈ Crd(T,R), wj(ς + v) = wj(ς), j = 1, 2

}
,

equipped with the norm

‖w‖ = max
1≤j≤2

sup
ς∈Iv

|wj(ς)|, ∀w = (w1, w2)
T ∈ X = Z. (6)

In the manner of Ref. [27], it is easy to prove Lemmas 5–8. So, we omit their proofs.

Lemma 5. X = Z is the Banach space with the norm || · || defined as (6).

Lemma 6. L : X→ Z defined by

Lw(ς) = w∆(ς) = (w∆
1 (ς), w∆

2 (ς))
T , ∀w(ς) = (w1(ς), w2(ς))

T ∈ X,

then L is zero index Fredholm type.

Lemma 7. For all w = (U ,V)T ∈ X = Z, N (w, η) : X× [0, 1] → Z, P : X → Z and Q : Z
→ Z are defined by

N (w, η) =

(
r1(ς)− c11(ς)eθ1U (ς) − ηc12(ς)

∫ 0
−ξ1(ς)

k1(s)eV(ς+s)ds− φ1(ς)e−U (ς)

r2(ς)− c22(ς)eθ2V(ς) − ηc21(ς)
∫ 0
−ξ2(ς)

k2(s)eU (ς+s)ds− φ2(ς)e−V(ς)

)
,

Pw = Qw = (Û , V̂)T =

(
1
v

∫ κ+v

κ
U (ς)∆ς,

1
v

∫ κ+v

κ
V(ς)∆ς

)T
,

Ker(L) = {w = (U ,V) ∈ X : (U ,V) = (C1, C2), ς ∈ T},

Im(L) = {w = (U ,V) ∈ Z : (Û , V̂) = (0, 0)},

(L−1|P )(w(ς)) =

( ∫ ς
κ U (s)∆s− 1

v

∫ κ+v
κ

∫ ς
κ U (s)∆s∆ς∫ ς

κ V(s)∆s− 1
v

∫ κ+v
κ

∫ ς
κ V(s)∆s∆ς

)
.

Then N (w, η) is L-compact on Ω× [0, 1].
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Lemma 8. Let T be an v-periodic time scale. Suppose ψ : T→ R be an v-periodic function which
is rd-continuous, then

0 ≤ sup
s∈Iv

ψ(s)− inf
s∈Iv

ψ(s) ≤ 1
2

∫ κ+v

κ
|ψ∆(s)|∆s.

(H2)Suppose that all inequalities hold as follows:

θ1(c11e−vθ1r1)
− 1

θ1

(
r1

1 + θ1

) 1+θ1
θ1

> φ1, θ2(c22e−vθ2r2)
− 1

θ2

(
r2

1 + θ2

) 1+θ2
θ2

> φ2.

Theorem 1. Assume that (H1) and (H2) are true, then there has at least an v-periodic solution
(Ũ (ς), Ṽ(ς))T satisfies model (1) on periodic time scale T such that L− −vr1 < Ũ (ς) < L+ and
M− −vr2 < Ṽ(ς) < M+, where L± and M± can be solved by the below equations

f (L±) =(c11e−vθ1r1)e(1+θ1)L± − r1eL± + φ1 = 0,

g(M±) =(c22e−vθ2r2)e(1+θ2)M± − r2eM± + φ2 = 0.

Proof. Let X = Z be same as Lemma 5, and L, N , P , Q be same as Lemmas 6 and 7. In
what follows, we shall prove that model (1) has an v-periodic solution based on Lemma 3.

First of all, we find the existence region Ω ⊂ X of solution. Assume that an v-periodic
solution w = (U ,V)T ∈ X solves the operator equation Lw = ηN (w, η), then we obtain{
U∆(ς) = η

[
r1(ς)− c11(ς)eθ1U (ς) − ηc12(ς)

∫ 0
−ξ1(ς)

k1(s)eV(ς+s)∆s− φ1(ς)e−U (ς)
]
,

V∆(ς) = η
[
r2(ς)− c22(ς)eθ2V(ς) − ηc21(ς)

∫ 0
−ξ2(ς)

k2(s)eU (ς+s)∆s− φ2(ς)e−V(ς)
]
.

(7)

Integrating at both sides of (7) yields{ ∫ κ+v
κ

[
r1(ς)− c11(ς)eθ1U (ς) − ηc12(ς)

∫ 0
−ξ1(ς)

k1(s)eV(ς+s)∆s− φ1(ς)e−U (ς)
]
∆ς = 0,∫ κ+v

κ

[
r2(ς)− c22(ς)eθ2V(ς) − ηc21(ς)

∫ 0
−ξ2(ς)

k2(s)eU (ς+s)∆s− φ2(ς)e−V(ς)
]
∆ς = 0.

(8)

In view of periodicity of U (ς) and V(ς), there exist µ1, µ2, ν1 and ν2 ∈ Iv satisfying
U (µ1) = U , U (µ2) = U , V(ν1) = V , V(ν2) = V . The first equation in (7) and (8) leads∫ κ+v

κ
|U∆(ς)|∆ς < 2vr1. (9)

By the first equation of (8) and (9) together with Lemma 8, we have

vr1 ≥
∫ κ+v

κ
r1(s)∆s =

∫ κ+v

κ
c11(ς)eθ1U (ς)∆ς + η

∫ κ+v

κ
c12(ς)

×
[ ∫ 0

−ξ1(ς)
k1(s)eV(ς+s)∆s

]
∆ς +

∫ κ+v

κ
φ1(ς)e−U (ς)∆ς

>vc11eθ1U (µ2) + vφ1e−U (µ1) ≥ vc11eθ1[U (µ1)−vr1] + vφ1e−U (µ1),

which implies that

(c11e−vθ1r1)e(1+θ1)U (µ1) − r1eU (µ1) + φ1 < 0. (10)

We derive from Lemma 4 that there has unique L0 ∈ R such that

fmin = f (L0) = −θ1(c11e−vθ1r1)
− 1

θ1

(
r1

1 + θ1

) 1+θ1
θ1

+ φ1, f ′(L0) = 0,



Axioms 2023, 12, 315 7 of 14

where L0 = 1
θ1

ln
[ r1
(c11e−vθ1r1 )(1+θ1)

]
. From (H2) and Lemma 4, one knows that f (L0) < 0,

and f (x) = 0 has only two roots L− and L+ satisfying

L− < L0 < L+, f (L±) = 0. (11)

By (11) and Lemma 4, the Inequality (10) is solved by

L− < U (µ1) < L+. (12)

It follows from Lemma 8 and (12) that

L− −vr1 < U (µ2) ≤ U (µ1) < L+. (13)

Similarly, the second equation of (7) gives

vr2 >
∫ κ+v

κ
r2(ς)∆ς = η

∫ κ+v

κ
c21(ς)

[ ∫ 0

−ξ2(ς)
k2(s)eU (ς+s)∆s

]
∆ς

+
∫ κ+v

κ
c22(ς)eθ2V(ς)∆ς +

∫ κ+v

κ
φ2(ς)e−V(ς)∆ς

>vc22eθ2[V(ν1)−vr2] + vφ2e−V(ν1),

which indicates that

(c22e−vθ2r2)e(1+θ2)V(ν1) − r2eV(ν1) + φ2 < 0. (14)

From Lemma 4, one knows that there has unique M0 ∈ R such that

gmin = g(M0) = −θ2(c22e−vθ2r2)
− 1

θ2

(
r2

1 + θ2

) 1+θ2
θ2

+ φ2, g′(M0) = 0,

where M0 = 1
θ2

ln
[ r2
(c22e−vθ2r2 )(1+θ2)

]
. It follows from (H2) and Lemma 4 that g(M0) < 0,

and g(x) = 0 has two roots M− and M+ satisfying

M− < M0 < M+, g(M±) = 0. (15)

By (15) and Lemma 4, the solution of Inequality (14) is read as

M− < V(ν1) < M+. (16)

From Lemma 8 and (16), we have

M− −vr2 < V(ν2) ≤ V(ν1) < M+. (17)

Based on (13) and (17), we take

Ω =
{
(U (ς),V(ς))T ∈ X : L− −vr1 < U (ς) < L+, M− −vr2 < V(ς) < M+

}
.

Obviously, Ω ⊂ X meets with Lemma 3 (a).
We next adopt the reduction to absurdity to prove that Lemma 3 (b) hold, i.e., w ∈

∂Ω ∩Ker(L) = ∂Ω ∩R2 implies QN (w, 0) 6= (0, 0). Indeed, assume that the conclusion is
opposite, then there has a constant vector W∗ = (U∗, V∗) with W∗ ∈ ∂Ω ∩R2 that fulfills

∫ κ+v
κ

[
r1(ς)− c11(ς)eθ1U∗ − c12(ς)eV∗ ∫ 0

−ξ2(ς)
k1(s)∆s− φ1(ς)e−U∗

]
∆ς = 0,∫ κ+v

κ

[
r2(ς)− c22(ς)eθ2U∗ − c21(ς)eU∗ ∫ 0

−ξ2(ς)
k2(s)∆s− φ2(ς)e−V∗

]
∆ς = 0.

(18)
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A discussion for (18) analogue to (8)–(17) yields W∗ = (U∗, V∗) ∈ Ω ∩R2, this is contrary
to W∗ = (U∗, V∗) ∈ ∂Ω ∩R2. So the Lemma 3 (b) holds.

We choose the identity operator J = I and calculate it directly

deg
{
JQN (w, 0), Ω ∩Ker(J ), (0, 0)T} 6= 0,

which means that Lemma 3 (c) holds. Thus, one concludes from Lemma 3 that there has at
least an v-periodic function (Ũ (ς), Ṽ(ς))T satisfying model (1). The proof is completed.

4. Global Asymptotic Stability

The portion concentrates on the global asymptotic stability of model (1). To this end,
we need the following definitions.

Definition 5. According to Lyapunov stability theory, we call that the v-periodic positive solution
w̃(ς) = (Ũ (ς), Ṽ(ς)) of (1) is globally asymptotically stable on a periodic time scale T iff, for
any positive solution w(ς) = (U (ς), V(ς)) of (1), and for any large real number R > 0, when
‖w̃(0)− w(0)‖ < R, we have limς→+∞ ‖w̃(ς)− w(ς)‖ = 0.

Definition 6 ([28]). Let Uς be a neighborhood of ς, ∀ ς ∈ T, and V ∈ Crd(T × Rn,R+),
D+V∆(ς, x(ς)) is called the Dini derivative of V iff, ∀ ε > 0, there has a right neighborhood
Uε ∩Uς of ς satisfying

V(σ(ς), x(σ(ς)))−V(s, x(s))
σ(ς)− s

< D+V∆(ς, x(ς)) + ε, ∀ s ∈ Uε, s > ς.

If V(ς, x(ς)) is continuous at right-scattered ς, then

D+V∆(ς, x(ς)) =
V(σ(ς), x(σ(ς)))−V(ς, x(ς))

σ(ς)− ς
.

By Theorem 1, we know that there has an v-periodic function (Ũ (ς), Ṽ(ς))T ∈ Ω
satisfying model (1). Let u(ς) = eU (ς), v(ς) = eV(ς), then one has U∆(ς) = (ln u(ς))∆ and
V∆(ς) = (ln v(ς))∆. Thus the system (1) becomes (ln u(ς))∆ = r1(ς)− c11(ς)[u(ς)]θ1 − c12(ς)

∫ 0
−ξ1(ς)

k1(s)v(ς + s)∆s− φ1(ς)
u(ς) , ς ∈ T,

(ln v(ς))∆ = r2(ς)− c22(ς)[v(ς)]θ2 − c21(ς)
∫ 0
−ξ2(ς)

k2(s)u(ς + s)∆s− φ2(ς)
v(ς) , ς ∈ T.

(19)

Similarly, there exists an v-periodic positive function (ũ(ς), ṽ(ς))T ∈ Ω̃ that solves
system (19), here

Ω̃ =
{
(u(ς), v(ς))T : eL−−vr1 < u(ς) < eL+

, eM−−vr2 < v(ς) < eM+}
.

Choose the constants ρ > 0 and θ > 0 such that

0 < ρ < min
{

eL−−vr1 , eM−−vr2
}

, θ ≥ max{1, θ1, θ2}.

We further assume that

(H3)The followings are true:

−ρ
θ1
θ c11 + ρ−

1
θ φ1 + ρ

1
θ c21

∫ 0

−ξ
k2(s)∆s < 0,

−ρ
θ2
θ c22 + ρ−

1
θ φ2 + ρ

1
θ c12

∫ 0

−ξ
k1(s)∆s < 0.
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Taking variable substitution u(ς) = (ρX(ς))
1
θ and v(ς) = (ρY(ς))

1
θ , then we have

(ln u(ς))∆ =

[
1
θ

ln(ρX(ς))

]∆

=
1
θ

[
ln ρ + ln X(ς)

]∆

=
1
θ
(ln X(ς))∆,

and

(ln v(ς))∆ =

[
1
θ

ln(ρY(ς))
]∆

=
1
θ

[
ln ρ + ln Y(ς)

]∆

=
1
θ
(ln Y(ς))∆.

Consequently, system (19) changes into
(ln X(ς))∆ = θ

[
r1(ς)− ρ

θ1
θ c11(ς)X

θ1
θ (ς)− ρ

1
θ c12(ς)

×
∫ 0
−ξ1(ς)

k1(s)Y
1
θ (ς + s)∆s− ρ−

1
θ φ1(ς)X−

1
θ (ς)

]
,

(ln Y(ς))∆ = θ
[
r2(ς)− ρ

θ2
θ c22(ς)Y

θ2
θ (ς)− ρ

1
θ c21(ς)

×
∫ 0
−ξ2(ς)

k2(s)X
1
θ (ς + s)∆s− ρ−

1
θ φ2(ς)Y−

1
θ (ς)

]
.

(20)

Clearly, system (20) has an v-periodic positive solution (X̃(ς), Ỹ(ς))T = ( 1
ρ ũθ(ς), 1

ρ ṽθ(ς))T

within Ω̃′, where

Ω̃′ =
{
(X(ς), Y(ς))T :

1
ρ

eθ(L−−vr1) < X(ς) <
1
ρ

eθL+
,

1
ρ

eθ(M−−vr2) < Y(ς) <
1
ρ

eθM+
}

.

From Theorem 1 and Ω̃′, we have

1 <
1
ρ

eθ(L−−vr1) < X̃(ς) <
1
ρ

eθL+
, 1 <

1
ρ

eθ(M−−vr2) < Ỹ(ς) <
1
ρ

eθM+
. (21)

Theorem 2. Assume that (H1)–(H3) hold, then a unique v-periodic solution (Ũ (ς), Ṽ(ς))T

of (1) is globally asymptotically stable.

Proof. Assume that the v-periodic function (Ũ (ς), Ṽ(ς))T satisfying (1) is globally asymp-
totically stable, then (Ũ (ς), Ṽ(ς))T is attractive, that is, for each function (U (ς),V(ς))T

satisfying (1), we have lim
ς→+∞

[U (ς) − Ũ (ς)] = 0, lim
ς→+∞

[V(ς) − Ṽ(ς)] = 0. If the sys-

tem (1) has another v-periodic solution (U ∗(ς),V∗(ς))T ∈ Ω with (U ∗(ς),V∗(ς))T 6=
(Ũ (ς), Ṽ(ς))T , without loss of generality, assume that U ∗(ς) 6= Ũ (ς), then we obtain
0 < |Ũ (ς)−U ∗(ς)| ≤ |Ũ (ς)−U (ς)|+ |U (ς)−U ∗(ς)| → 0, as ς→ +∞, which is an obvi-
ous fallacy. Thus, we prove that the v-periodic function (Ũ (ς), Ṽ(ς))T satisfying model (1)
is unique provided that (Ũ (ς), Ṽ(ς))T is globally asymptotically stable. In addition, since
the global asymptotical stability of v-periodic function (Ũ (ς), Ṽ(ς))T ∈ Ω satisfying (1)
and (X̃(ς), Ỹ(ς))T satisfying (20) is equivalent, we just need to show that the v-periodic
function (X̃(ς), Ỹ(ς))T satisfying (20) is globally asymptotically stable. Indeed, it fol-
lows from (H1), (H2) and Theorem 1 that system (20) has an positive v-periodic solution
(X̃(ς), Ỹ(ς))T . For each positive solution (X(ς), Y(ς))T of (20), build a Lyapunov functional
V(ς) = V1(ς) + V2(ς), here

V1(ς) = | ln X(ς)− ln X̃(ς)|+ | ln Y(ς)− ln Ỹ(ς)|, (22)

V2(ς) =θρ
1
θ c12

∫ 0

−ξ
k1(s)

[ ∫ ς

ς+s

∣∣∣∣Y 1
θ (ζ)− Ỹ

1
θ (ζ)

∣∣∣∣∆ζ

]
∆s

+ θρ
1
θ c21

∫ 0

−ξ
k2(s)

[ ∫ ς

ς+s

∣∣∣∣X 1
θ (ζ)− X̃

1
θ (ζ)

∣∣∣∣∆ζ

]
∆s. (23)
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Obviously, V(0) < +∞ and V(ς) ≥ V1(ς). By (21), a direct ∆-derivation along (20) gives

D+(| ln X(ς)− ln X̃(ς)|)∆ ≤ −θρ
θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣

+ θρ
1
θ c12

∫ 0

−ξ
k1(s)

∣∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∣∆s + θρ
−1
θ φ1

∣∣∣∣X −1
θ (ς)− X̃

−1
θ (ς)

∣∣∣∣
≤− θρ

θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣+ θρ

1
θ c12

∫ 0

−ξ
k1(s)

∣∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∣∆s

+ θρ
−1
θ φ1

∣∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣∣X −1
θ (ς)X̃

−1
θ (ς)

≤− θρ
θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣+ θρ

1
θ c12

∫ 0

−ξ
k1(s)

∣∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∣∆s

+ θρ
−1
θ φ1

∣∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣∣, (24)

D+(| ln Y(ς)− ln Ỹ(ς)|)∆ ≤ −θρ
θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣

+ θρ
1
θ c21

∫ 0

−ξ
k2(s)

∣∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∣∆s + θρ
−1
θ φ2

∣∣∣∣Y −1
θ (ς)− Ỹ

−1
θ (ς)

∣∣∣∣
≤− θρ

θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣+ θρ

1
θ c21

∫ 0

−ξ
k2(s)

∣∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∣∆s

+ θρ
−1
θ φ2

∣∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣∣Y −1
θ (ς)Ỹ

−1
θ (ς)

≤− θρ
θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣+ θρ

1
θ c21

∫ 0

−ξ
k2(s)

∣∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∣∆s

+ θρ
−1
θ φ2

∣∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣∣, (25)

D+

(∫ 0

−ξ
k1(s)

[ ∫ ς

ς+s

∣∣∣∣Y 1
θ (ζ)− Ỹ

1
θ (ζ)

∣∣∣∣∆ζ

]
∆s
)∆

=
∫ 0

−ξ
k1(s)∆s ·

∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣
−
∫ 0

−ξ
k1(s)

∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∆s, (26)

and

D+

(∫ 0

−ξ
k2(s)

[ ∫ ς

ς+s

∣∣∣∣X 1
θ (ζ)− X̃

1
θ (ζ)

∣∣∣∣∆ζ

]
∆s
)∆

=
∫ 0

−ξ
k2(s)∆s ·

∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣
−
∫ 0

−ξ
k2(s)

∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∆s. (27)

Since when α, β > 0 and x ≥ 1 q(x) = |αx − βx| is monotonically increasing, and
0 < θ1

θ , θ2
θ , 1

θ ≤ 1, it follows from (21), (24)–(27) and (H3) that

D+V∆(ς) ≤ −θρ
θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣+ θρ

1
θ c12

∫ 0

−ξ
k1(s)

∣∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∣∆s
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+ θρ
−1
θ φ1

∣∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣∣− θρ
θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣

+ θρ
1
θ c21

∫ 0

−ξ
k2(s)

∣∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∣∆s + θρ
−1
θ φ2

∣∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣∣
+ θρ

1
θ c12

∫ 0

−ξ
k1(s)∆s ·

∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣− θρ
1
θ c12

∫ 0

−ξ
k1(s)

∣∣∣Y 1
θ (ς + s)− Ỹ

1
θ (ς + s)

∣∣∣∆s

+ θρ
1
θ c21

∫ 0

−ξ
k2(s)∆s ·

∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣− θρ
1
θ c21

∫ 0

−ξ
k2(s)

∣∣∣X 1
θ (ς + s)− X̃

1
θ (ς + s)

∣∣∣∆s

=− θρ
θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣+ θρ

−1
θ φ1

∣∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣∣− θρ
θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣

+ θρ
−1
θ φ2

∣∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣∣+ θρ
1
θ c12

∫ 0

−ξ
k1(s)∆s ·

∣∣∣Y 1
θ (ς)− Ỹ

1
θ (ς)

∣∣∣
+ θρ

1
θ c21

∫ 0

−ξ
k2(s)∆s ·

∣∣∣X 1
θ (ς)− X̃

1
θ (ς)

∣∣∣
≤− θρ

θ1
θ c11

∣∣X(ς)− X̃(ς)
∣∣+ θρ

−1
θ φ1

∣∣X(ς)− X̃(ς)
∣∣− θρ

θ2
θ c22

∣∣Y(ς)− Ỹ(ς)
∣∣

+ θρ
−1
θ φ2

∣∣Y(ς)− Ỹ(ς)
∣∣+ θρ

1
θ c12

∫ 0

−ξ
k1(s)∆s ·

∣∣∣Y(ς)− Ỹ(ς)
∣∣∣

+ θρ
1
θ c21

∫ 0

−ξ
k2(s)∆s ·

∣∣∣X(ς)− X̃(ς)
∣∣∣

=θ

[
− ρ

θ1
θ c11 + ρ−

1
θ φ1 + ρ

1
θ c21

∫ 0

−ξ
k2(s)∆s

]∣∣∣X(ς)− X̃(ς)
∣∣∣

+ θ

[
− ρ

θ2
θ c22 + ρ−

1
θ φ2 + ρ

1
θ c12

∫ 0

−ξ
k1(s)∆s

]∣∣∣Y(ς)− Ỹ(ς)
∣∣∣ < 0. (28)

Thus, from (22), (23) and (28), one concludes that V(ς) is positive definite and D+V∆(ς) <
0, ∀ ς ≥ 0. Therefore, one draws a conclusion that the v-periodic solution (X̃(ς), Ỹ(ς))T of
system (20) has global asymptotic stability based on Lyapunov stability theory. The proof
is completed.

5. Numerical Simulation

The portion considers the following nonlinear Ayala-Gilpin competitive ecosystem
having distributed lags on time scale T = R

dU (ς)
dς = U (ς)

[
r1(ς)− c11(ς)U θ1(ς)− c12(ς)

∫ 0
−ξ1(ς)

k1(s)V(ς + s)ds
]
− φ1(ς),

dV(ς)
dς = V(ς)

[
r2(ς)− c22(ς)V θ2(ς)− c21(ς)

∫ 0
−ξ2(ς)

k2(s)U (ς + s)ds
]
− φ2(ς),

U (ς) = ϕ1(ς), V(ς) = ϕ2(ς), ς ∈ (−ξ, 0],

(29)

where r1(ς) = 8+ 2 cos(3ς), r2(ς) = 6+ sin(2ς), c11(ς) = 5+ 2 sin(ς), c22(ς) = 3+ cos(2ς),
c12(ς) = 6+sin(2ς)

10 , c21(ς) = 3+cos(3ς)
10 , ξ1(ς) = k1(ς) = 2+sin(ς)

5 , ξ2(t) = k2(ς) = 2+cos(ς)
4 ,

φ1(ς) =
3+cos(2ς)

7 , φ2(ς) =
4+sin(ς)

7 , θ1 = 1
2 , θ2 = 1√

2
. Take the initial functions ϕ1(ς) = 7 +

sin(ς), ϕ2(ς) =
2+cos(ς)

7 , ς ∈ (−ξ, 0] = (− 3
4 , 0], here ξ = max{ξ1, ξ2} = max{ 3

5 , 3
4} =

3
4 .

Obviously, r1(ς), r2(ς), c11(ς), c22(ς), c12(ς), c21(ς), ξ1(ς), ξ2(ς), ϕ1(ς), ϕ2(ς), k1(ς),
k2(ς), φ1(ς) and φ2(ς) are all positive periodic functions with period v = 2π. So the
conditions (H1) holds. A direct computation gives r1 = 10, r1 = 6, r2 = 7, r2 = 5,
c11 = 7, c11 = 3, c22 = 4, c22 = 2, c12 = 7

10 , c12 = 1
2 , c21 = 2

5 , c21 = 1
5 , φ1 = 4

7 , φ1 = 2
7 ,

φ2 = 5
7 , φ2 = 3

7 , ξ = 3
4 ,
∫ 0
−ξ k1(s)ds ≈ 0.2463,

∫ 0
−ξ k2(s)ds ≈ 0.5454. To solve the following

algebraic equation

f (L±) = (c11e−vθ1r1)e(1+θ1)L± − r1eL± + φ1 = 0,
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we find that L− ≈ −3.5553, L+ ≈ 65.2398. From the algebraic equation

g(M±) = (c22e−vθ2r2)e(1+θ2)M± − r2eM± + φ2 = 0,

we have M− ≈ −2.7932, M+ ≈ 45.7540. Thus we get

Ω =
{
(U (ς),V(ς))T : 1.4738× 10−29 < U (ς) < 2.1542× 1028,

4.8491× 10−21 < V(ς) < 7.4252× 1019}.

The condition (H2) is verified as

θ1(c11e−vθ1r1)
− 1

θ1

(
r1

1 + θ1

) 1+θ1
θ1 ≈ 3.1914× 1028 > φ1 =

2
7

,

θ2(c22e−vθ2r2)
− 1

θ2

(
r2

1 + θ2

) 1+θ2
θ2 ≈ 1.0105× 1020 > φ2 =

3
7

.

By now, (H1) and (H2) have been verified. From Theorem 1, one knows that (29) exists at
least an 2π-periodic positive solutions (Ũ (ς), Ṽ(ς))T ∈ Ω.

Next, we prove periodic positive solution (Ũ (ς), Ṽ(ς))T to be globally asymptotically
stable. Indeed, take ρ = 1.5× 10−29, θ = 120, we get

−ρ
θ1
θ c11 + ρ−

1
θ φ1 + ρ

1
θ c21

∫ 0

−ξ
k2(s)ds ≈ −1.1551 < 0,

and

−ρ
θ2
θ c22 + ρ−

1
θ φ2 + ρ

1
θ c12

∫ 0

−ξ
k1(s)ds ≈ −0.0104 < 0.

Thus the condition (H3) holds. From Theorem 2, one knows that the periodic solution
(Ũ (ς), Ṽ(ς))T is globally asymptotically stable. We have carried out numerical simulation
for example (29) as shown in Figure 1.

0 5 10 15 20 25 30 35 40 45 50

time

0

1

2

3

4

5

6

7

8

9

va
lu

e

U(t)
V(t)

Figure 1. Existence and global asymptotic stability of solution (Ũ (ς), Ṽ(ς))T to (29).
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6. Summaries and Outlooks

The Ayala-Gilpin dfferential equation model is one of the successful patterns of ap-
plying mathematical theories and methods to study ecosystems. Its dynamic behavior has
received significant attention and study from mathematicians and ecologists. In this work,
we mainly investigate the existence and global asymptotic stability of periodic solutions
for a class of nonlinear distributed-lag Ayala-Gilpin vying system (1) in the sense of time
scales. By making use of Mawhin’s coincidence degree theorem, we first gain some suf-
ficient criteria for the existence of periodic solutions of model (1). Next, we construct an
appropriate Lyapunov functional to demonstrate that model (1) is globally asymptotically
stable. Subsequently, we examined the validity and applicability of our essential findings
through theoretical analysis and numerical simulation of an example. Our conclusion re-
veals the existence of periodic oscillations in AG-ecosystem under certain conditions from
a mathematical perspective. However, the long-term behavior of AG-ecosystem is globally
asymptotically stable. As stated in studies [10,11], an ecosystem may have multiple stable
states for different initial values, which means that the ecosystem has multiple positive
solutions and is stable in their respective regions. Therefore, we can study the existence
and local stability of multiple positive periodic solutions for model (1) in future works.
In addition, some scholars have found that using fractional or partial differential models
to study some practical problems is more accurate than using integer order differential
models. Awaken by some recent papers [29–41], we plan to apply fractional calculus and
PDE theory to further study the AG-ecosystem in the future, in order to explore more
dynamic characteristics.
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