
Citation: Kausar, M.; Mazhar, N.;

Ishtiaq, M.; Alabrah, A. Decision

Making of Agile Patterns in Offshore

Software Development Outsourcing:

A Fuzzy Logic-Based Analysis.

Axioms 2023, 12, 307. https://

doi.org/10.3390/axioms12030307

Academic Editor: Gustavo Olague

Received: 16 February 2023

Revised: 9 March 2023

Accepted: 9 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Decision Making of Agile Patterns in Offshore Software
Development Outsourcing: A Fuzzy Logic-Based Analysis
Maryam Kausar 1,* , Noushin Mazhar 1, Muhammad Ishtiaq 2 and Amerah Alabrah 3

1 Department of Software Engineering, Foundation University Islamabad, Islamabad 44000, Pakistan
2 Department of Data Science and Artificial Intelligence, National University of Computer and Emerging

Sciences, Islamabad 44000, Pakistan
3 Department of Information Systems, College of Computer and Information Sciences, King Saud University,

Riyadh 11543, Saudi Arabia
* Correspondence: maryam.kausar@fui.edu.pk

Abstract: Computation intelligence techniques are important for making decisions in an agile-based
offshore software development paradigm. Offshore development faces additional challenges, such
as trust, communication and coordination, and socio-cultural and knowledge transfer. There is a
need to determine the rankings of challenges considering their criticality concerning practitioners
working in agile-based offshore software development. This paper aims to identify and rank agile
challenges in offshore software development by applying computational intelligence techniques.
From the systematic literature review, we identified 30 communication and coordination challenges.
The distributed agile pattern catalog consists of 15 patterns, from which eight were used to solve
communication and collaboration challenges. Many researchers have used fuzzy logic to quantify
their results. We further applied the fuzzy analytical technique to determine the priority order
concerning the criticality of the identified agile pattern catalog. The results showed that Central
Code Repository Pattern ranked the most significant for solving communication and coordination
challenges. Global Scrum Board Pattern and Synchronous Communication Pattern ranked second.

Keywords: agile software development; global software development; fuzzy sets; distributed agile
patterns; computational intelligence

MSC: 03B52

1. Introduction

Globalization is progressively taking the IT world. It has affected how software
companies do business globally. Software companies adopted the concept of offshore
development to gain financial benefits by transferring work to low cost labor forces [1].
Due to the cutting down of costs many companies are opting to offshore their work. Cost
reduction has always been the core reason to offshore but there are other advantages too
such as access to skilled resources and proximity to markets and customers [2,3]. However,
when a team is distributed in offshore ventures, it is often divided by major differences
in time, geography, values and business cultures. Trust, socio-cultural, communication,
coordination, and knowledge transfer issues emerge as a result [4]. These problems create
obstacles for distributed teams, and has an impact on the applicability of agile-based
offshore software development, which relies heavily on face-to-face communication [5–7].

Agile Software Development focuses on customer collaboration, changing needs,
individual interactions, and continual delivery of working software. Global Software
Development using Agile has benefits but it is not a straightforward process, as now
the teams are distributed among distinct locations and face-to-face communication is
curtailed [8]. To overcome the issues mentioned above, several teams have tried to adapt

Axioms 2023, 12, 307. https://doi.org/10.3390/axioms12030307 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030307
https://doi.org/10.3390/axioms12030307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-1425-9550
https://orcid.org/0000-0002-2780-731X
https://orcid.org/0000-0001-9750-3883
https://doi.org/10.3390/axioms12030307
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030307?type=check_update&version=2

Axioms 2023, 12, 307 2 of 19

agile approaches, but their efforts were solitary and communication with other practitioners
challenging.

The proposed study aimed to utilize the computational intelligence technique i.e., fuzzy
logic. As distributed agile development involves more complicated uncertainties due to
unpredictable ambiguities, probability theory and statistics were used to address the un-
certainty. However, in daily situations, natural language is exercised to express thinking
and subjective perceptions. In natural language, words might not convey clear meaning.
Individual expressions about an event may use the same words but have different sub-
jective perceptions. To tackle this problem, fuzzy set theory is used to express linguistic
variables more appropriately [9,10]. Fuzzy logic has been used to evaluate agile methods
and practices [11]. Researchers have used fuzzy logic to explore different aspects of agile,
such as requirement estimation, risk assessment, and agility evaluation. In this paper, fuzzy
logic is used to validate the use of the Distributed Agile Patterns Catalog.

Work has been done on distributed agile development but has only focused on either
trust [12] or on communication with remote customers [13]. CMMI [14] and Blockchain [15]
has also been used to propose solutions in distributed development, but the work has
focused on maturity levels and Ethereum blockchain to execute smart contracts for payment
distribution. This research focused on solving the 30 communication and coordination
challenges that occur in distributed agile development by applying the Distributed Agile
Pattern Catalog with the utilization of fuzzy logic.

The paper is organized as follows. Section 2 discusses the important related research
in communication and coordination. Section 3 presents the research methodology used in
this research. Section 4 presents the Distributed Agile Patterns and Section 5 explains the
application of fuzzy logic to evaluate the usefulness of agile patterns. Section 6 discusses
the findings of the paper. Section 7 describes the threat to validity and Section 8 provides
the conclusion of the paper, including the theoretical and practical contributions of the
proposed study.

2. Related Work

Global Software Development (GSD) is a trend that is only just starting to gain mo-
mentum and appeals to businesses all around the world. It unites different partners from
several nations and cultures to access a vast labor pool. As new businesses go global to
reduce their costs, there are unique challenges associated with GSD [16,17]. Among them
are the diversity of sourcing and the complexity of communication and coordination that
are required to prevent global project failure [18,19]. Agile software development in a
distributed scenario is challenging. Study has been done to investigate the impact of the
agile framework on IT sourcing and to identify the dimensions of ITS affected by agile
frameworks [20]. Some companies use product line engineering methods to shorten their
release cycles for distributed agile projects. These changes result in reducing the risks due to
communication and coordination, as well as help in sharing knowledge across the team [21].
Work has also been done on the use of technology in distributed development [22–24].
According to the authors if we carefully select technology and allow members to participate,
irrespective of their location, we can have efficient distributed development.

Challenges such as trust, communication and coordination, socio-cultural, and knowl-
edge transfer issues, occur due to temporal, geographical and socio-cultural distance
affecting communication and coordination in offshoring. Conchuir et al. mapped op-
portunities and challenges of global software development in terms of communication,
coordination, and control. It was seen that increase in distance resulted in an increased
cost of communication and coordination, and was highly dependent on synchronous tools,
which could result in misunderstandings [25].

Ghani et al. mapped how distance related to difficulties in coordination and commu-
nication in a systematic literature review [26]. It was shown that physical distance con-
tributed to 35% of challenges to communication and coordination, and temporal distracts
contributed to 28%, socio-cultural to 22%, and knowledge experience to 4%. According to

Axioms 2023, 12, 307 3 of 19

Niazi [27] offshore projects having closer geographical and time zone proximity allow more
communication, as compared to greater distances, which results in fewer communication
and coordination challenges. Khan et al. [28,29] identified that intercultural challenges are
faced by companies due to differences in language and cultural values that have a negative
impact on the communication and coordination processes between clients and vendors.

As businesses began to use offshore, new patterns emerged. Noll et al. [30] designed
Decision support system patterns for offshore development, and identified sixty specific
practices in the Global Teaming Model which were made accessible to managers and
developers involved in offshore development. Similarly, Siemens designed collaboration
patterns to help create trust among team members [31]. Van Heesch et al. introduced
two distributed collaborative patterns that emphasized enhancing collaboration among
distributed teams [32]. Inayat et al. proposed collaborative patterns for agile software
development teams that were guided by requirements [33].

Considerable research has been conducted on designing agile offshore patterns.
Cordeiro et al. designed organizational patterns with Scrum [34]. Välimäki et al. de-
signed patterns for management techniques in distributed scrum [35]. In distributed agile
development, study has also been done on finding patterns for requirements [36]. Kausar
et al. compiled a catalog of distributed agile patterns to be used by practitioners opting
for offshore development [37]. Existing efforts include using patterns in GSD, as well as
using agile practices, to solve offshoring challenges [38]. Ontologies [39] and DevOps [40]
for collecting requirements in GSD have also been studied. The research done in this area
so far has either been too broad or too narrowly focused on managing offshore projects.
The Distributed Agile Pattern catalog, on the other hand, is intended to help practitioners
adopt agile practises in an offshore setting.

Artificial intelligence (AI) application and its impact on innovation, revolution, and
decision-making have been widely debated in recent years. AI is becoming an integral
part for organizational procedures, as it can positively influence decision making [41].
Fuzzy logic has been used for agile. Raslan et al. [42] designed an innovative framework
for accurate effort estimation. The proposed framework utilized fuzzy logic, Story Point
(SP), Implementation Level Factor (ILF), Friction factor (FR), and Dynamic Force (DF).
Similarly, Saini et al. [43] used fuzzy logic in improving effort estimation in agile software
development. To estimate effort, they used three input variables: the user story, the
team’s expertise, and the complexity. Singhal et al. [44] proposed a novel fuzzy logic
approach in the Agile Security Framework for risk assessment and threat prioritization.
The DREAD model is known to deal well with risks related to security threats, but it allows
only crisp values. Other approaches have been used for Distributed Agile Development,
such as CMMI and blockchain. In [14], C2M addressed CMMI maturity models that are
focused on number of maturity levels, and number of factors and practices, among other
aspects. Another existing approach that has been used for distributed agile development is
blockchain [15]. The authors used AgilePlus, which is a private Ethereum blockchain, to
execute smart contracts for payment distribution among development teams. However,
our focus is on the communication and coordination of distributed teams.

Frameworks have been developed for distributed agile teams that focus on developing
trust among distributed team members. The framework depends on elements that relate
to the workplace, leadership, organizational structure, individual perspective, and socio-
cultural perspective. The study in [12] just focused on trust, whereas our research focuses
on different aspects related to communication and coordination among distributed teams.
Recently, work has been done on coordination of distributed agile teams where the focus is
on coordinating with remote customers [13]. Our research provides a patterns approach,
focusing on communication and coordination of the development team, and patterns, such
as Follow-the–Sun and visiting onshore and offshore, to elaborate on how to interact with
remote customers.

Axioms 2023, 12, 307 4 of 19

The focus of this research is to solve the challenges caused by communication and
coordination by using the Distributed Agile Pattern Catalogue with the utilization of
fuzzy logic.

3. Research Methodology

A thorough literature study was conducted in order to pinpoint the problems with
coordination and communication in distributed agile development. This review used
the following five well-known electronic databases: Google Scholar, ACM Digital Li-
brary, SpringerLink, ElsevierScienceDirect and the IEEE Xplore. These databases contained
enough research material for the subject. Moreover, manual searches were done for XP,
XP/Agile Universe, and Agile Development Conference. Each stage of the review process
is shown in Figure 1. The terms and keywords used for the search in the first stage are listed
in Table 1. With the help of the Boolean “AND” operator, all articles on “Communication”,
“Coordination”, “Offshore Software Development”, and “Agile Practise” could be found.
In other words, we looked for every combination of a single item from each of the first,
second, third, and fourth categories. Discussion comments, editorials, news, summaries,
reviews, correspondences, conversations, readers’ letters, and summaries of tutorials and
workshops were not included in the search. A total of 5647 “hits” were generated by this
search approach. However, only 4899 hits remained once duplicate papers were taken out
of the equation.

Figure 1. Study selection process.

The second stage involved eliminating articles based on how closely the titles and
keywords adhered to the search terms listed in Table 1 for each article. In total, 3654 articles
were chosen after reading all the titles. After reading all abstracts, and only including
publications that demonstrated a connection to the offshore experience, the third stage
resulted in the shortlisting of 2056 articles. Lastly, articles that only focused on DAD
communication and coordination were selected. In this stage, 572 articles were selected.
The selection process is shown in Figure 1.

Based on the finding of the systematic literature review, Table 2 was designed to show
the challenges and the impact caused due to the communication and coordination issues in
the distributed agile development (DAD) process.

Axioms 2023, 12, 307 5 of 19

Table 1. Search terms.

Search Category Keywords

Communication

Communication, cross-team communication,
team communication, outsourcing communication,
offshore communication,communication technology,
communication tool.

Coordination Coordination, coordinate teams, coordination tools,
coordination technology, offshore coordination.

Offshore Software Development

Offshoring Agile, Distributed agile, Offshore Development,
global software development, global agile development,
global software, offshore software development,
distributed development, distributed development teams,
global software, development, global development,
outsourcing development, engineering, global
software engineering.

Agile Practices
Agile, agile practice, agile methods, Scrum, Scrum method,
Scrum practice, XP, extreme programming, XP method,
XP practice

Table 2. Challenges cause due to communication and coordination issues in DAD.

No. Category Challenge

1. Requirements

Misunderstanding of requirements leads to dependency on expert decisions.
Lack of meeting minutes to clarify requirements.
Misunderstood requirements across sites.
Lack of involvement of developers and tests in requirement meetings.

2. Team Configuration

Lack of task awareness
Lack of trust
Early communication difficulty
Difficulty in team formation
Less understanding of teamwork across the sites
Difficulty caused due to management of items by different people
Problems in knowledge sharing
Cultural differences in communication
Technical barriers to setup a video conference
Lack of required formal documentation.
Lack of training.

3. Customer
Communication

Less frequent communication with customers.
Hiding information from customers.
Lack of feedback.

4. Meetings

Reduced communication opportunities
Lack of face-to-face and informal communication
Long-time communication using technology
Meeting only at one site

5. Project Characteristics

Tendency to lose track of the overall work process
Difficulty in keeping areas separate
Lack continuous integration
Lack of process improvement knowledge.

6. Organizational Factors

Extra cost due to training teams
Issues in creating a shared understanding of change requests
Difficulty in creating transparency among sites
Lack of organizational support.

Axioms 2023, 12, 307 6 of 19

To find answers, these problems were mapped onto the list of Distributed Agile
Patterns. Using fuzzy logic, the results were validated. A summary of the Distributed Agile
Patterns library is provided in Section 4.

4. Distributed Agile Patterns

According to [45], a “pattern” is a reusable solution for a reoccurring problem in
a certain environment. Agile patterns are defined as “focus on how an agile technique
is being frequently adjusted and used in order to tackle a recurrent agile challenge in
a given context”, based on the definition of patterns provided above [46]. The entire
software development life cycle is currently covered by six different types of patterns:
Requirement patterns, Analysis patterns, Design patterns, Architecture patterns, Idioms,
and Anti-patterns. Similar work has been done on agile patterns, offshore patterns, and
software process patterns for agile methodologies [47]. Nevertheless, as indicated in the
Related Work section, such efforts have been limited, which is why the Distributed Agile
Patterns catalog was developed.

For our catalog, we used Gamma’s pattern template to maintain familiarity during
customisation, since they are thought to be the first pattern catalog recorded by the software
community. A pattern typically contains four fundamental components: pattern name,
problem, solution, and consequence. A total of 15 distributed agile patterns were divided
into four categories for the catalog: management, communication, collaboration, and
verification. The eight distributed agile development patterns built on communication and
cooperation are the main topic of this study. We organized all the patterns into categories
in Table 3.

Due to the limited space available, only one pattern is presented in this paper as a
sample. The full catalog is available on the following URL: http://usir.salford.ac.uk/id/
eprint/46308/1/Maryam%20Kausar.pdf (accessed on 8 March 2023).

Table 3. Distributed agile patterns catalog.

Category

Management Patterns Communication Patterns Collaboration Patterns Verification Patterns

Pattern Name

Distributed Scrum
of Scrum Global Scrum Board Collaborative Planning

Poker Project Charter

Local Setup Meeting Central Code Repository Follow-the-sun Onshore Reviews
Meetings

Local Sprint Planning Asynchronous information
Transfer

Collective Project
Planning

Local Pair
Programming

Synchronous
Communication Visit onshore- offshore

Asynchronous
Retrospectives

Collaborative Planning Poker Pattern
Playing planning poker allows an agile team to assign point estimates to each story

card. This activity involves the product owner as well. The development team assigns
an estimate to a story card after learning from him or her about its purpose and worth.
The team members who give the lowest and highest estimation explain why, based on the
points allotted. Each story is the object of a brief team dialog, and the team then decides on
an estimation.

It has been observed that even though the team is distributed during the project
planning activity, the planning poker activity is still conducted when both teams are
present. This observation led us to identify the following pattern.
Pattern Name

http://usir.salford.ac.uk/id/eprint/46308/1/Maryam%20Kausar.pdf
http://usir.salford.ac.uk/id/eprint/46308/1/Maryam%20Kausar.pdf

Axioms 2023, 12, 307 7 of 19

Collaborative Planning Poker Pattern
Intent

Onshore and offshore team members participate in this activity.
Also Known As

Scrum Poker or Planning Poker.
Category

Collaborative category, as this pattern enables the discussion of story card duration
between the onshore and offshore teams.
Motivation

Addressing the trust, socio-cultural, communication and coordination, and knowledge
transfer difficulties is the driving force behind this design. For instance, before a team
can begin working on a project that is spread across multiple time zones, everyone on
the team must agree on the length of time for each feature. This makes project progress
visible and aids in estimating how long it will take to complete the project. The onshore
and offshore team members engage in a game of planning poker to come to an agreement
on the estimation of a story card. Once the estimate has been decided, it is written down,
accepted by the product owner or customer, and then the next story card is estimated, and
so on.
Applicability

The Planning Poker pattern is used when:

• The team is distributed across different temporal zones, and each sprint focuses on a
different story card.

Participants

• Product owner/Client.
• Distributed onshore and offshore agile teams.

Collaboration

• The client approves the estimation made by the team members.

Consequences
The following are the advantages and drawbacks of the Planning Poker pattern:
1. It enables the onshore and offshore teams to agree on a story card estimation,

assisting the team in determining their team pace. The presence of members from both
sites during this exercise aids in overcoming issues with trust and socio-cultural barriers.

2. It presents an estimate of project completion to the product owner or client, assisting
in overcoming the obstacles of collaboration, communication, and knowledge transfer.

3. The planning poker may get out of control if there is disagreement among the team
members on an estimate on a story card.
Known uses

Throughout Asia, South America, and North America, UShardware has development
centers. They used planning poker to estimate their story cards when moving to a dis-
tributed agile environment [48].
Related Patterns

The Planning Poker Pattern is frequently used in combination with Collective Project
Planning since it works best when the entire team is together. Following that, the estimated
story cards are posted on the Global Scrum board for the entire team to see throughout the
project.

5. Results

Based on the challenges identified in Section 3, the Distributed Agile Pattern catalog
was studied to see its application to the communication and coordination challenges. Based
on the patterns’ motivation, each pattern was mapped onto the challenges. Table 4 presents
the mapping of the DAP catalog onto the challenges. The DAP catalog originally had
15 patterns but only eight solve challenges related to communication and coordination.

Axioms 2023, 12, 307 8 of 19

To validate the results fuzzy logic was used, and participants from the industry
were invited to take part in this research. We used one parameter, “usefulness”, to check
the validity of our patterns, as it covered the subset of applicability. The focus of this
study was to determine how useful Distributed Agile Patterns are for communication and
coordination challenges.

Table 4. Applying DAP to solve communication and coordination issues in DAD.

No. Distributed Agile
Pattern Challenge Solution

1. Global Scrum
Board

Lack of task awareness A centralized global scrum board is maintained by all sites,
which provides awareness of all the tasks to the team members.

Less understanding of teamwork across
the sites

Global scrum board helps keep all team members updated about
each other’s tasks and progress, resulting in the team
understanding each other’s work across sites.

Difficulty caused due to management of
items by different people

The global scrum board serves as a central board for sharing
information, everyone has access to it, and this helps in the
management of items by different people across different sites.

Problems in knowledge sharing Global scrum board helps in providing centralized access to all
knowledge that is being shared across the sites.

Lack of required formal documentation. With constant updates on the global scrum board, all required
information is shared.

Hiding information from customers We can give viewing access to the global scrum board to the
customers so that they can see the progress of the project.

Tendency to lose track of the overall work
process

A The global scrum board helps in keeping track of the overall
work process and project status.

Issues in creating shared understanding of
change requests As the board is updated regularly it maps all change requests.

2. Central Code
Repository

Less understanding of teamwork across
the sites

All sites share a central code repository, which helps each site see
each other’s progress.

Difficulty caused due to management of
items by different people

Code is shared in a central code repository, which helps in
managing work done by different people

Problems in knowledge sharing Code repository aids in sharing knowledge of code across sites.

Lack of required formal documentation. While sharing code in a central repository, formal documentation
is maintained so that each site can understand the work done.

Tendency to lose track of the overall work
process

All code is shared in a central code repository, it helps keep track
of the work done.

Lack continuous integration The central code repository is updated regularly, which solves the
issue of continuous integration problems.

3.
Asynchronous
Information
Transfer

Lack of meeting minutes to clarify
requirements Asynchronous tools can be used to share meeting minutes.

Asynchronous Information Transfer As teams follow the follow-the-sun approach, regular updates are
exchanged through asynchronous and synchronous tools.

Difficulty in team formation The team members depend highly on asynchronous information
transfer through tools, which helps in team formation.

Lack of training. Asynchronous tools can be used to train teams.
Less frequent communication with
customers

With the use of asynchronous tools, information is also shared
with the customers.

Hiding information from customers Customers can use asynchronous tools to inquire about any
aspect of the project.

Lack of feedback Customers can give continuous feedback using asynchronous
tools.

Reduced communication opportunities Proper use of asynchronous tools can provide the required
communication among sites.

Lack of face-to-face and informal
communication

Asynchronous tools like Slack encourage informal
communication.

Axioms 2023, 12, 307 9 of 19

Table 4. Cont.

No. Distributed Agile
Pattern Challenge Solution

Long-time communication using
technology

Initially set agenda through asynchronous tools for meetings
before setting up synchronous meetings. This helps in keeping
the meeting on-schedule.

Meeting only at one site With the use of asynchronous tools, combined meetings can be
held across sites, by sorting different time zone issues.

Lack of process improvement knowledge Asynchronous tools keep all sites informed about improvements
in the project.

Issues in creating shared understanding of
change requests

Through asynchronous tools, the procedure to accept application
of the change request can be discussed.

Difficulty in creating transparency among
sites

Asynchronous tools provide regular project updates that result in
transparency among the sites.

4. Synchronous
Communication

Misunderstood requirements across sites As teams follow the follow-the-sun approach, regular updates are
exchanged through asynchronous and synchronous tools.

Difficulty in team formation
Team members continuously update each other’s progress
through synchronous communication, which encourages team
formation.

Lack of training Synchronous tools can be used to train teams.
Less frequent communication with
customers

Synchronous tools are used to update the progress of the project
to the customers.

Hiding information from customers Customers can use synchronous tools to inquire about any aspect
of the project.

Lack of feedback Customers can give continuous feedback using
asynchronous tools.

Reduced communication opportunities Proper use of both asynchronous and synchronous tools can
provide the required communication among sites.

Lack of face-to-face and informal
communication

With voice and video tools; face-to-face communication gap can
be reduced.

Long-time communication using
technology

Initially set agenda through asynchronous tools for meetings
before setting up synchronous meetings. This helps in keeping
the meeting on-schedule.

Meeting only at one site With the use of synchronous tools, combined meetings can be
held across sites, by sorting different time zone issues.

Lack of process improvement knowledge Synchronous tools keep all sites informed about improvements in
the project.

Extra cost due to training teams With the help of synchronous tools, online training can be
conducted.

Issues in creating shared understanding of
change requests

With the help of synchronous tools, the procedure to accept
application of the change request can be discussed.

Difficulty in creating transparency among
sites

Synchronous tools provide regular project updates that result in
transparency among the sites

5. Collective
Planning Poker

Early communication difficulty
Due to collaborative planning poker, team members are
encouraged to interact with each other, which reduces early stage
communication difficulty.

Difficulty in team formation This activity also helps the team members to understand each
others technical skills, facilitating team formation activity.

Difficulty in creating transparency among
sites

With collaborative planning poker, everyone works together in
estimating tasks, which creates transparency of the project
timeline.

6. Follow the sun Difficulty in keeping areas separate By using the follow-the-sun approach, each site works according
to their own time zone and works on their separate sprint.

7. Collective
Project Planning

Misunderstood requirements leading to
dependency on expert decisions

Since the whole team takes part in project planning activity, the
chance of misunderstanding of requirements is reduced.

Misunderstood requirements across sites
When the team is co-located for the planning activity, they divide
the tasks among the sites, which helps in removing the chance of
misunderstanding requirements among the sites.

Lack of involvement of developers and
tests in requirement meetings

All team members take part in this activity; hence, giving a
chance to all developers and testers to collaborate with each other.

Early communication difficulty
As the whole team works together to develop the project plan, it
gives them the opportunity to interact with each other and
overcome early stage communication issues.

Axioms 2023, 12, 307 10 of 19

Table 4. Cont.

No. Distributed Agile
Pattern Challenge Solution

Difficulty in team formation
As the team meets and interacts during the early stages of
planning they get to know each other personally, which aids in
team formation activity.

Difficulty in creating transparency
among sites

At the start of the project all team members do the project
planning activity together; this helps in creating transparency
among sites.

8. Visit Onshore
Offshore

Misunderstood requirements leading to
dependency on expert decisions

Since the whole team takes part in project planning activity, the
chance of misunderstanding requirements is reduced.

Lack of trust
Despite this being a costly activity it is required that the onshore
and offshore team members visit each other in order to
establish trust.

Cultural difference in communication By visiting each other’s locations, team members can learn about
different cultures, which aids in better communication.

Technical barriers to set-up video
conference

While visiting each other, they can select and set up tools to use
for communication.

Before sending the survey, we mailed the research summary and letter of invitation
to websites, such as Google, LinkedIn, and Facebook, and software companies. In reply,
120 experts consented to take part in the research to whom we sent the web link. In total
45 completed surveys were received from which 42 were selected after removing duplica-
tions. The expertise of the participants varied from having experience in distributed agile
development from 1 year to 15+ years. Figure 2 shows an overview of the experiences of
the participants in offshore software development.

0 1 1.5 2 2.5 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

0

2

4

6

8

10

Experience in years

N
o.

of
pa

rt
ic

ip
an

ts

Figure 2. Experience of the participants.

Applying Fuzzy to Rank Patterns

Fuzzy set theory can be used to replace the subjective fuzziness of human thoughts [49,50].
To demonstrate the understanding of the importance of different patterns, this study intro-
duced a simple method to handle linguistic terms using triangular fuzzy numbers (TFNs).
Not all of the patterns are of equal significance which is why we were keen on determining

Axioms 2023, 12, 307 11 of 19

the importance of weight. A fuzzy set assigns the value of memberships to objects within
its universe of discourse in a range of zero to one.

Let U be a universal set, whose elements are u, then, a fuzzy set X is defined by its
membership function as follows:

µx(u)→ U[0, 1] (1)

which allocates to each u a grade of membership X in the interval [0,1].
A linguistic scale was recommended to give actual meaning to understand such

situations. We included a seven point linguistic scale to assign the importance weight of
patterns, as given in Table 5.

Table 5. Linguistic terms for weighting patterns.

Linguistic Terms Corresponding Weight of Importance

Extremely Agree (0.9, 1.0, 1.0)
Moderately Agree (0.7, 0.9, 1.0)

Slightly Agree (0.5, 0.7, 0.9)
Neutral (0.3, 0.5, 0.7)

Slightly Disagree (0.1, 0.3, 0.5)
Moderately Disagree (0.0, 0.1, 0.3)

Strongly Disagree (0.0, 0.0, 1.0)

Similarly, seven linguistic variables, as shown in Table 6, were provided in the survey
to rate the implementation of patterns. The technique to obtain the significance weights of
patterns is explained in the following steps:

Table 6. Linguistic terms for rating patterns.

Linguistic Terms Corresponding Weight of Importance

Very Useful (0.9, 1.0, 1.0)
Moderately Useful (0.7, 0.9, 1.0)
Marginally Useful (0.5, 0.7, 0.9)

Neutral (0.3, 0.5, 0.7)
Slightly Useless (0.1, 0.3, 0.5)

Moderately Useless (0.0, 0.1, 0.3)
Strongly Useless (0.0, 0.0, 1.0)

Step 1: Translate the responses of the survey participant into matrix A using scale, as
shown in Table 5. Rows of the matrix indicate the participants and columns correspond to
their responses.

A =

α1
1 α2

1 α3
1 . . . αn

1

α1
2 α2

2 α3
2 . . . αn

2

α1
3 α2

3 α3
3 . . . αn

3

...
...

...
...

...

α1
p α2

p α3
p . . . αn

p

(2)

where p represents the total number of patterns and n represents total number of re-
spondents, αn

p =
(

lαn
p, mαn

p, uαn
p

)
shows the fuzzy weight of the pattern given by the nth

respondent for pth pattern. One example of the result is given in Table 7.
Step 2: The subjective evaluation of each participant varied concerning their experi-

ence, role, perception, and understanding of the subject matter. Therefore, we incorporated

Axioms 2023, 12, 307 12 of 19

the mean score approach to aggregate the fuzzy importance of each pattern by n respondent.

wp =
1
n

[
n

∑
i=1

αi
p

]
(3)

where wp = (lwp, mwp, uwp) shows the aggregate fuzzy importance weight of the pth
pattern.

Step 3: The aggregated TFNw p was used to obtain the best non-fuzzy performance
(BNF) value, BNPw p. BNPw p can be produced using Equation (4).

BNPw p =

[(
uwp − lwp

)
+
(
mwp − lwp

)]
3

+ lwp (4)

Here, BNPw p represents the BNP value for the TFNw p while wp is the important
weight of the pth pattern in classical (crisp) number format.

Step 4: After the defuzzification of TFN in step 4, crisp numbers were obtained and
normalized using Equation (5).

Rp =
wp

∑n
p=1 wp

(5)

where Rp shows the normalized significance weight of the pth pattern, such that ∑n
p=1 Rp = 1.

Axioms 2023, 12, 307 13 of 19

Table 7. Corresponding TFNs(Weighting) of Patterns.

Experts Corresponding TFNs(Weighting) of Patterns

P1 P2 P3 P4 P5 P6 P7 B

E1 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E2 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E3 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0)
E4 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9)
E5 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9)
E6 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9)
E7 (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E8 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0)
E9 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0)

E10 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.1, 0.3, 0.5) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.0, 0.1, 0.3)
E11 (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E12 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.0, 0.1, 0.3) (0.9, 1.0, 1.0)
E13 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E14 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7)
E15 (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0)
E16 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0)
E17 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E18 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E19 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9)
E20 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0)
E21 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9)
E22 (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.0, 0.1, 0.3) (0.0, 0.1, 0.3)
E23 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0)
E24 (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0)
E25 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.1, 0.3, 0.5) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7)
E26 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E27 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E28 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E29 (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0)
E30 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0)

Axioms 2023, 12, 307 14 of 19

Table 7. Cont.

Experts Corresponding TFNs(Weighting) of Patterns

P1 P2 P3 P4 P5 P6 P7 B

E31 (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E32 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E33 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0)
E34 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.1, 0.3, 0.5) (0.1, 0.3, 0.5)
E35 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E36 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7)
E37 (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.0, 0.1, 0.3) (0.7, 0.9, 1.0)
E38 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
E39 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.0, 0.0, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E40 (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.0, 0.1, 0.3) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0)
E41 (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0)
E42 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0)
wj (0.7, 0.85, 0.97) (0.82, 0.95, 0.99) (0.57, 0.72, 0.87) (0.74, 0.90, 0.97) (0.67, 0.84, 0.94) (0.61, 0.80, 0.91) (0.59, 0.76, 0.86) (0.68, 0.83, 0.92)

Axioms 2023, 12, 307 15 of 19

6. Discussion

In the research, the Distributed Agile Patterns catalog was used to solve the commu-
nication and coordination challenges in offshore development. The reason for selecting
this catalog was that it has been previously used to support the requirement engineering
process [45]. Based on the findings, we applied it to communication and coordination
challenges for agile offshore development.

The DAP catalog was discussed with experts, through which eight patterns were
identified as being useful for solving communication and coordination challenges. These
eight patterns were mapped onto the 30 communication and coordination challenges that
were identified through the literature. To validate the results, experts ranked the usefulness
of each pattern to solve the challenges with the help of fuzzy logic. Tables 7 and 8 show
the results of the application of fuzzy logic.

Table 8. Possible Ranking of the Patterns.

Pattern # wj = (l,m,u) BNP_WJ Rj Over All Ranking

P1 0.75 0.9 0.97 0.873 0.13327 2
P2 0.82 0.96 0.99 0.923 0.14090 1
P3 0.55 0.73 0.88 0.720 0.10987 8
P4 0.74 0.9 0.98 0.873 0.13327 3
P5 0.68 0.85 0.95 0.827 0.12614 4
P6 0.62 0.8 0.92 0.780 0.11902 6
P7 0.6 0.76 0.87 0.743 0.11343 7
P8 0.68 0.84 0.92 0.813 0.12411 5

P2 Central Code Repository Pattern was ranked 1 in terms of usefulness as companies
need to invest in a centralized tool to help them synchronize their work across different
work locations. This aids in solving all the management and knowledge-sharing issues.
In all, 97.8% of the experts agreed that the Central Code Repository pattern facilitates
continuous integration and, with regular maintenance, the code quality improves. Of the
respondents, 2.2% had neutral opinions.

P1 Global Scrum Board Pattern was ranked at 2 as it solves challenges such as lack
of awareness, sharing of formal documentation, and creating a shared understanding
of change requests. In all, 88% of practitioners agreed on the usefulness of the patterns.
However, 12% believed it to be marginally useful, as designing a global scrum board could
introduce scope creeps and extra effort would be required to make detailed burndown
charts and retrospective notes.

P4 Synchronous Communication Pattern was ranked 3 in global software development
as most communication has moved online, and synchronous tools play an important role,
from discussing requirements to collecting feedback. In all, 88% of practitioners agreed
that they highly depend on synchronous tools for their day-to-day tasks. However, 12%
suggested that although they believe synchronous tools are important they face difficulty
in selecting which tool to use for different tasks.

P5 Collective Planning Poker Pattern was ranked at 4 as it helps in the formation of
the team and creates transparency early on among the team members at different locations.
In all, 68% of the practitioners agreed that teams should perform planning poker activity
together as it allows the teams to correctly estimate the work. Although 28% believed that
the activity was useful they did not believe they had to be present at the same location, and
could rather use online tools to cut down on traveling costs.

P8 Visit Onshore Offshore Pattern was ranked 5 as this practice can help the team
members to understand each other’s culture and build trust among the team. In all, 73% of
the practitioners believed this to be effective, although 10% argued that it is a bad practice
as it could be difficult to organize and would cost the team a lot on travel.

P6 Follow-the-Sun Pattern was ranked 6 as it helps distributed teams work according
to their own country’s working hours and each team can share their progress using a

Axioms 2023, 12, 307 16 of 19

shared code repository and scrum boards. In all, 68% of practitioners agreed this is a useful
pattern, while 10% held the opinion that it was a weak pattern as there are still companies
in Pakistan that synchronize their working hours with their onshore teams in the USA and
the UK.

P7 Collective Project Planning was ranked 7, as, even though, ideally, it would be
better for teams to co-plan the project, most of the planning is done on the onshore site. In
all 55% of the practitioners agreed that this practice is useful but 45% disagreed as most of
the work outsourced in Pakistan is based on the planning of the onshore site.

P3 Asynchronous Information Transfer was ranked last as even though the teams are
distributed, they prefer real-time communication and that is why they highly depend on
synchronous tools. In all, 47% of practitioners agreed that asynchronous tools are useful as
when you cannot have synchronous communication due to time difference, they can still
transfer the information, although 53% preferred synchronous communication.

7. Threat to Validity

There exist four primary types of threat affecting four types of validity: internal
validity, external validity, construct validity and conclusion validity. We assessed our
results by applying threat to the validity. The research concentrated only on board areas
such as requirements, team configuration, customer communication, meetings, project
characteristics, and organizational factors, while identifying the fundamental inherent
issues of communication and coordination. Since their occurrence in literature was not
particularly noteworthy, we chose not to concentrate on problems that did not fit within
these categories. This could cause threat to the validity because new difficulties might arise
that do not fit within existing categories.

The selection of research for the systematic literature review was made based on a
list of precise keywords, which could risk a threat to their validity by leaving out some
studies, since the keywords did not apply to them. The screening process was carried out
manually by reading the papers and selecting 572 on the basis of those that met the three
screening criteria. As this process was carried out manually, there is a risk to the validity of
the results because researchers’ understanding of the papers can vary, and they run the risk
of making mistakes or being biased.

A small number of respondents were chosen for the sample set of the questionnaire.
This could risk a threat to validity because the choice of research participants was con-
strained by the availability and willingness of specialists in the field of agile practices. A
huge variety of variables can have an impact on the project, just like they can with any
empirical software engineering project.

It is challenging to pinpoint single criteria that determine whether or not the dis-
tributed agile patterns catalog is successful. The results of the utilization of fuzzy logic,
however, made the catalog’s utility clear. In a specific context, patterns typically relate
to generalized solutions. We make no claims that the catalog is all-inclusive. In order to
address offshore challenges, we wish to encourage researchers to find more recurrent agile
practices.

8. Conclusions and Future Work

Communication and coordination have been widely recognised as key challenges of
offshore development, which makes the adoption of agile practices difficult. We mapped
eight Distributed Agile Patterns to solve the challenges caused by the communication
and coordination issue and ranked them using fuzzy logic. P2 Central Code Repository
Pattern was ranked 1, as 97.8% of participants agreed that they need to have a central
code repository to solve communication and coordination challenges. Experts ranked the
patterns, based on usefulness, from P1 to P8. The percentages varied from 97.8% to 47%,
with P3 Asynchronous Information Transfer being the least useful.

Practitioners can use these patterns for their offshore projects. Since patterns are
generalized, it is easy for practitioners to adapt them into their own projects and, based on

Axioms 2023, 12, 307 17 of 19

the fuzzy logic rank, select which pattern is more useful for them according to their project.
It is very practicable to use them in real-time, as all practitioners need to do is understand
the pattern catalog and implement it into their projects.The pattern catalog is very easy to
understand as it is based on similar pattern guidelines of Design Patterns, proposed by
Gamma, which everyone in the domain of Software Engineering is familiar with.

8.1. Theoretical and Practical Contributions

The suggested research contributes to the discipline of Software Engineering in
academia by highlighting the effects of coordination and communication challenges in
distributed software development projects. It further helps to clarify the significance of
non-technical aspects of distributed development, such as team coordination and commu-
nication. The Distributed Agile Patterns catalog presents a guideline for any team wanting
to opt for distributed agile development.

The proposed catalog, as seen from the perspective of the software industry and
the experts engaged in it, aims to help organisations to greatly improve distributed team
coordination and communication. In this regard, we might list a few specific implications
for the industry: (i) Establishing a new approach, which focuses on the importance of
the communication and coordination process of the project; (ii) Using the catalog to map
best practices for improving communication and coordination in the distributed agile
development; (iii) Improving collaboration among teams; (iv) Limiting errors through
proper planning for the communication and coordination process; (v) Developing agile
and effective of distributed projects.

8.2. Future Work

Future work aims is to study how organisations will adopt these patterns onto their
live projects and to compare the results to see how the catalog helps solve communication
and coordination challenges and what the impact is on project success. Currently, the
Distributed Agile Patterns catalog has 15 patters, which can be extended to not only focus
on communication and coordination challenges, so we can see its impact on other offshore
challenges. In addition, another possibility is to develop a computational tool to support
the proposed catalog, made available for every organization that wants to use it.

Author Contributions: Conceptualization, M.K.; writing—original draft preparation, M.K., N.M.,
M.I. and A.A.; and writing—review and editing, M.K., N.M., M.I. and A.A. All authors have read
and agreed to the published version of the manuscript.

Funding: Researchers Supporting Project number (RSP2023R476), King Saud University, Riyadh,
Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the Researchers Supporting Project
number (RSP2023R476), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: There is no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GSD Global Software Development
DAP Distributed Agile Patterns
DAD Distributed Agile Development
TFN Triangular Fuzzy Number
BNP Best Non Fuzzy Performance

Axioms 2023, 12, 307 18 of 19

References
1. Nuutinen, N. Impacts of Distance in Offshore Software Development Projects. 2022. Available online: https://osuva.uwasa.fi/

handle/10024/14312 (accessed on 1 January 2020).
2. Èmite, D.; Wohlin, C. A whisper of evidence in global software engineering. IEEE Softw. 2011, 28, 15–18. [CrossRef]
3. Herbsleb, J.D.; Moitra, D. Global software development. IEEE Softw. 2001, 18, 16–20. [CrossRef]
4. Damian, D.; Moitra, D. Guest editors’ introduction: Global software development: How far have we come? IEEE Softw. 2006,

23, 17–19. [CrossRef]
5. MacGregor, E.; Hsieh, Y.; Kruchten, P. Cultural patterns in software process mishaps: Incidents in global projects. Acm Sigsoft

Softw. Eng. Notes 2005, 30, 1–5. [CrossRef]
6. Paasivaara, M.; Lassenius, C. Collaboration practices in global inter-organizational software development projects. Softw. Process.

Improv. Pract. 2003, 8, 183–199. [CrossRef]
7. M. Goncalves, K.; Pereira, M.; Monteiro, G.; Fontao, A. Pattern with partners: A systematic approach to handle knowledge

sharing in GSD projects. In Proceedings of the International Conference on Software and System Processes and International
Conference on Global Software Engineering, Virtual, 18–19 May 2022.

8. Gupta, M.; Sharma, A.; Hooda, S.; Bhatia, J.S. Distributed Agile Software Development (DASD) Process. In Agile Software
Development: Trends, Challenges and Applications; Wiley: New York, NY, USA, 2023; pp. 187–203.

9. Zolfani, S.H.; Görçün, Ö.F.; Çanakçıoğlu, M.; Tirkolaee, E.B. Efficiency analysis technique with input and output satisficing
approach based on Type-2 Neutrosophic Fuzzy Sets: A case study of container shipping companies. Expert Syst. Appl. 2023,
218, 119596. [CrossRef]

10. Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications–Two decades
review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [CrossRef]

11. Dwivedi, R.; Gupta, D. The agile method engineering: Applying fuzzy logic for evaluating and configuring agile methods in
practice. Int. J. Comput. Aided Eng. Technol. 2017, 9, 408–419. [CrossRef]

12. Tyagi, S.; Sibal, R.; Suri, B. Empirically developed framework for building trust in distributed agile teams. Inf. Softw. Technol.
2022, 145, 106828. [CrossRef]

13. Alyahya, S.; Bin-Hezam, R.; Maddeh, M. Supporting remote customer involvement in distributed agile development: A
coordination approach. IEEE Trans. Eng. Manag. 2022. [CrossRef]

14. Junior, I.d.F.; Marczak, S.; Santos, R.; Rodrigues, C.; Moura, H. C2M: A maturity model for the evaluation of communication in
distributed software development. Empir. Softw. Eng. 2022, 27, 188. [CrossRef] [PubMed]

15. Farooq, M.S.; Kalim, Z.; Qureshi, J.N.; Rasheed, S.; Abid, A. A blockchain-based framework for distributed agile software
development. IEEE Access 2022, 10, 17977–17995. [CrossRef]

16. Rahman, H.U.; Raza, M.; Afsar, P.; Alharbi, A.; Ahmad, S.; Alyami, H. Multi-criteria decision making model for application
maintenance offshoring using analytic hierarchy process. Appl. Sci. 2021, 11, 8550. [CrossRef]

17. Rahman, H.U.; Raza, M.; Afsar, P.; Khan, H.U. Empirical investigation of influencing factors regarding offshore outsourcing
decision of application maintenance. IEEE Access 2021, 9, 58589–58608. [CrossRef]

18. Šmite, D.; Wohlin, C.; Aurum, A.; Jabangwe, R.; Numminen, E. Offshore insourcing in software development: Structuring the
decision-making process. J. Syst. Softw. 2013, 86, 1054–1067. [CrossRef]

19. Alzoubi, Y.; Gill, A. The critical communication challenges between geographically distributed agile development teams:
Empirical findings. IEEE Trans. Prof. Commun. 2021, 64, 322–337. [CrossRef]

20. Amiri, F.; Overbeek, S.; Wagenaar, G.; Stettina, C.J. Reconciling agile frameworks with IT sourcing through an IT sourcing
dimensions map and structured decision-making. Inf. Syst.-Bus. Manag. 2021, 19, 1113–1142. [CrossRef]

21. Aggarwal, A.K.; Mani, V. Using product line engineering in a globally distributed agile development team to shorten release
cycles effectively. In Proceedings of the 2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE),
Montreal, QC, Canada, 25–26 May 2019; IEEE: New York, NY, USA, 2019; pp. 58–61.

22. Robinson, P.T. Communication network in an agile distributed software development team. In Proceedings of the 2019
ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE), Montreal, QC, Canada, 25–26 May 2019;
IEEE: New York, NY, USA, 2019; pp. 100–104.

23. Stray, V.; Moe, N.B.; Noroozi, M. Slack me if you can! using enterprise social networking tools in virtual agile teams. In
Proceedings of the 2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE), Montreal, QC,
Canada, 25–26 May 2019; IEEE: New York, NY, USA, 2019; pp. 111–121.

24. Lous, P.; Tell, P.; Michelsen, C.B.; Dittrich, Y.; Kuhrmann, M.; Ebdrup, A. Virtual by design: How a work environment can support
agile distributed software development. In Proceedings of the 2018 IEEE/ACM 13th International Conference on Global Software
Engineering (ICGSE), Chicago, IL, USA, 5–8 March 2018; IEEE: New York, NY, USA, 2018; pp. 97–106.

25. Conchúir, E.Ó.; Ågerfalk, P.J.; Olsson, H.H.; Fitzgerald, B. Global software development: Where are the benefits? Commun. ACM
2009, 52, 127–131. [CrossRef]

26. Ghani, I.; Lim, A.; Hasnain, M.; Ghani, I.; Babar, M.I. Challenges in distributed agile software development environment: A
systematic literature review. Ksii Trans. Internet Inf. Syst. (Tiis) 2019, 13, 4555–4571.

27. Niazi, M.; Mahmood, S.; Alshayeb, M.; Riaz, M.R.; Faisal, K.; Cerpa, N.; Khan, S.U.; Richardson, I. Challenges of project
management in global software development: A client-vendor analysis. Inf. Softw. Technol. 2016, 80, 1–19. [CrossRef]

https://osuva.uwasa.fi/handle/10024/14312
https://osuva.uwasa.fi/handle/10024/14312
http://doi.org/10.1109/MS.2011.70
http://dx.doi.org/10.1109/52.914732
http://dx.doi.org/10.1109/MS.2006.126
http://dx.doi.org/10.1145/1082983.1083116
http://dx.doi.org/10.1002/spip.187
http://dx.doi.org/10.1016/j.eswa.2023.119596
http://dx.doi.org/10.1016/j.eswa.2015.01.003
http://dx.doi.org/10.1504/IJCAET.2017.086920
http://dx.doi.org/10.1016/j.infsof.2022.106828
http://dx.doi.org/10.1109/TEM.2021.3131964
http://dx.doi.org/10.1007/s10664-022-10211-9
http://www.ncbi.nlm.nih.gov/pubmed/36212673
http://dx.doi.org/10.1109/ACCESS.2022.3146953
http://dx.doi.org/10.3390/app11188550
http://dx.doi.org/10.1109/ACCESS.2021.3073315
http://dx.doi.org/10.1016/j.jss.2012.10.003
http://dx.doi.org/10.1109/TPC.2021.3110396
http://dx.doi.org/10.1007/s10257-021-00534-3
http://dx.doi.org/10.1145/1536616.1536648
http://dx.doi.org/10.1016/j.infsof.2016.08.002

Axioms 2023, 12, 307 19 of 19

28. Khan, S.U.; Azeem, M.I. Intercultural challenges in offshore software development outsourcing relationships: An exploratory
study using a systematic literature review. IET Softw. 2014, 8, 161–173. [CrossRef]

29. Wende, E.; Philip, T. Instant messenger in offshore outsourced software development projects: Experiences from a case study. In
Proceedings of the 2011 44th Hawaii International Conference on System Sciences, Washington, DC, USA, 4–7 January 2011; IEEE:
New York, NY, USA, 2011; pp. 1–10.

30. Noll, J.; Richardson, I.; Beecham, S. Patternizing GSD research: Maintainable decision support for global software development.
In Proceedings of the 2014 IEEE 9th International Conference on Global Software Engineering, Washington, DC, USA, 18–21
August 2014; IEEE: New York, NY, USA, 2014; pp. 110–115.

31. Lescher, C. Patterns for global development: How to build one global team? In Proceedings of the 15th European Conference on
Pattern Languages of Programs, New York, NY, USA, 7–11 July 2010; pp. 1–6.

32. van Heesch, U. Collaboration patterns for offshore software development. In Proceedings of the 20th European Conference on
Pattern Languages of Programs, New York, NY, USA, 8–12 July 2015; pp. 1–10.

33. Marczak, S.; Kwan, I.; Damian, D. Investigating collaboration driven by requirements in cross-functional software teams. In
Proceedings of the 2009 Collaboration and Intercultural Issues on Requirements: Communication, Understanding and Softskills,
Atlanta, GA, USA, 31 August 2009; IEEE: New York, NY, USA, 2009; pp. 15–22.

34. Cordeiro, L.; Becker, C.; Barreto, R. Applying scrum and organizational patterns to multi-site software development. In
Proceedings of the 6th Latin American Conference on Pattern Languages of Programming, Recife, Brazil, 26–29 May 2007;
pp. 46–67.

35. Välimäki, A.; Kääriäinen, J. Patterns for distributed scrum—A case study. In Enterprise Interoperability III; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 85–97.

36. Belsis, P.; Koutoumanos, A.; Sgouropoulou, C. PBURC: A patterns-based, unsupervised requirements clustering framework for
distributed agile software development. Requir. Eng. 2014, 19, 213–225. [CrossRef]

37. Kausar, M.; Al-Yasiri, A. Distributed agile patterns for offshore software development. In Proceedings of the 12th International
Joint Conference on Computer Science and Software Engineering (JCSSE), Songkhla, Thailand, 22–24 July 2015; IEEE: New York,
NY, USA, 2015.

38. Beecham, S.; Noll, J.; Richardson, I. Using agile practices to solve global software development problems–A case study. In
Proceedings of the 2014 IEEE International Conference on Global Software Engineeering Workshops, Washington, DC, USA, 18
August 2014; IEEE: New York, NY, USA, 2014; pp. 5–10.

39. Pakdeetrakulwong, U.; Wongthongtham, P.; Khan, N. An Ontology-Based Multi-Agent System to Support Requirements
Traceability in Multi-Site Software Development Environment. In Proceedings of the ASWEC 2015 24th Australasian Software
Engineering, New York, NY, USA, 28 September–1 October 2015; pp. 96–100.

40. Akbar, M.A.; Khan, A.A.; Mahmood, S.; Rafi, S. A Vision of DevOps Requirements Change Management Standardization. arXiv
2022, arXiv:2211.13996.

41. Bokhari, S.A.A.; Myeong, S. Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective.
Sustainability 2022, 14, 620. [CrossRef]

42. Raslan, A.T.; Darwish, N.R.; Hefny, H.A. Towards a fuzzy based framework for effort estimation in agile software development.
Int. J. Comput. Sci. Inf. Secur. 2015, 13, 37.

43. Saini, A.; Ahuja, L.; Khatri, S.K. Effort estimation of agile development using fuzzy logic. In Proceedings of the 2018 7th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,
India, 29–31 August 2018; IEEE: New York, NY, USA, 2018; pp. 779–783.

44. Singhal, A.; Banati, H. Fuzzy logic approach for threat prioritization in agile security framework using DREAD model. arXiv
2013, arXiv:1312.6836.

45. Gamma, E.; Johnson, R.; Helm, R.; Johnson, R.E.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Pearson
Deutschland GmbH: Hallbergmoos, Germany, 1995.

46. Kausar, M.; Al-Yasiri, A. Using distributed agile patterns for supporting the requirements engineering process. In Requirements
Engineering for Service and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 291–316.

47. Tasharofi, S.; Ramsin, R. Process patterns for agile methodologies. In Proceedings of the Working Conference on Method Engineering;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 222–237.

48. Wildt, D.; Prikladnicki, R. Transitioning from distributed and traditional to distributed and agile: An experience report. In Agility
Across Time and Space; Springer: Berlin/Heidelberg, Germany, 2010; pp. 31–46.

49. Wang, Y.J. Applying FMCDM to evaluate financial performance of domestic airlines in Taiwan. Expert Syst. Appl. 2008,
34, 1837–1845. [CrossRef]

50. Yalcin, N.; Bayrakdaroglu, A.; Kahraman, C. Application of fuzzy multi-criteria decision making methods for financial perfor-
mance evaluation of Turkish manufacturing industries. Expert Syst. Appl. 2012, 39, 350–364. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/iet-sen.2013.0012
http://dx.doi.org/10.1007/s00766-013-0172-9
http://dx.doi.org/10.3390/su14020620
http://dx.doi.org/10.1016/j.eswa.2007.02.029
http://dx.doi.org/10.1016/j.eswa.2011.07.024

	Introduction
	Related Work
	Research Methodology
	Distributed Agile Patterns
	Results
	Discussion
	Threat to Validity
	Conclusions and Future Work
	Theoretical and Practical Contributions
	Future Work

	References

