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Abstract: The mathematical concept of infinity, in the sense of Cantor, is rather far from applied math-
ematics and statistics. These fields can be linked. We comment on the properties of infinite numbers
and relate them to some operations with random variables. The existence of statistical parametric
models can be studied in terms of cardinal numbers. Some probabilistic interpretations of Gödel’s
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1. Introduction

The concept of infinite quantity is very old, and is often considered as a negative
sentence. Though it has been around for a long time, the notion of infinite quantity is still
often viewed negatively. In addition, limitless power and perfection were connected with
the divine.

The distinction between finite and infinite started in ancient Greece. Zenon denied the
infinity through paradoxes. Aristotle considered the infinity as something potential, never
actual, an approach accepted for a long time (Gauss said that infinity was only a façon de
parler). The infinity, as a number or object, was unaccepted, as it does not exist. Thomas
d’Aquino in Summa Theologica, and Galileo Galilei in Discursi e demostrazione matematische,
also denied the infinity. The night darkness goes against the paradox of Kepler-Olbers on
the possible infinite sky. In contrast, Agustin de Hipona and Spinoza (Ethica) used the idea
of the absolutely infinite.

Fontenelle in Eléments de la Géométrie de l’infini (published in 1727) refers to the in-
finity as an actual object, which can be operated algebraically. Bolzano in Paradoxien des
Unenlidchen (published in 1854) studied some paradoxes on the infinity and defended
the concept of actual infinity. The mathematical infinity was an academic leivmotiv; for
instance, the discussion of Domenech y Estapa [1] on geometrical absurdities engendered
by the interpretation of the mathematical infinity. He does not agree to define the straight
line as a limit of a circumference whose diameter increases (so Nicholas of Cusa illustrated
the meaning of infinity), as this definition may identify the extremes, i.e., the positive and
the negative infinities.

The rigorous mathematical definition and study of infinite quantities starts with Georg
Cantor. Galileo’s argument against the infinity, since if accepted, then natural and even
numbers have the same size, was used by Cantor to define the infinite cardinality of a set.
In fact, Gregory of Rimini (about 1350) had advanced that a subpart of something infinite
could be equivalent to the whole.

Cantor found, compared, and operated infinities of different sizes, and despite Kro-
necker’s and Poincaré’s opposition, he imposed his theory and founded the so-called
Transfinite Arithmetic, today accepted everywhere. It was even suggested by the academic
Rodriguez-Salinas [2] that Homo Sapiens, after Cantor, should be Homo Trans-Sapiens.
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This article deals with the following related concepts:

1. The infinite cardinality (size) of sets.
2. Operating random variables and transfinite arithmetic.
3. Gödel’s theorem and parametric statistics.
4. The cardinality of some bivariate distributions.
5. The axiom of choice and the continuum hypothesis.
6. The probabilistic analogy of the Banach-Tarski theorem.

Statistics is a very wide subject, and most statisticians do not know some topics on
infinite cardinals. The aim of this article is to show, in a basic way, these concepts, and to
establish a parallelism between transfinite arithmetic and some operations with random
variables, as well as the dimensionality of statistical models and other concepts in the field
of statistics and probability.

For a rigorous and coherent introduction to the set theory, see [3]. For a history of the
concept of infinity, see chapter 2 in [4]. See [5,6] for a description of the infinities of different
sizes. The biography and contributions of Cantor are well explained in [7].

2. Essentials on Cardinals and Transfinite Arithmetic

Any non-empty set A has a cardinal number denoted #A. If the elements of A are in
one-to-one correspondence with the elements of a proper subset of A, then the cardinal #A
is infinite.

Accordingly, we can give the cardinal number # ∅ = 0 to the empty set, as well as
#{a1, . . . , ak} = k if k is a natural number and ai 6= aj for i 6= j. The most interesting infinite
cardinals are #N and #R, where N = {0, 1, . . . , n, . . .} is the infinite countable set—called
denumerable—of the natural numbers, and R is the uncountable set of the real numbers.
The notations for these infinite cardinals are:

#N =ℵ0, #R = c.

The infinite cardinal c is the power of the continuum. It is well known in set theory that

ℵ0 < c = 2ℵ0 = #P(N),

where P(N) is the family of all subsets of N.
The inequality #N < #P(N) is a particular case of Cantor’s theorem: Any non-empty

set A satisfies #A < #P(A) [3].
If↔ stands for the one-to-one correspondence between two sets, then the equality,

inclusion, and two elementary operations with cardinals are:

Equality #A = #B if A↔ B
Inequality #A ≤ #B if A ⊆ B
Sum #A+ #B = #(A∪B) if A∩B = ∅
Product #A× #B = #(A×B) if A,B are general sets.

For instance, N↔ Q, where Q is the set of rational numbers, so Q is infinite countable.
In transfinite or cardinal arithmetic, the following rules hold, where n is any finite

natural number:

n + ℵ0 = ℵ0, ℵ0 + ℵ0 = ℵ0,

ℵ0 × ℵ0 = ℵ0, ℵ0 + c = c,

c + c = c, c× c = c.

Thus, #R = #R2 = #R3 = c. Hence, the real line, the Euclidean plane, and the three-
dimensional space have the same uncountable cardinality c, the power of the continuum.

If we consider a regular polygon Vn with n vertices, circumscribed in a circumference,
the limit, as n increases, is V∞, the circumference with infinite countable points. Although
ℵ0 < c, it is impossible to distinguish geometrically between V∞ (cardinality ℵ0) and
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the complete continuous circumference (cardinality c); see Appendix A. The central limit
theorem also illustrates the meaning of infinity. Both examples (geometric and probabilistic)
are depicted in Figure 1. Another paradigm, described by Nicholas of Cusa (about 1445),
of the infinite cardinality c is the straight line, thought of as the limit of a circle whose
diameter increases constantly.

Figure 1. Two examples of infinity. The limit of the vertices of a regular polygon tends to the
countable circumference. If we add one, two, three, etc., independent uniform random variables, the
limit is the normal distribution.

3. Operating Poisson and Gaussian Distributions

Let us indicate Poisson(n), the Poisson random variable with parameter n (both the
expectation and variance are n), where n is fixed and n ∈ N. If Poisson(m)1 and Poisson(n)2
are independent, then the sum of both variables is also Poisson(m + n).

When n is ranging in N, this family of discrete random variables is indicated by
[Poisson(n)].

Similarly, if Normal(µ, σ2) is the normal random variable with mean µ and variance
σ2, then [Normal] is the family of all normal random variables. The sum of independent
normal variables is also normal. Accordingly, the bivariate normal family can be indicated
by [Normal, Normal], and all continuous univariate and bivariate variables are indicated
by [All r.v.] and [All r.v., All r.v.], respectively.

It is clear that #[Poisson(n)] = ℵ0 and #[Normal] = c. As [All r.v.] is described by
the all positive curves (continuous or not continuous) with area 1, and it is well-known
that the cardinality of this family is #[All]= 2c = #P(R). In addition, if [Poisson(n)]1
and [Poisson(n)]2 are independent, as each variable is an application from the sample
population to N, and we can interpret that there are no common variables, so (ignoring
the constant 0) the intersection of both sets is empty. By Q+ [Normal] , we indicate all the
possible sums q + X, where q is rational and X is random normal.

With these notations, since ℵ0 = #Q, ℵ0 = #[Poisson(n)], c = #[Normal], etc., we
have a relation between some operations with random variables and cardinal numbers; see
Table 1.

Table 1. Relatiing some operations with cardinals and random variables.

Random Variables Cardinals

[Poisson(n)]1+[Poisson(n)]2 =[Poisson(n)] ℵ0 + ℵ0 = ℵ0
Q+[Normal] = [Normal] ℵ0 + c = c

[Normal]1 + [Normal]2 = [Normal] c + c = c
[Normal] + [All r.v.] = [All r.v.] c + 2c = 2c

[Normal, Normal] = [Bivariate normal] c× c = c
[All r.v., All r.v.] = [Bivariate all] 2c × 2c = 2c
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4. Gödel’s Theorem

Bolzano had proven that the number of mathematical propositions is infinite. Gödel
proved that there are also infinite propositions on the integer numbers, which cannot
be reduced to a finite number of axioms. This is a special case of the famous theorem
enunciated by Kurt Gödel in 1931. This theorem says that in a logical system based on
axioms and containing the Arithmetic, we have some propositions which cannot be proven.
These propositions are undecidable: they can be accepted or rejected. The acceptance
should be considered as a new axiom. An example is the fifth postulate of Euclides on
parallel lines, which cannot be proven as a consequence of the other four axioms. Another
example is the hypothesis of the continuum (see below), posed by Cantor: there does
not exist a set G with cardinality g between the infinite countable (denumerable) and the
uncountable; i.e., it is not possible to find g such that ℵ0 < g < c. However, this hypothesis
can be accepted or rejected, without prejudice to the Arithmetic.

Let us understand Gödel’s theorem with a broad view, and interpret this theorem
from a statistical perspective, namely, in terms of observable events, parametric models,
inference, etc. A statistical model is a family of probability distributions parametrized by a
parameter θ. The Poisson distribution with parameter λ and the normal distribution with
parameters µ, σ2, are two examples, with a parameter space of dimensions one and two,
respectively. If Fθ is a statistical model, with θ belonging to a region of Rk, with positive
hypervolume, then clearly, #Fθ = c.

Question: Does there exist a universal parametrization covering all distributions? The
answer is no. Let us consider all probability distributions with the same support. This
set has cardinal 2c. If we suppose all of the models described by Fθ , since #Fθ = c < 2c,
there are many distributions out of this family. Thus, a parametrization can not cover all
distributions. See an analytic proof in Appendix A.

As well, as a logical system is incomplete, since some propositions are undecidable, a
statistical model, as wide as possible, is also incomplete, since some probability distributions
are not contained in the model. This justifies the so-called non-parametric statistics, an
approach that makes inferences on functional expressions, considering the whole set of
distributions, but avoiding the use of parameters.

Another analogy is as follows. Given a sample of size n, to perform an inference on
the mean µ in the normal model N(µ, σ2

0 ), with the variance σ2
0 being known, the statistic

∑ xi is sufficient and complete. However, ∑ xi is not sufficient and complete to perform
an inference on N(µ, σ2), where both parameters are unknown. We need two statistics,
namely ∑ xi and ∑ x2

i .
Similarly, let us consider the Poisson distribution whose support is N. Theoretically,

we can observe any subset of N. However, #P(N) = c, and the cardinality is too large.
Thus, some events can be observed, e.g., “a value k is even number”, but many other events
cannot be enunciated using our limited language; hence, these events cannot be observed.

5. Turing’s Halting Problem

This problem was posed by Allan Turing in 1935. There is no general algorithm that
is capable of determining whether or not a computer program will finish running. This
is another example of an undecidable proposition in Gödel’s sense. From a statistical
perspective, Chaitin’s approach [8] is quite interesting. A summary is next given.

Let us consider the Cantor space of all binary infinite sequences. A computer program
is a subset of this space. Let P be the set of halting programs. If p is a halting program
of |p| bits, the probability that a randomly chosen binary sequence of length |p| coincides
with p is 2−|p|, provided that we generate this sequence of 0s and 1s independently with
the same probability 1/2. In general, when choosing a program at random, the probability
of achieving a halting program is

Ω = ∑
p∈P

2−|p|.
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That is, Ω = ∑n an/2n, where an is the number of halting programs of n bits, taking
into account that if the program with sequence b = b1 · · · bn−1 of (n− 1) bits halts, then
the an programs of n bits cannot begin with b.This constrains an.

If Ω = 0, no program halts. If Ω = 0.16, then there is 16% halt. If Ω = 1, all programs
halt. However, Ω is not fixed, but is random. We need an algorithm of n bits to determine
the first n bits of Ω. This probability behaves as if it were randomly generated, just as
explained above. There is not a law reducing the computation of Ω. None, some, or all
programs finish running. Consequently, the halting problem is undecidable.

A short, informal proof of the halting problem, based on cardinal comparison, is given
in Appendix A.

6. Cardinality of Bivariate Distributions

A bivariate cumulative distribution function H(x, y) of two random variables X, Y,
with univariate marginal distributions F(x), G(y), is usually described by a parametric
model. Suppose that the range of the variables X, Y are the intervals [a, b], [c, d]. If the degree
of dependence between the random variables is quantified by means of a unique parameter,
the cardinality of H is 1. However, in general, H admits the canonical decomposition

dH(x, y) = dF(x)dG(y)

[
1 + ∑

n≥1
ρnan(x)bn(y)

]
,

where ρn are the canonical correlations, all positive, and an(x), bn(y) are the canonical
functions. Then, the cardinality of H(x, y) is #{ρn}, the power of the set of canonical
correlations. This number, also called rank of H, is the dimensionality from a geometrical
point of view, related to the so-called chi-squared distance between two observations x. x′

of the variable X,

δ2(x, x′) =
∫ d

c

[
dH(x, y)

dF(x)dG(y)
− dH(x′, y)

dF(x′)dG(y)

]2

dG(y).

See [9] for a continuous correspondence analysis interpretation. Some (finite and
infinite) cardinalities of H(x, y) are reported in Table 2.

Table 2. Cardinality of some bivariate distributions, defined as the size of the set of canonical
correlations. Note the power of the continuum cardinality of the last distribution.

Bivariate Distributions Where F(x), G(y) Are Indicated by F, G Cardinality

FG (stochastic independence) 0
FG[1 + θ(1− F)(1− G)] 1
FG + θ1(F− F2)(G− G2) + θ2(2F2 − F)(1− F)(2G2 − G)(1− G) 2
FG/[1− θ(1− F)(1− G)] ℵ0
min{F, G}θ(FG)1−θ c

In all cases, we can consider 0 ≤ θ ≤ 1. Thus, H(x, y) = F(x)G(y), corresponding
to the stochastic independence, the cardinality being 0 because of the absence of positive
canonical correlations. The cardinality of the second model is 1 because the only canonical
correlation is ρ1 = θ/3.

Any distribution with infinite cardinality, e.g., FG/[1 − θ(1 − F)(1 − G)], can be
approximated by another one with finite cardinality [10].

It is worth noting the power of the continuum cardinality of the fifth model (see
Table 2), defined and studied in [11,12]. In the uniform marginal case, F(x) = x, G(y) = y,
H(x, y) = min{x, y}θ(xy)1−θ , the set of canonical correlations is the function θρ1−θ , where
0 ≤ ρ ≤ 1. This continuous function ranges between 0 and θ. Thus, if θ > 0, the power of
the set of canonical correlations is c = #{θρ1−θ}.
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Another continuous correlation model is F(x)G(y)[1− θ ln max{F(x), G(y)}]. In the
uniform case with θ > 0, the cardinality of this distribution is c = #{θρ}, which is also the
power of the continuum.

These two distributions admit an integral expansion, instead of a series expansion,
and the set of canonical correlations is not countable, but continuous. This transition from
countable to continuous uncountable cardinality agrees with the hypothesis explained in
the next section.

7. The Continuum Hypothesis

This hypothesis stated by Cantor in 1878 [13] says that there is no set with cardinality
between the infinite countable ℵ0 and the uncountable c. It can be expressed as

ℵ0 < c = ℵ1,

where ℵ1 is the next immediate infinity after ℵ0. According to Cantor, ℵ1 exists and is c.
Nonetheless, this is considered undecidable after the results by Gödel and Cohen in 1940
and 1963, respectively. Nowadays, we should write

ℵ0 < c ≤ℵ1.

It is known of Cantor’s futile attempts in showing this hypothesis, which was included
as an unsolved question in the list of 23 problems posed by Hilbert in 1900. Gödel showed
that the acceptance of this hypothesis is not contradictory, whereas Cohen showed that
it can be considered false and that it is not contradictory either. Thus, the continuum
hypothesis is independent of the axioms of the Zermelo-Fraenkel theory of sets [3].

It is quite surprising that some authors [14–17], many years later, ignored this essential
difficulty and mentioned this problem as interesting but not solved yet. The first widespread
reference to Cohen and the independence of the continuum hypothesis appeared in a
textbook in 1965 [18]. In the Spanish literature on this topic, [19,20] are the first books
paying attention to the independence of this hypothesis. Many years later, this hypothesis
still has interest [6,21].

Indeed, in probability and statistics, this hypothesis is implicitly accepted. In general,
only the probabilities of subsets of N are considered under discrete models (such as the
Poisson distribution). In addition, only Borel sets under continuous models (such as the
Gaussian distribution), are taken into account. Recall that a Borel set is obtained by joining
the isolated points and intervals of the real line. To define the probability of other sets
is not considered, as they are unobservable. For example, accepting the axiom of choice
(see below), we can construct non-measurable sets, it, however, being impossible after
an experience to decide on the presence or absence of any of these sets. That is, given a
value x of the random variable, it is impossible to decide whether or not x belongs to a
non-measurable set of R. See Appendix A.

8. Axiom of Choice

This axiom (stated by Zermelo in 1904) postulates that given a family of non-empty
sets, we can choose an element of each set and construct a new set with these elements.
Two examples are as follows. If we consider all of the circumferences centered in the origin
(0, 0), we do not need this axiom, as we can choose a point of each circumference, e.g., the
point on the right cutting the horizontal axis. However, if we consider the family of all
closed curves in the plane, we need the axiom of choice to choose a point of each curve.

Some properties in algebra, geometry, topology, and analysis depend on this axiom.
One functional analysis application is to prove the null norm of the eigenfunctions of a ker-
nel with respect to another kernel, with both being related to the last bivariate distribution
given in Table 2 [22].
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With some imagination, we can establish a comparison between this axiom (choosing
an element of each set) and the Bayes theorem (the probability that an observation belongs
to each set or cause).

However, accepting the axiom of choice, we can prove the existence of a mathematical
object, but we are not able to actually construct that object. This may be a trouble. For
instance, any vector space has a basis. However, there are vector spaces, e.g., (Q,R),
such that the basis is unknown. This also happens with the vector space of all random
variables with support in R. In addition, accepting this axiom, some subsets of R lack
length (Lebesgue measure) or probability (see the Appendix A). Another anomaly is next
commented upon.

9. Banach-Tarski’s Theorem

Let us suppose that B is a solid ball. This theorem asserts that we can divide B into
m + n non-overlapping parts, i.e.,

B =A1 ∪ · · · ∪ Am ∪ B1 ∪ · · · ∪ Bn,

and, after isometric transformations Ai → A∗i , Bj → B∗j , we can assemble these parts to
yield two balls:

B =A∗1 ∪ · · · ∪ A∗m and also B = B∗1 ∪ · · · ∪ B∗n.

Accordingly, this may be expressed as the paradoxical equidecomposition

B = B1∪B2 with B1 ∩ B2= ∅,

being that the volume is the same: |B| = |B1| = |B2|. Thus, the initial ball can be duplicated.
Notice that the parts Ai, Bj, are non-measurable subsets of B. In fact, it is necessary to
accept the axiom of choice to prove this surprising result.

There is a probabilistic analogy. Suppose that X is a normal random variable with
a mean of 0 and a variance of σ2. Then, we can decompose X as a sum, i.e., to express
X = X1 + X2, the sum of two independent normal variables with mean 0. If [X] stands for
the class of variables αX, where α is a real parameter, and similarly [X1], [X2], then

[X] = [X1] + [X2] with [X1] ∩ [X2] = 0,

being [X]
sd
= [X1]

sd
= [X2], where “sd

=” means “same distribution”. This is so because
αX = αX1 + αX2 and [X1], [X2] are independent; hence, they do not contain common
variables, except for the constant 0. In spite of this lack of coincidence, these sets contain
exactly the same family of normal distributions. Thus, in some sense, [X] can be duplicated.

Of course, the sum of non-coincident sets of random variables is not the union of
disjoint sets, but the analogy is clear; see Table 3.

Table 3. Analogy between dividing a ball into two balls of the same volume, and decomposing a
class of normal variables into the sum of two independent classes with the same size.

Banach-Tarski Disjoint Balls Same Volume B Is Divided into
B = B1∪B2 B1 ∩ B2= ∅ |B| = |B1| = |B2.| Non-Measurable Parts

Normal class No coincident Same distributions X is sum of r.v.’s with

[X] = [X1] + [X2] [X1] ∩ [X2] = 0 [X]
sd
= [X1]

sd
= [X2] unknown distribution

Furthermore, taking into account the central limit theorem, let us admit that X nor-
mal can be interpreted as the sum of a series of independent random variables, whose
distributions are unknown. Namely, X = ∑i≥1 Xi, where the convergence is in law (the
standardization is omitted). Then,
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X = ∑
i odd

Xi + ∑
i even

Xi,

and X is the sum of two independent normal random variables. Note that “unknown distribu-
tion” would correspond to “non-measurable subset” in the above Banach-Tarski decomposition.

Finally, removing the constant 0, we can consider [X], [X1], [X2] projective spaces, so
that we have another analogy in terms of projective geometry.

10. Discussion, Conclusions, and Future Work

The old pamphlet [1] is an example of how a mathematician and also architect—for a
long time, the careers of Mathematics and Architecture overlapped in some universities—
perceived contradictions between descriptive geometry and pure mathematics. However,
most subjects of Mathematics and Statistics can be related. For instance, if E is the vector
space generated by random variables, the dual space E∗ can be interpreted as the population
(set of individuals), since if ω is an individual and Y is a random variable, we can associate
the real number Y(ω) to the pair (ω, Y) [23]. The differential geometry can be used to
define geodesic distances between the parameters of a statistical model [24,25]. The study
of bivariate exchangeable distributions can be performed using functional analysis [22].
There are more examples linking different fields.

We have proven that some concepts and properties of Probability and Statistics can be
useful for understanding and interpreting the main properties of the infinite cardinals.

Several proposals for future research are:

(1) Analytic geometry. The equation x2n + y2n = 1 defines a closed curve tending to a
square as n→ ∞. Study the implicit equation of other regular polygons (see Figure 1)
in the same way.

(2) Inference. Given a sample of size n, the statistics ∑ xi. ∑ x2
i are sufficient to per-

form inference on the normal model. Then, we may explore the sufficiency of ∑ xi,
∑ x2

i , · · · , ∑ xk
i under a perspective similar to Gödel’s theorem. That is, to study what

kind of inference is “undecidable” on a specific model. Note that we can make a
non-parametric inference if k = n.

(3) Bivariate distributions. We have passed from distributions with countable cardinality
to uncountable continuous cardinality. Does it give enough evidence for accepting the
hypothesis of the continuum?

(4) Banach-Tarski theorem. Removing the constant 0 and interpret [X] = [X1] + [X2] as a
decomposition of projective spaces, which can be generalized to a higher dimension.
In addition, for k > 2, study the comparison between dividing a ball into k balls
and decomposing a normal random variable into the sum of k independent random
variables.

(5) Statistical models. The cardinality of the Poisson (with parameter being a natural
number) and the normal models are ℵ0 and c, respectively. Are there parametric
models with cardinalities larger than c?

Funding: This research received no external funding

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Here, we provide some direct and elementary proofs, avoiding the use of special
functions and too-formal concepts.
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(1) The limiting circumference of the regular circumscribed polygons has cardinality ℵ0.

Proof. We can identify the triangle and the square with the sets V3 = {0, 1/3, 2/3}
and V4 = {0, 1/4, 2/4, 3/4}. In general, any regular polygon of n vertices can be
identified with

Vn = {0, 1/n, 2/n, . . . , (n− 1)/n}.

Accordingly, the limiting circumference of these circumscribed polygons is V∞.
Let us consider the set W =

⋃
n≥1 Vn. That is, skipping repeated numbers

(e.g., 1/2 = 2/4),

W = {0, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, . . .}.

Then, V∞ ⊂ W ⊂ Q shows that V∞ is countable. Note that the complete
circumference is continuous and has cardinality c, as it can be identified with the
interval [0, 1]. This proof is related to Figure 1. An alternative proof follows by using
polar coordinates.

(2) If the random variable X has finite mean and variance, and takes values in N and
X = X1 + X2, where X1 and X2 are independent with the same distribution of X
(except the mean and variance), then X is Poisson.

Proof. E(X1 = E(X2) = λ and X = X1 + X2 implies E(X) = 2λ. Then,

p(0; 2λ) = P(X = 0) = P(X1 = 0)P(X2 = 0) = p(0.λ)2

implies p(0.λ) = a−λ with a > 1. Now, suppose p(k.λ) = a−λλk/k!, which is true for
k = 0. Then,

p(k + 1.λ) =
k+1

∑
i=0

p(i; λ)p(k + 1− i; λ)

= 2p(0; λ)p(k + 1; λ) +
k

∑
i=1

p(i; λ)p(k + 1− i; λ)

= 2a−λ p(k + 1; λ) + a−2λ
k

∑
i=1

λiλk+1−i

i!(k + 1− i)!
(by induction).

But,

2k+1 =
k+1

∑
i=0

(k + 1)!
i!(k + 1− i)!

implies
k

∑
i=1

1
i!(k + 1− i)!

= (2k+1 − 2)/(k + 1)!

Therefore,

p(k + 1.2λ) = 2a−λ p(k + 1; λ) + a−2λ[λk+1/(k + 1)!(2k+1 − 2)].

This equation is satisfied for p(k + 1.2λ) = a−2λ(2λ)k+1/(k + 1)!. Since p(k; 2λ)
is a probability density, we must take a = e.

(3) The Cramer-Levy theorem says: if a normal random variable X can be decomposed
as the sum X = X1 + X2 of two independent random variables, then X1 and X2 are
also normal. We prove a more general result.

Suppose that X has a finite mean and variance µ, , σ2, and take values in R.
Assume that X = aX1 + bX2, where X1, X2 are independent and have the same
distribution as X. Then, X is normal (Gaussian).
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Proof. If X = aX1 + bX2, then µ = (a + b)µ, σ2 = (a2 + b2)σ2, so µ = 0 and
a2 + b2 = 1. For the sake of simplicity, let us take a = b = 1/

√
2. Then, X = a(X1 +X2),

so X sd
= a(X1 + X2), where “sd

=” means “same distribution”. Consider X1, X2, . . . , Xn,
independent random variables distributed as X. Then,

X sd
= a(X1 + X2), X sd

= a[a(X1 + X2) + X3].

In general, for n > 1,

X
d

sd
= Sn = an−1(X1 + X2) + · · ·+ an−1X3 + · · ·+ aXn.

From the central limit theorem, Sn converges in law to the normal distribution.

Since X sd
= Sn, for all n > 1, the distribution of X must be normal.

(4) We prove that a parametrization does not exist for the whole set of univariate distri-
butions. Consider the cdfs (cumulative distribution functions) of random variables,
taking values on the interval [0, 1]. Let us restrict the parametrization to the set of
cdfs F, such that F(x) > x. Suppose that a parametrization is possible and we write a
member of this class as Fθ , where 0 ≤ θ ≤ 1. We say that Fθ is a regular parametrization
if the derivative F′x(x) exists and satisfies m = inf F′x(x) > −∞.

Define G(x) = αFx(x) + (1− α)x. Clearly, G(0) = 0, G(1) = 1, G(x) > x, for any
α. Suppose m 6= 1 and take α = 1/(m− 1). Then, G′(x) exists and

inf G′(x) = m/(m− 1) + 1− 1/(m− 1) = 0.

Thus, G(x) is a cdf belonging to the class defined above. Hence, G = Fθ0 for some
θ0, and we have G(θ0) = Fθ0(θ0). However, the equation

Fθ0(θ0) = αFθ0(θ0) + (1− a)θ0 = θ0.

implies Fθ0(θ0) = θ0. This is contradictory, so G is not a member of this parametric
class. If m = 1, we may take α = 1/2 and run into the same contradiction.

If we consider a multiparameter (θ1, . . . , θn), the proof is similar, taking a common
value θ0 for the n parameters.

(5) Short informal and indirect proof of Turing’s halting problem. Let p be a binary
sequence corresponding to a halting program. The size |p| (number of bits) is finite,
otherwise p will not halt. Suppose that t is an algorithm that can determine whether a
computer program halts or not. Let Pt be the set of halting programs controlled by
t. It is readily proven that Pt is infinite countable. Consider the family Pt = P(Pt)
of all subsets of Pt. If p, p′ ∈ Pt, then {p, p′} ∈ Pt. Indicating by s a suitable concate-
nating sentence (e.g., if p ends then p′ starts), we may consider the program with
the binary sequence psp′. We can similarly generate many other halting programs.
Consider the subfamily P f

t of all finite subsets of Pt. We have #Pt ≤ #P f
t , and from

Cantor’s theorem, #Pt < #Pt. Thus, #Pt ≤ #P f
t ≤ #Pt. However, to determine an

intermediate cardinal between #Pt and #Pt is undecidable (continuum hypothesis), so
that controlling all halting programs is impossible.
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(6) If we accept the axiom of choice, there are non-measurable sets.

Proof. Let D be the set of all random variables with normal N(µ, 1) distribution,
and let I be the subset of D with mean 0 ≤ µ ≤ 1. We uniformly choose a variable
N(µ, 1) from I, so that the probability or Lebesgue measure of I is 1. We define in D the
relation of equivalence XRY if X − Y = q ∈ Q. Then, D splits into non-overlapping
classes of equivalence. Now, we choose an element, i.e., a normal variable, from each
class and build the set A. Since Q is countable, we can consider the sets An = A+ qn
where qn ∈ Q. As Bn = An(mod. 1) ⊂ I, the measure (if it exists) of Bn is m(Bn) < 1.
All sets Bn have the same measure. However, ∪nBn = I and the sigma-additivity of
the measure implies ∑n m(Bn) = 1, so 0 = 1 or ∞ = 1. This is impossible; hence, A∩ I
is non-measurable or has no probability. If A∩ I represents a statistical model, we
cannot choose a distribution from this model. Non-measurable is synonymous with
non-observable.
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