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1. Introduction

The study of q-calculus has motivated scholars due to its wide range of applications
in different areas of mathematics and physics. Jackson [1,2] was the first to consider the
q-calculus theory in order to define the q-derivative (∂q) and the q-integral operator. Mean-
while, in [3], Ismail et al. used ∂q and defined q-starlike functions in the field of Geometric
function theory and investigated some interesting applications. Later on, Srivastava [4],
used the q-calculus in the context of univalent functions theory and he developed many
important results. The q-analogue of Ruscheweyh differential operator was introduced
by Kanas and Raducanu [5] while in [6], Srivastava et al. introduced the q-Noor integral
operator and studied some of its applications for bi-univalent functions. In particular, Sri-
vastava [7,8] pointed out many applications and mathematical explanations of q-derivatives
in Geometric function theory. In recent years, many researchers have defined a number of
q-differential and integral operators and have published many important results associated
with q-starlike and the Janowski functions (for details, see [9–14]).

Let q ∈ (0, 1) and [l]q = 1−ql

1−q be the q-number for l ∈ N and [l]q! =
l

∏
k=1

[k]q be the

factorial and [0]q! = 1.
The q-Gamma function is defined as:

Γq(t + 1) = [t]qΓq(t), and Γq(1) = 1.

Jackson [1] defined the q-difference operator for analytic functions in the follow-
ing form:

∂qξ(ν) =
ξ(qν)− ξ(ν)

ν(q− 1)
, q ∈ (0, 1).
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Additionally, we have

∂qνl = [l]qνl−1, ∂q

{
∞

∑
l=1

alν
l

}
=

∞

∑
l=1

[l]qalν
l−1.

It can be observed that
lim

q→1−
∂qξ(ν) = ξ

′
(ν).

The symmetric q-calculus has been found to be very useful in different areas, such as
fractional calculus and quantum mechanics. The applications of quantum mechanics are
discussed in q-symmetric variational calculus in [15] while in [16], Lavagno discussed the
symmetric q-calculus in the field of basic-deformed quantum mechanics. More recently,
Kanas et al. [17] investigated some new applications of the symmetric q-derivative related
to the conic domain and studied a new subclass of analytic functions in the open unit
disk U. Khan et al. [18] investigated the new version of generalized symmetric conic
domains using the basic concepts of symmetric q-calculus and studied a new subclass of q-
symmetric starlike functions. Recently, a number of authors used the q-symmetric operator
and studied some new subclasses of analytic functions, (see [19–21]). Here, we present the
basic concepts of symmetric q-calculus, which will be useful for our subsequent work.

The symmetric q-number [̃l]q can be defined as:

[̃l]q =
q−l − ql

q−1 − q
, (1)

and the symmetric q-number shift factorial is given by

[̃l]q! = [̃l]q [̃l − 1]q [̃l − 2]q . . . [̃2]q [̃1]q, l ≥ 1.

It can be noted that
[̃0]q = 0, [̃0]q! = 1.

It is worth mentioning that the symmetric q-number cannot reduce to q-number.
Kamel and Yosr [22] defined the symmetric q-derivative operator for the analytic

function, which can be written as follows:

∂̃qh(ν) =
1
ν

(
ξ(qν)− ξ(q−1ν)

q− q−1

)
, ν ∈ U, (2)

= 1 +
∞

∑
l=1

[̃l]qalν
l−1, (ν 6= 0, q 6= 1),

and

∂̃qνl = [̃l]qνl−1, ∂̃q

{
∞

∑
l=1

alν
l

}
=

∞

∑
l=1

[̃l]qalν
l−1.

It can be observed that
lim

q→1−
∂̃qξ(ν) = ξ

′
(ν).

Let P represents the set of all functions p, which satisfies the conditions p(0) = 1 and
<(p(ν)) > 0. Let ξ and ρ be analytic in U. If there exists a Schwarz function u, such that
ξ(ν) = ρ(u(ν)), then we will say that ξ is subordinate to ρ (written as (ξ(ν) ≺ ρ(ν)) for
ν ∈ U .

Assume that Aψ denote the class of multivalent functions of the form:

ξ(ν) = νψ +
∞

∑
l=2

al+ψ−1νl+ψ−1, (ψ ∈ N).
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The convolution of two functions ξi(ν) ∈ Aψ, for i = 1, 2. is defined as:

(ξ1 ∗ ξ2)(ν) = νψ +
∞

∑
l=2

al+ψ−1,1al+ψ−1,2νl+ψ−1 = (ξ2 ∗ ξ1)(ν),

where

ξi(ν) = νψ +
∞

∑
l=2

al+ψ−1,iν
l+ψ−1 (ψ ∈ N).

Janowski [23] defined the function h(Q1,Q2; ν) = 1+Q1ν
1+Q2ν , − 1 ≤ Q2 < Q1 ≤ 1, (ν ∈

U ). The image of the unit disc under the mapping h(Q1,Q2; ν) is the disk symmetrical with

respect to the real axis, with its center at
(

1−Q1Q2
1−Q2

2
, 0
)

for Q2 6= ±1, and the end points of

the diameter are

A
(

1−Q1

1−Q2
, 0
)

and B
(

1 +Q1

1 +Q2
, 0
)

.

In our current investigation, we aim to use basic concepts of symmetric q-calculus and
the convolution theory to define a new operator for multivalent analytic functions.

Definition 1. Let ξ ∈ Aψ. Then, the symmetric q-differential operator F̃λ+ψ−1
q : Aψ → Aψ is

defined as:

F̃
λ+ψ−1
q ξ(ν) = Qψ

λ,q(ν) ∗ ξ(ν), λ > −1,

where

Qψ
λ,q(ν) = νψ +

∞

∑
l=2

˜[λ + ψ]l−ψ,q

˜[l − ψ]q!
νl+ψ−1.

By using the definition of convolution, it can be noted that

F̃
λ+ψ−1
q ξ(ν) = νψ +

∞

∑
l=2

˜[λ + ψ]l−ψ,q

˜[l − ψ]q!
al+ψ−1νl+ψ−1. (3)

From (3), the following identity can be easily verified:

qλν∂̃qF̃
λ+ψ−1
q ξ(ν) = ˜[λ + ψ]q − [̃λ]qF̃

λ+ψ−1
q ξ(ν). (4)

For ψ = 1, and q→ 1−, Identity (4), implies that

ν∂̃qF
λ
q ξ(ν) = (λ + 1)Fλ+1

q ξ(ν)− (λ)Fλ
q ξ(ν),

which is the well-known relation studied by Ruscheweyh in [24].

Remark 1. If ψ = 1 and q → 1−, the q-differential operator F̃
λ+ψ−1
q ξ(ν) reduces to the

Ruscheweyh differential operator introduced by Ruscheweyh in [24].

2. Lemmas

To prove our main results, we need the following Lemmas:

Lemma 1 ([11]). If an analytic function ϕ(ν) ∈ P(β) and

ϕ(ν) = 1 + c1ν + c2ν2 + · · · , (5)
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then
<(ϕ(ν)) > β, (0 ≤ β < 1).

Lemma 2 ([25]). If ϕi ∈ P(β j) be given by (5), (0 ≤ βi < 1, i = 1, 2). Then,

ϕ1 ∗ ϕ2 ∈ P(β3), where β3 = 1− (1− β1)(1− β2).

Lemma 3 ([26]). If the function ϕ of the form (5) is in the class P(β), then

<(ϕ(ν)) > 2β− 1 +
2(1− β)

1 + |ν| , (0 ≤ β < 1).

Lemma 4 ([27]). The function

(1− ν)γ = eγ log(1−ν), γ 6= 0,

is univalent in U if and only if γ is either in closed disk

|γ− 1| ≤ 1 or |γ + 1| ≤ 1.

We can prove Lemmas 5 and 6 using the similar method of Lemmas proved in [11].

Lemma 5. Let h(ν) be analytic and convex univalent in U with h(0) = 1. Additionally, let
ρ(ν) = 1 + b1ν + b2ν2 + · · · be analytic in U . If

ρ(ν) +
ν∂̃qρ(ν)

c
≺ h(ν), (ν ∈ U , c 6= 0),<(c) ≥ 0, (6)

then

ρ(ν) ≺ c
νc

ν∫
0

tc−1h(t)dt.

Proof. Suppose that h is analytic and convex univalent in U and ρ is analytic in U . Letting
q→ 1−, in (6)

ρ(ν) +
νρ
′
(ν)

c
≺ h(ν), (ν ∈ U , c 6= 0).

Then, from Lemma in [28], we obtain

ρ(ν) ≺ c
νc

ν∫
0

tc−1h(t)dt.

Lemma 6. Let q(ν) be univalent in U and let θ(w) and ϕ(w) be analytic in domain D containing
u(U ) with ϕ(w) 6= 0 when w ∈ u(U ). Set

Q(ν) = ν∂̃q(u(ν))ϕ(u(ν)), h(ν) = θ(u(ν) + Q(ν)) (7)

and suppose that

(i) Q(ν) is starlike univalent in =.

(ii) <
(

ν∂̃q(h(ν)
Q(ν)

)
= <

(
�∂̃qθ(u(ν))
(ϕ(u(ν))

)
+

(
ν∂̃qQ(ν)

Q(ν)

)
> 0.
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If p(ν) is analytic in U , with p(ν) = u(0), p(U ) ⊂ D, and

θ(p(ν)) + ν∂̃q(p(ν))ϕ(p(ν)) ≺ θ(u(ν)) + ν∂̃q(u(ν))ϕ(u(ν)) = h(ν), (8)

then p(ν) ≺ u(ν) and u(ν) is the best dominant.

Proof. We can prove Lemma 6 using a method similar to the one shown in Lemma 5.

3. Main Results

Theorem 1. Let λ > 0, α > 0, and −1 ≤ Q2 < Q1 ≤ 1. If ξ ∈ Aψ satisfies

(1− α)
F̃

λ+ψ−1
q ξ(ν)

νψ + α
F̃

λ+ψ
q ξ(ν)

νψ ≺ h(Q1,Q2, ν),

then

<

 F̃
λ+ψ−1
q ξ(ν)

νψ


1
l

>

l(ψ)
1∫

0

u
(
˜[λ+ψ]q/α[̃ψ]qqλ

)
−1
(

1−Q1u
1−Q2u

)
du


1
l

, l ≥ 1, (9)

where

l(ψ) =
˜[λ + ψ]q

α[̃ψ]qqλ
and w(λ) = ˜[λ + ψ]q.

Proof. Let

ρ(ν) =
F̃

λ+ψ−1
q ξ(ν)

νψ . (10)

For ξ ∈ Aψ, and by taking the logarithmic differentiation of (10), we get

ν∂̃q(ρ(ν))

ρ(ν)
=

νF̃
λ+ψ−1
q ξ(ν)

F̃
λ+ψ−1
q ξ(ν)

− [̃ψ]q.

Using the identity (4), we get

ν∂̃q(ρ(ν))

ρ(ν)
=

w(λ)

qλ

F̃
λ+ψ
q ξ(ν)

F̃
λ+ψ−1
q ξ(ν)

−
[̃λ]q

qλ
− [̃ψ]q.

Let w(λ) = [̃λ]q + [̃ψ]qqλ. Then,

qλ

w(λ)
ν∂̃qρ(ν) + ρ(ν) =

F̃
λ+ψ
q ξ(ν)

νψ . (11)

From (4), (10) and (11), we have

ρ(ν) +
1

l(ψ)
ν∂̃qρ(ν) ≺ h(Q1,Q2, ν). (12)
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Now, by applying the Lemma 5, we have

ρ(ν) ≺ l(ψ)ν−w(λ)/α[̃ψ]qqλ
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)−1(1 +Q1t

1 +Q2t

)
dt.

Using the definition of subordination, we get F̃
λ+ψ−1
q ξ(ν)

νψ

 = l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)−1(1 +Q1uw(ν)

1 +Q2uw(ν)

)
du. (13)

In view of −1 ≤ Q2 < Q1 ≤ 1 and λ > 0, it follows from (13) that

<

 F̃
λ+ψ−1
q ξ(ν)

νψ

 > l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)−1(1−Q1u

1−Q2u

)
du. (14)

Since
<(w

1
l ) ≥ (<w)1/l for <w > 0 and l ≥ 1.

Therefore, the inequality (9) is proved.
To show the sharpness of (9), we define ξ ∈ Aψ as:

F̃
λ+ψ−1
q ξ(ν)

νψ = l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)−1(1 +Q1uν

1 +Q2uν

)
du.

For this function, we find that

(1− α)
F̃

λ+ψ−1
q ξ(ν)

νψ + α
F̃

λ+ψ
q ξ(ν)

νψ =
1 +Q1ν

1 +Q2ν
.

So,

F̃
λ+ψ−1
q ξ(ν)

νψ → l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)−1(1−Q1u

1−Q2u

)
du, as ν→ −1.

This completes the proof.

Corollary 1. Let q→ 1−, λ > 0, α > 0, and −1 ≤ Q2 < Q1 ≤ 1. If ξ ∈ Aψ satisfies

(1− α)
Fλ+ψ−1ξ(ν)

νψ + α
Fλ+ψξ(ν)

νψ ≺ h(Q1,Q2, ν),

then

<
(
Fλ+ψ−1ξ(ν)

νψ

) 1
l

>

 (λ + ψ)

αψ

1∫
0

u((λ+ψ)/α)−1
(

1−Q1u
1−Q2u

)
du


1
l

, l ≥ 1.
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Corollary 2. Let ψ = 1, q→ 1−, λ > 0, α > 0, and −1 ≤ Q2 < Q1 ≤ 1. If ξ ∈ A satisfies

(1− α)
Fλξ(ν)

ν
+ α

Fλ+1ξ(ν)

ν
≺ h(Q1,Q2, ν),

then

<
(
Fλξ(ν)

ν

) 1
l

>

 (λ + 1)
α

1∫
0

u((λ+1)/α)−1
(

1−Q1u
1−Q2u

)
du


1
l

, l ≥ 1.

Corollary 3. Let Q1 = 1− 2α, Q2 = −1, α, λ > 1, l ≥ 1 and 0 ≤ β < 1. If ξ ∈ A(ψ) satisfies

(1− α)
F̃

λ+ψ−1
q ξ(ν)

νψ + α
F̃

λ+ψ
q ξ(ν)

νψ ≺ h(1− 2α,−1, ν),

then,

<

 F̃
λ+ψ−1
q ξ(ν)

νψ


1
l

>

2(1− β)w(λ)

α[̃ψ]qqλ

1∫
0

u
(

w(λ)/α[̃ψ]qqλ
)
−1

1 + u
du

+ (2β− 1)u
w(λ)

α[̃ψ]qqλ


1
l

.

Proof. Following the same steps detailed in the proof of Theorem 1 and by considering

ρ(ν) =
F̃

λ+ψ−1
q ξ(ν)

νψ ,

the differential subordination (12) becomes

ρ(ν) +
1

l(ψ)
ν∂̃qρ(ν) ≺ 1 + (2β− 1)ν

1 + ν
.

Therefore,

<

 F̃
λ+ψ−1
q ξ(ν)

νψ


1
l

>

l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)
−1
(

1 + (2β− 1)u
1 + u

)
du


1
l

=

l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)
−1 ×

(
(2β− 1) +

2(1− β)u
1 + u

)
du


1
l

=

2(1− β)l(ψ)
1∫

0

u
(

w(λ)/α[̃ψ]qqλ
)
−1

1 + u
du

+ (2β− 1)u
(

w(λ)/α[̃ψ]qqλ
)
−1


1
l

.
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Theorem 2. Let λ > 0 and 0 ≤ µ < 1 and γ be a complex number with γ 6= 0 satisfying either

|2γ(1− µ)(w(λ)/αqλ [̃ψ]q − 1| ≤ 1

or
|2γ(1− µ)(w(λ)/αqλ [̃ψ]q + 1| ≤ 1.

If ξ ∈ Aψ satisfies the condition

<

 F̃
λ+ψ
q ξ(ν)

F̃
λ+ψ−1
q ξ(ν)

 > µ, (15)

then

<

 F̃
λ+ψ−1
q ξ(ν)

νψ


γ

≺ 1

(1− ν)2γ(1−µ)w(λ)/qλ [ψ]q
. (16)

Proof. Let

ψ(ν) =

 F̃
λ+ψ−1
q ξ(ν)

νψ


γ

.

Using the (4), (15) and (16), we obtain

1 +
1

l(ψ)

(
ν∂̃q(ρ(ν))

ρ(ν)

)
≺ 1 + (1− 2µ)ν

1− ν
. (17)

Assume that

h(ν) =
1

(1− ν)2γ(1−µ)w(λ)/qλ [̃ψ]
q

, θ(w) = 1, ϕ(w) =
1

l(ψ)w
.

Then, h(ν) is univalent and we will show that h(ν), θ(w), and ϕ(w) satisfy the condi-
tions of Lemma 6. Note that the function

Q(ν) = ν∂̃q(h(ν))ϕ(h(ν)) =
2(1− µ)ν

1− ν
,

is univalent starlike in U and

h(ν) = θ(h(ν) + Q(ν)) =
1 + (1− 2µ)ν

1− ν
.

By using the Lemma 6, we obtain the required result.

Corollary 4. Let q → 1−, λ > 0 and 0 ≤ µ < 1. Let γ be a complex number with γ 6= 0 that
satisfies either

|2γ(1− µ)(λ + ψ)/αψ− 1| ≤ 1

or
|2γ(1− µ)(λ + ψ)/αψ + 1| ≤ 1.
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If ξ ∈ Aψ satisfies the condition

<
(

Fλ+ψξ(ν)

Fλ+ψ−1ξ(ν)

)
> µ.

Then,

<
(
Fλ+ψ−1ξ(ν)

νψ

)γ

≺ 1

(1− ν)2γ(1−µ)(λ+ψ)/ψ
,

Theorem 3. Let λ > 0, α < 1, and −1 ≤ Q2i < Q1i ≤ 1. If each of ξi ∈ Aψ satisfy

(1− α)
F̃

λ+ψ−1
q ξi(ν)

νψ + α
F̃

λ+ψ
q ξi(ν)

νψ ≺ h(Q1i,Q2i, ν),

then

(1− α)
F̃

λ+ψ−1
q Θ(ν)

νψ + α
F̃

λ+ψ
q Θ(ν)

νψ ≺ h(1− 2γ,−1, ν),

where

Θ(ν) = F̃
λ+ψ−1
q (ξ1 ∗ ξ2)(ν), (18)

and

γ =

1− l(ψ)
1∫

0

u
(

w(λ)/qλ [̃ψ]q

)
−1

1 + u
du

×
(

1− 4(Q1 −Q2)(Q1 −Q2)

(1−Q2)(1−Q2)

)
.

Proof. We define the function hi by

hi = (1− α)
F̃

λ+ψ−1
q ξi(ν)

νψ + α
F̃

λ+ψ
q ξi(ν)

νψ , (19)

where ξi ∈ Aψ, i = 1, 2. We have hi ∈ P(βi), where βi =
1−Q1i
1−Q2i

, (i = 1, 2).
By making use of (4) and (19), we obtain

F̃
λ+ψ−1
q ξi(ν) = l(ψ)ν1−

(
w(λ)/qλ [̃ψ]q

) 1∫
0

t
(

w(λ)/qλ [̃ψ]q

)
−1hi(t)dt.

In the light of (18), we show that

F̃
λ+ψ−1
q Θ(ν) = l(ψ)ν1−

(
w(λ)/qλ [̃ψ]q

) 1∫
0

t
(

w(λ)/qλ [̃ψ]q

)
−1h0(t)dt,

where, for convenience

h0 = (1− α)
F̃

λ+ψ−1
q Θ(ν)

νψ + α
F̃

λ+ψ
q Θ(ν)

νψ

= l(ψ)ν1−
(

w(λ)/qλ [̃ψ]q

) 1∫
0

t
(

w(λ)/qλ [̃ψ]q

)
−1

(h1 ∗ h2)(t)dt.

By using the Lemma 2, we have (h1 ∗ h2) ∈ P(β3), where

β3 = 1− 2(1− β1)(1− β2).
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With an application of Lemma 3, we have

<h0(ν) = l(ψ)
1∫

0

u
(

w(λ)/qλ [̃ψ]q

)
−1<(h1 ∗ h2)(uν)du

≥ l(ψ)
1∫

0

u
(

w(λ)/qλ [̃ψ]q

)
−1
(
(2β3 − 1) +

2(1− β3)

1 + u|ν|

)
du

> l(ψ)
1∫

0

u
(

w(λ)/qλψ̃]q

)
−1
(
(2β3 − 1) +

2(1− β3)

1 + u

)
du

= 1− 4(Q1 −Q2)(Q1 −Q2)

(1−Q2)(1−Q2)
×

1−
[λ + ψ]q

α[̃ψ]qqλ

1∫
0

u
(

w(λ)/qλ [̃ψ]q

)
−1

1 + u
du


= γ.

Hence, Theorem 3 is proved.

4. Conclusions

By taking inspiration from recent studies on q-calculus and convolution operators for
univalent functions, we have defined a new convolution operator for multivalent analytic
functions. This newly defined operator for multivalent functions is an extension of the
classical Ruscheweyh derivative operator. In this paper, we have successfully derived
several properties for a class of multivalent analytic functions connected with a new
operator by using the subordination theory. We also highlighted some consequences of our
main results, which are stated in the form of corollaries.
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