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Abstract: Variational inequalities (VI) problems have been generalized and expanded in various
ways. The VI principle has become a remarkable study area combining pure and applied research.
The study of variational inequality in mathematics is significantly aided by providing an important
framework by fixed-point theory. The concept of fixed-point theory can be considered an inherent
component of the VI. We consider a mixed variational inequality (MVI) a useful generalization of
a classical variational inequality. The projection method is not applicable to solve MVI due to the
involvement of the nonlinear term φ. MVI is equivalent to fixed-point problems and the resolvent
equation techniques. This technique is commonly used in the research on the existence of a solution
to the MVI. This paper uses a new self-adaptive method using step size to modify the fixed-point
formulation for solving the MVI. We will also provide the convergence of the proposed scheme. Our
output could be seen as a significant refinement of the previously known results for MVI. A numerical
example is also provided for the implementation of the generated algorithm.

Keywords: mixed variational inequalities (MVI); predictor-corrector method; convergence; resolvent
operator

MSC: 46N10, 47H04, 47J20, 47H09

1. Introduction

It is recognized that the theory related to variational inequalities has provided an
important part in the development of diverse areas of applied and pure mathematics in the
field of sciences, such as gauge field theory in particle physics and the general theory of
relativity. This is the most important and main field of engineering and advancement in
the discipline of mathematics. Lagrange, Newton, Leibniz, Fermat, and Bernoulli set the
basis for variational theories, see [1–6] for more information.

In previous years, the advancement in variational expansions has been upgraded
in the variational inequalities (VI) field, generally owing to Stampacchia [6]. Variational
inequalities theory involved an important and novel expansion of variational fields. It
explained on a broader scale of absorbing developments and a link surrounded by many
fields of mathematics, economics, optimization, equilibrium, finance, physics, and regional
and engineering disciplines. This is because of advancement in the variational inequality
theory that gives the main idea of straight, easy, and efficient construction for the formation
of wider problems.

In VI theory, numerical methods play an essential role in solving given problems. VI
problems are transformed into fixed-point problems by using these methods. Fixed-point
formulation is equivalent to VI problems as it is utilized to solve VI problems and design
new iterative strategies. The projection technique, implicit techniques, and their various
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variants are examples of iterative schemes. We know [6–9] that variational inequalities the-
ory has appeared as an effective and powerful tool of the current mathematical technology.
The theory of variational inequalities has been considered in various fields of mathematics
arising in both pure and applied sciences. The theory of VI provides us with a tool for
formulalting a series of equilibrium figures, qualitatively analyzing for the existence and
uniqueness of solutions, analyzing stability and sensitivity, and providing us with algo-
ritms along with convergence analysis for computational purposes, see [9–13]. It contains,
as special cases, such well-known issues in mathematical programming as a system of
nonlinear equations, optimization, and complementarity problems. It is also related to
fixed-point formulation. An approximate proximal-extra gradient-type method presents
in [7,14] for monotone variational inequalities. A new predictor-corrector self-adaptive
approach for solving nonlinear variational inequalities was proposed in [11,13–17]. The
theory of VI has been developed in several directions using new and novel methods. Some
of these developments have made mutually enriching contacts with other pure and applied
science areas. In [12,18], we focus mainly on the recent iterative algorithms for solving
various variational inequalities.

The projection method is a useful resource for obtaining VI solutions. The major point
of this method is to establish the theory of projection by applying fixed-point formulation.
The development of various projection-type algorithms for addressing VI was greatly
assisted by this alternative formulation. By using the projection theory, we make fixed-
point formulation and generate a new iterative scheme. Then, under the conditions, we
can demonstrate the fixed-point uniqueness and convergence criteria of the new generated
scheme. The projection operator restricts us when we have VI with a non-linear term, then
other stratagies are considered to tackle the problems.

Variational inequality has been expanded in many directions. Different techniques
have been used to extend and broaden VI problems. An important and constructive
expansion of the variational theory is recognized as the MVI or the variational inequality
of the II kind because of the involvement of the term φ, which is nonlinear. For the function
φ : H → R ∪ {+∞} and nonlinear T : H → H , we consider the problem to find a point
f ∈ H, where H is a Hilbert space, such that

〈T f , g− f 〉+ φ(g)− φ( f ) ≥ 0, ∀ g ∈ H. (1)

The expression (1) is known as the MVI. Also the auxiliary principle technique is suggested
for solving general mixed variational inequalities see, [10,19–21]. The origin of this method
can be traced back to Lions and Stampaccbia. Glowinski, Lions, and Tremolieres [9] used
this technique to study the existence of a solution of the mixed variational inequalities. It has
been considered that a large class of problems, including linear and non-linear operators,
considering the fields of applied and pure areas of mathematics, can be investigated in the
structure of MVI (1), see [4,20]. If we consider that the term φ is semi-lower continuous,
proper, and convex, then the inequality (1) is considered to find a point f ∈ H such that

0 ∈ T f + ∂φ( f ), (2)

where ∂φ(.) is defined as function of the subdifferential term. We called this expression
(2) a variational problem. One can also say that the expression (2) is also known as the
challenge of sum of two operators finding zeros that are considered monotone . For further
theory and applications in the field mathematics and particularly in the numerical areas
and other importance of mixed MVI, see [10,22].

As we know, the projection technique cannot be used to a set the equivalent relation
between MVI and the fixed-point problem just because of term φ. However, if we define
φ , which is the nonlinear term in the MVI as a lower semicontinuous function, convex
and proper, then the resolvent operator technique plays an important role in establishing
the equivalence between the MVI and the fixed-point problem. The resolvent step only
constitutes the sub-differential of a proper, convex, and lower semicontinuous function
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component and the other part describes the problem of disintegration. This step helps to
establish very proficient techniques for solving the MVI by means of resolvent equations,
see [21]. In this research, we suggest a new self adaptive technique involving step size to
solve the MVI. The convergence analysis of the proposed method is also provided.

2. Preliminaries

In this section, we provide necessary and basic information, which are required for
constructing new results. These basic lemmas help us to develop linkage and correlation to
understand the new iterative schemes. These are basic and important results. We require
the following familiar results.

Lemma 1. Consider F is a differentiable convex function and E is a convex set. Then, f ∈ E is the
minimum of f , iff f ∈ E satisfies the inequality

〈 F′( f ), g− f 〉 ≥ 0, ∀ g ∈ E. (3)

Proof. Consider f ∈ E be the minimum of function F( f ), then

F( f ) ≤ F(g), ∀ f ∈ E. (4)

∀ f , g ∈ E, we know that t ∈ [0, 1] and let

Vt = f + t(g− f ) ∈ E.

Replace g by Vt in Equation (4), we have

F( f ) ≤ F(Vt)

F( f ) ≤ F( f + t(g− f ))

F( f + t(g− f ))− F( f ) ≥ 0.

Divide by t and then take limit

limt→0
F( f + t(g− f ))− F( f )

t
≥ 0

〈F′( f ), g− f 〉 ≥ 0, ∀ g ∈ E. (5)

Conversely: As F is known as convex function then let f ∈ E satisfies (3).

F((1− t) f + tg) ≤ (1− t)F( f ) + tF(g)

Rearrange the expression, we have

F((1− t) f + tg) ≤ F( f ) + t[F(g)− F( f )]

After adjustment, we obtain

t[F(g)− F( f )] ≥ F((1− t) f + tg)− F( f ).

Dividing by t

F(g)− F( f ) ≥ F((1− t) f + tg)− F( f )
t

F(g)− F( f ) ≥ F( f + t(g− f ))− F( f ))
t

.
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Taking limt→0

F(g)− F( f ) ≥ limt→0
F( f + t(g− f ))− F( f ))

t

F(g)− F( f ) ≥ 〈F′( f ), g− f 〉.

From Equation (5), we have

F(g)− F( f ) ≥ 〈F′( f ), g− f 〉 ≥ 0

We obtain

F(g)− F( f ) ≥ 0

F(g) ≥ F( f )

F( f ) ≤ F(g).

This shows that f ∈ E is the minimum of F( f ). Where F′( f ) is the Frechet derivative
of F at f ∈ E. The inequality (3) is called the variational inequality. From this lemma, we
conclude that convexity plays an important role in VI.

We know that VI have been extended in various directions. An important generaliza-
tion of VI is MVI or VI of the second kind involving the non-linear term φ. We observe that
if φ is defined as the indicator function of a close convex set E in H, that is

φ( f ) ≡ IE( f ) =
{

0, if f ∈ E,
+∞, otherwise,

(6)

then the inequality (1) is equivalent to find f ∈ E such that

〈T f , g− f 〉 ≥ 0, ∀ g ∈ E, (7)

problem (7) is called the classical variational inequality, which was investigated by Stam-
pacchia, see [6]. Application purpose VI is used to investigate many problems of unrelated
odd order and nonsymetric obstacles, as well as free, moving, and equilibrium problems
arising in regional, engineering and applied sciences, and in physical and mathematical
fields , see [7,10,12,18,23,24].

We know that the projection technique along with Wiener–Hopf equations is not useful
for the solution of MVI. To overcome this draw back, we use resolvent operator technique.

We now define some basic concepts.

Definition 1 ([2]). We can define the resolvent operator involving a maximal monotone operator
A on H, for a given constant ρ > 0, such as:

JA( f ) = (I + ρA)−1( f ), ∀ f ∈ H.

This is the fact that the resolvent operator is defined everywhere, if and only if the monotone
operator is maximal. Additionally, it is a nonexpansive single valued function and satisfied the
given inequality,

‖JA( f )− JA(g)‖ ≤ ‖ f − g‖, ∀ f , g ∈ H.
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Remark 1. Being maximal monotone subdifferential ∂φ of a proper, convex, and lower semiconti-
neous function φ, so it can be written as

Jφ( f ) = (I + φ∂φ)−1( f ), ∀ f ∈ H.

The following are the characterization of the resolvent operator Jφ.

Lemma 2 ([2]). For a given f ∈ E, and z ∈ H, we have

〈 f − z, g− f 〉+ ρφ(g)− ρφ( f ) ≥ 0, ∀ g ∈ H, (8)

iff,
f = Jφz, (9)

where
Jφ( f ) = (I + φ∂φ)−1( f ).

Jφ, here known as the resolvent operator.
This lemma shows the equivalence relation between MVI and the fixed-point problem.

Lemma 3 ([19,21]). Given a function f ∈ H as a solution of the inequality (1), then we have

f = Jφ[ f − ρT f ], (10)

This formulation is used to establish a self-adaptive technique for the solution of the MVI.
Consider

h = Jφ[ f − γT f ], for γ > 0, (11)

f = Jφ[h− ρTh], for ρ > 0. (12)

We now define R( f ), the residue vector as

R( f ) := f − Jφ[ f − ρT f ]. (13)

From Lemma 2, we can see that if f is a solution of (1), then

R( f ) := 0.

Related to the MVI (1), we take the problem for resolvent equations. Suppose Rφ = I −
Jφ, where I and Jφ are the identity and resolvent operators, respectively. For given operator
T : H → H, where H is a Hilbert space then the problem of finding z ∈ H defined the resolvent
equation, such that

ρTJφz + Rφz = 0, (14)

which was studied and introduced by Noor [14]. The resolvent equation is used to develop various
efficient numerical techniques, which are more flexible.

Lemma 4. For f ∈ H, z ∈ H satisfies the resolvent Equation (14) iff,

f = Jφz (15)

z = f − ρT f , (16)

where, ρ > 0 is constant.
From Lemma 4, the MVI (1) and resolvent Equation (14) are equal. This can be verified as:
From (15) and (16), we can write
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z = Jϕz− ρTJϕz,

where f = Jϕz, we see

z− Jϕz = −ρTJϕz

(I − Jϕ)z = −ρTJϕz

We consider Rϕ = I − Jϕ, then

Rϕz = −ρTJϕz,

ρ−1Rϕz = −TJϕz.

ρ−1Rϕz + TJϕz = 0.

We can write as

TJϕz + ρ−1Rϕz = 0.

This indicates that MVI and resolvent equation are equivalent.

This alternative method of equivalence has been considered for studying many effi-
cient iterative schemes for MVI and is also related to optimization problems. This represents
the solution of MVI (1) from the Lemma 3; we see that the inequality (1) and the resolvent
equation are the same. This alternating formulation is useful for numerical and approxima-
tion schemes. We exercise this formulation to establish and analyze a number of iterative
schemes for solving the MVI (1).

3. Main Results

In this section, first by using the basic lemmas and results captioned in preliminaries,
we establish the new and modified scheme. By using this scheme, we modify the fixed-
point formulation, and this updates the solution. This scheme is a new in the theory of MVI
and is also a extention of VI.

Using (13), (15) and (16), the Equation (14) can be considered in the form

0 = f − Jφ[ f − ρT f ]− ρT f + ρTJφ[ f − ρT f ]

= R( f )− ρT f + ρTJφ[ f − ρT f ]. (17)

We now define the relation

D( f ) = R( f )− ρT f + ρTJφ[ f − ρT f ]. (18)

It is known that f ∈ H is a solution of MVI (1.1), if and only if f ∈ H is a zero of the
function

D( f ) = 0.

Using (11) and (18), we can rewrite as

h = Jφ[ f − γD( f )− γT f ]. (19)

The above results are used for establishing the iterative schemes for the MVI problem
(1). This is a modification to upgrade the iterative scheme and is new in the theory of MVI.

For solving the MVI (1), the above modification in the result has provoked us to make
the following new self-adaptive iterative schemes.
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This technique has their own standard procedure closely related to projection residue
technique.

In the next section we consider the convergence criteria of Algorithm 1 and this is
main motivation of our results and output. Convergence analysis is very important to
define existence of the solution under cetain conditions. The Theorem 1 is the convergence
of the newly established results.

Algorithm 1 Self-adaptive Iterative Scheme
Step 0:

Given ρ > 0, ε > 0, µ ∈ (0, 1), γ ∈ [1, 2), δ0, δ ∈ (0, 1) and f 0 ∈ H, set n = 0.
Step 1:

Stopping criteria: Set ρn = ρ. If ‖R( f n)‖ < ε,
otherwise, satisfying

‖ρn(T( f n)− T(hn))‖ < δ‖R( f n)‖, (20)

where
hn = Jφ[ f n − γD( f n)− γT( f n)], (21)

Step 2:
Compute

D( f n) = R( f n)− ρT( f n) + ρTJφ[ f n − ρT( f n)],

where
R( f n) := f n − Jφ[ f n − ρT( f n)].

Step 3:
Get the next iterate

hn+1 = Jφ[ f n − γD( f n)− γT( f n)], (22)

f n+1 = Jφ[g(hn+1)− ρT(hn+1)], (23)

then set ρ = ρn
µ , else set ρ = ρn. Repeat step 1 by substituting n = n + 1.

Theorem 1. Let the operators T : H → H be strongly monotone and Lipschitz continous with
constant α > 0 and β > 0, respectively. If∣∣∣∣ρ− α

β2

∣∣∣∣ <
√

α2 − β2(1− K2)

β2

where
α > β

√
(1− K2), and K < 1

and 0 ≤ αn ≤ 1, for all n ≥ 0, then the approximate solution f n obtained from the Algorithm 1
converges to a solution satisfying the MVI (1).

Proof. Since f ∗ is a solution of MVI (1), it follows from Lemma 2 that

h∗ = Jφ[ f ∗ − ρT f ∗],

f ∗ = Jφ[h∗ − ρTh∗]. (24)
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Applying algorithm 1 and using the property of nonexpansive of Jφ, we obtain the following
result: ∥∥∥ f n+1 − f ∗

∥∥∥ =
∥∥Jφ[hn − ρThn]− Jφ[h∗ − ρTh∗]

∥∥
≤ ‖hn − ρThn − h∗ + ρTh∗‖. (25)

By using the strong monotocity and Lipschitz continuity property of T, we have

‖hn − h∗ − ρ(T(hn)− T(h∗))‖2 ≤ 〈hn − h∗, hn − h∗〉
−2ρ〈hn − h∗, T(hn)− T(h∗)〉
+〈T(hn)− T(h∗), T(hn)− T(h∗)〉

≤ ‖hn − h∗‖2 − 2ρα‖hn − h∗‖2

+ρ2β2‖hn − h∗‖2,

which is equivalent to

‖hn − h∗ − ρ(Thn − T(h∗))‖ ≤
√

1− 2ρα + ρ2β2‖hn − h∗‖. (26)

From (25) and (26), we obtain∥∥∥ f n+1 − f ∗
∥∥∥ ≤ (

√
1− 2ρα + ρ2β2)‖hn − h∗‖. (27)

Let t(ρ) =
√

1− 2ρα + ρ2β2 and equation (27) becomes∥∥∥ f n+1 − f ∗
∥∥∥ ≤ ( t(ρ))‖hn − h∗‖. (28)

The results of (21), (24) and the definition of d( f n) give the following expression:

‖hn − h∗‖ = ‖PE[ f n − γD( f n)− γT f n]− PE[ f ∗ − ρT f ∗]‖
≤ ‖[ f n − γD( f n)− γT f n]− [ f ∗ − ρT f ∗]‖
≤ ‖ f n − f ∗ − γD( f n)‖+ γ‖T f n]− T f ∗]‖. (29)

It follows that

‖ f n − f ∗ − γD( f n)‖2 ≤ ‖ f n − f ∗‖2 − 2γ〈 f n − f ∗, D( f n) 〉
+γ2‖ D( f n)‖2

≤ ‖ f n − f ∗‖2.

‖ f n − f ∗ − γD( f n)‖ ≤ ‖ f n − f ∗‖. (30)

Similarly,
‖T( f n)]− T( f ∗)]‖ ≤ β‖ f n − f ∗‖. (31)

From (29)–(31), we have

‖hn − h∗‖ ≤ (1 + γβ)‖ f n − f ∗‖. (32)

From (28) and (32), we obtain∥∥∥ f n+1 − f ∗
∥∥∥ ≤ ( t(ρ))(1 + γβ)‖ f n − f ∗‖. (33)

Let (t(ρ))(1 + γβ) = θ, where 0 < θ < 1. Inequality (33) becomes
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For convergence criteria

(t(ρ))(1 + γβ) < 1√
1− 2ρα + ρ2β2 <

1
(1 + γβ)√

1− 2ρα + ρ2β2 < K, where K =
1

(1 + γβ)
< 1

1− 2ρα + ρ2β2 < K2

ρ2β2 − 2ρα + 1− K2 < 0 (34)

By applying quadratic formula

ρ <
2α±

√
4α2 − 4β2(1− K2)

2β2

ρ <
α±

√
α2 − β2(1− K2)

β2∣∣∣∣ρ− α

β2

∣∣∣∣ <

√
α2 − β2(1− K2)

β2 , where α > β
√
(1− K2)

From (33), we obatin ∥∥∥ f n+1 − f ∗
∥∥∥ ≤ θ‖ f n − f ∗‖.

In a similar way, we obtain ∥∥∥ f n+1 − f ∗
∥∥∥ ≤ θn

∥∥∥ f 0 − f ∗
∥∥∥, (35)

The above result shows that the general solution f n+1 of algorithm 1 converges to
approximate solution f ∗. Since θ < 1 and ∑∞

n=0 θn = 0, the problem (1) has a unique solution
consequently f n+1, which is the required result. These results show that under certain
conditions, the solution exists and it is unique. This was the main target of the results.

In the next section, we provide the numerical example for the solution of the problem.
This is the implementation of the defined results.

4. Numerical Results

Here, numerical results are presented for VI. As we know that if φ is an indicator,
then the MVI reduces to variational inequality. For the related result, we consider the
following example.

Example 1. We consider the variational inequality (7), where we take T1( f ) = D1( f ) + D2( f ) +
s, D1( f ) as nonlinear and D2( f ) + s as a linear expression of T1( f ). Example (1) is considered
a special case of problem (1). The matrix D2 = XtX + Y, where X is n× n order matrix with
elements randomly chosen from the given interval (−5, +5). Similarly, the way skew symmetric
matrix Y is obtained. The vector s is considered in the interval (−500, +500) from a uniform
distribution for easy problems and (−500, 0) for problems considered to be hard, respectively. In
D1( f ), the nonlinear part of T1( f ), the components are Dj( f ) = zj ∗ arctan( f j) and zj is generated
a random variable in (0, 1).

In this problem, the values of µ, δ, δ0, γ, and ρ are 2
3 , 0.95, 0.95, 1.95, and 0, respectively.

Additionally, consider f 0 = (0, 0, 0, . . . , 0)T as a starting point . The computation starts with
ρ0 = 1 and vanish at ‖R( fn)‖ ≤ 10−7. Codes are written in Matlab and computations are shown
in Table 1.
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Table 1. Numerical results.

Order of Matrix Algorithm 1

n No. It.

100 42

200 54

300 46

500 31

700 41

5. Conclusions

In this study, we have considered the solution of MVI(1). We have proposed new
self-adaptive iterative schemes for MVI. For MVI, we use the resolvent operator for fixed-
point formulation. The new iterative methods are established using the resolvent operator.
The strategy of the technique is based on the resolvent operator equation. We consider
the step-size or self-adaptive method to modify the iteration. This technique is new in the
theory of MVI. Convergence analysis is also proved under some defined conditions. The
numerical example is also provided for the implementation of the algorithm.
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