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Abstract: In the context of reaching the best way to control the movement of autonomous cars linearly
and angularly, making them more stable and balanced on different roads and ensuring that they avoid
road obstacles, this manuscript chiefly aims to reach the optimal approach for a fractional-order PID
controller (or PIγDρ-controller) instead of the already classical one used to provide smooth automatic
parking for electrical autonomous cars. The fractional-order PIγDρ-controller is based on the particle
swarm optimization (PSO) algorithm for its design, with two different approximations: Oustaloup’s
approximation and the continued fractional expansion (CFE) approximation. Our approaches to the
fractional-order PID using the results of the PSO algorithm are compared with the classical PID that
was designed using the results of the Cohen–Coon, Ziegler–Nichols and bacteria foraging algorithms.
The scheme represented by the proposed PIγDρ-controller can provide the system of the autonomous
vehicle with more stable results than that of the PID controller.

Keywords: PIγDρ-controller; particle swarm optimization; Laplacian operator; Oustaloup’s approach;
continued fractional expansion approach

MSC: 26A33; 34A08; 34K37

1. Introduction

Recently, the subject of self-driving systems has taken up a large part of the research
into car development. In order for these systems to work in an effective manner, the
car must have a number of sensors to collect information about traffic, the surrounding
areas of the car and pedestrians, as well as information on traffic safety under different
climatic conditions.

In self-driving cars, research and practical experiments have been aimed at developing
the PID controller, which is latent in the heart of the autonomous car, into a highly accurate
sensor that provides quick and stable responses. Such a controller is typically used to
determine the deviation of the car’s position, the position of the axle, the balance of the
four rotors and independent cars that are following a certain path smoothly without
overtaking [1–6].

The PID controller has a wide range of applications in many industrial fields due to its
effectiveness in controlling systems [7,8]. Most notably, flow and temperature measurement
systems, cars and engines of all kinds. The PID controller is built from an integro-differential
equation whose simplicity lies in the adjustment of three different parameters: kp, ki and
kd. By optimizing these parameters, the improvement in device performance is more
obvious and precise. Among the most widely used PID-controller tuning methods in
control engineering are the Ziegler–Nichols and Cohen–Coon methods, the particle swarm
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optimization algorithm, the bacteria foraging algorithm, the genetic algorithm, the artificial
bee colony, ant colony optimization, the grey wolf optimizer, the hybrid optimization
technique and many others [9]. The Cohen–Coon tuning method is the second most
popular after the Zeigler–Nichols tuning method because it is more flexible than the
Zeigler–Nichols tuning method in a wider variety of processes. The Cohen–Coon tuning
method is reasonable for processes where the dead time is less than twice that of the time
constant, but the Zeigler–Nichols tuning method works well only on processes where
the dead time is less than half that of the time response [10]. In the same regard, the
particle swarm optimization (PSO) technique, proposed by Kennedy and Eberhart [11],
is an evolutionary-type global optimization technique, whose development was inspired
by social activities in flock of birds and schools of fish, and it is widely applied to various
engineering problems due to its high computational efficiency. Compared with other
population-based stochastic optimization methods, such as the genetic algorithm, PSO has
a comparable or even superior search performance for many hard optimization problems,
with faster and more stable convergence rates. It has been proved to be an effective optimum
tool in system identification and PID-controller tuning for a class of processes [12]. The
efficiency of, e.g., the genetic algorithm can be used to create an objective function that
evaluates the PID gains based on the overall errors of the systems and generate a high
quality solution [13].

Recently, the PID controller has been improved using the concept of fractional
calculus [14]. With this new concept, the PID controller has been upgraded from the classic
PID controller to a fractional-order PID controller. According to this concept, the equation
from the classical controller was updated into the fractional-order PID controller [14]. Based
on this evolution, the further tuning of two parameters, the fractional-order integral value
(γ) and the fractional-order derivative value (ρ), in addition to the three existing ones, are
needed. These two parameters require proper handling of the fractional-order Laplacian
operators, sγ and sρ, which can be approximated by different numerical approaches, such
as the continued fractional expansion (CFE) scheme, Oustaloup’s approximation and oth-
ers. These approximations are characterized by the ability to convert the fractional-order
Laplacian operators, (sγ and sρ), into their corresponding integer-order rational transfer
functions. In general, these techniques can improve the PID controller by transforming it
into the PIγDρ-controller by optimizing the five parameters (Kp, Ki, Kd, γ, ρ).

In this manuscript, we are interested in implementing the PSO optimization algorithm
for the purpose of tuning the fractional-order PID controller in order to make the control
system for self-driving cars on different roads and situations more stable, more controlled
and more responsive. The CFE and Oustaloup approaches were used to approximate the
fractional-order Laplacian operators, sγ and sρ. Our approaches to fractional-order PID
using the results of the PSO algorithm were compared with the classical PID controller that
was designed using the results of the Cohen–Coon (CC) approach, the Ziegler–Nichols
(ZN) method and the bacteria foraging algorithm (BFA).

In this work, we emphasize the fact that the fractional-order PID controller can provide
better results over standard PID controllers, here by proposing different PIγDρ-controllers
for autonomous vehicle systems that were established based on the application of the PSO
algorithm simultaneously with the use of two different approximations (Oustaloup and
the continued fractional expansion) of the fractional-order integro-differential Laplacian
operators. Actually, including these two approaches within the autonomous vehicle system,
using the PSO algorithm to verify the validity of using the fractional-order PID controller,
is regarded as the main contribution of this work.

2. The Fractional-Order PID Controller

Podlubny et al. are credited with creating the fractional-order PID controller in 1977
by adding two extra parameters (γ and ρ) to the basic parameters (Kp, Ki, Kd) of the PID
controller, which clearly shows the high response speed of this construction compared



Axioms 2023, 12, 306 3 of 12

to the classical version [15–17]. Generally, the PID controller is obtained by using the
following fractional-order integro-differential equation [18]:

y(t) = Kpe(t) + Ki Jγe(t) + KdDρe(t), (1)

where Jγ is the Riemann–Liouville operator of order γ, Dρ is the Caputo operator of order
ρ and e(t) is the error signal. By utilizing the forward Laplace transform of (1), we obtain
the following:

Z(s) =
Y(s)
E(s)

= Kp +
Ki
sγ

+ Kdsρ, (2)

where E(s) = L (e(t)) is the Laplace transform of e(t).
The main objective of this work was to effectively enable the provided controller inside

autonomous electric vehicles to provide a safe and stable place away from road hazards
for the autonomous vehicle. Accordingly, the PSO algorithm [11,14,19,20] was applied to
obtain the best values for the five parameters of the fractional-order PID controller. The
parameters of the PSO algorithm used throughout this work are taken as shown in Table 1.

Table 1. Parameters of the PSO algorithm.

Parameter Value

Population size. 20
Max. number of iterations. 100

Range of Kp. (0, 60]
Range of Ki. (0, 66]
Range of Kd. (0, 61]
Range of γ. (0, 1)
Range of ρ. (0, 1)

As for optimality theory, building the so-called fitness function within the algorithm
and reducing its value was the ultimate goal of this theory, through which it is easy
to obtain the optimal values for the fractional-order PID controller. According to what
has been mentioned, we are in the process of adopting a specific fitness function [19,20].
The following is how such a fitness function (integral time absolute error (ITAE)) can
be expressed:

V =
∫ ∞

0
t|et|dt, (3)

where e(t) is the error signal over the time t. However, the overall tuning process of the
PID controller using the PSO algorithm can be described by the block diagram shown
in Figure 1.

Figure 1. Block diagram of the PSO algorithm running to tune the PIγDρ–controller.

To obtain the optimal tuning of a given system, it is necessary to approximate the
fractional-order Laplacian operators: sγ and sρ. This can be performed specifically by
using the CFE and Oustaloup approaches, which are based on the development of two
appropriate equations for the above-mentioned Laplacian operators; however, the reader
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can obtain more comprehensive information about these two approaches by referring to
the following content.

2.1. The CFE Approximation

This method is regarded as the primary mathematical approach for providing the
Laplacian operator by proper integer-order rational transfer functions. Such an approach
was established based on the following approximation [21]:

(1 + z)α =
1

1− αz

1+ (1+α)z

2+ (1−α)z

3− (2+α)z

2+ (2−α)z

5+ ···+(n+α)z

2+ (n−α)z
2n+1+...

, (4)

where 0 < α < 1 and n ∈ N.
For the purpose of obtaining a finite-order approximation of the operator sα, one

might replace the term s for the variable z in (4). This exchange step enables the nth-order
approximation of such operators to appear around the center frequency ω0 = 1 rad/s, as
follows [21]:

sα ∼=
α0sn + α1sn−1 + · · ·+ αn−1s + αn

αnsn + αn−1sn−1 + · · ·+ α1s + α0
, (5)

where 0 < αi < 1, i = 0, 1, 2, · · · , 5. In particular, the coefficient values of αi can be found
in reference [21], for i = 0, 1, · · · , 5. Moreover, the operator s−α can be simply obtained by
inverting the expression given in (5).

2.2. Oustaloup’s Approximation

Oustaloup’s approximation is a popular approximation that can be used to generate
specific rational transfer functions of odd-order only. The bandwidth over which the
approximation is considered can be customized to yield a good fitting to the fractional-
order elements s±α within a predefined frequency band, where 0 < α < 1. Thus, for
geometrically distributed frequencies over the frequency range of interest (ωb, ωh), the
following rational function is used for approximating sα [22]:

sα ∼=
N

∏
k=−N

s + ω′k
s + ωk

=
Bnsn + Bn−1sn−1 + · · ·+ B1s + B0

Ansn + An−1sn−1 + · · ·+ A1s + A0
, (6)

where the poles, zeros and the gain are evaluated form the following relations:

ωk = ωb

(ωh
ωb

) K+N+0.5(1+α)
2N+1

, (7)

ω′k = ωb

(ωh
ωb

) K+N+0.5(1−α)
2N+1

, (8)

K =
(ωh

ωb

)− α
2

N

∏
K=−N

ωK
ω′k

. (9)

Due to the geometrical distribution of frequencies, the unity-gain geometric frequency
ωu is calculated from the following:

ωu =
√

ωb.ωh, (10)

where the approximation depends on the order filer N and the lower frequency range (ωb, ωh).
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Observe that the order of the transfer function (6) is always of order n = 2N + 1. In
the special case where the limited frequencies ωb and ωh are symmetrical around the center
frequency, ωu = 1 rad/s, (i.e., ωb = 1/ωh), then the coefficients of (6) will be correlated to
each other as follows [22]:

An−i = Bi, i = 0, 1, 2, · · · , N. (11)

3. The Design of the Fractional-Order PID Controller for Autonomous Cars

Regarding the execution of system data, the system was initially programmed using
MATLAB by giving it the system inputs and executing it to obtain the required output. The
MATLAB code implements the two tuning methods mentioned for the fractional-order PID
controller in autonomous cars, analyzes them and then obtains and evaluates the results. In
fact, the system is described with two different types of transfer function for modeling the
steering, which is represented by a servo motor, and the car motion, which is represented
by DC motors. By defining the system for each of the linear motion subsystems and the
angular motion subsystem, the results were obtained as in [23]. The input to the linear
motion subsystem is the voltage, and the output is the velocity. For the angular motion
subsystem, the voltage is also the input, and the output is the angular velocity. The angular
motion, which has two poles with no zeros, is given as the following transfer function [23]:

T1(s) =
0.121

s2 + 0.619s + 0.1636
. (12)

In addition, the transfer function of the linear motion, which has two poles with no
zeros, can be formulated as follows [23]:

T2(s) =
0.008936

s2 + 0.1258s + 0.02384
. (13)

From this point of view, we aim to reduce the fitness function given in (3) by using the
PSO algorithm followed by approximating the resulting fractional-order operators (sγ and
sρ) using the CFE and Oustaloup methods. Through these approximations, we obtained
two fractional-order PID controllers Ci(s), which necessarily means we also obtained two
closed-loop systems Hi(s), where i = 1, 2. We compared all closed-loop systems to derive
the best controller for the proposed subsystems.

In the following two subsections, different results of the proposed improvements are
shown, and the results of the CC, ZN and BFA improvements for the classic PID controller
are listed and compared by specific graphics and tables. The preferences of the proposed
novel improvements is also shown.

3.1. Tuning Fractional-Order PID of Linear Transfer Motion

In this part, we execute the PSO algorithm to obtain two fractional-order PID con-
trollers, C1(s) and C2(s), to tune the linear transfer motion T2(s) given in (13). These
controllers are given as follows:

• The PIγDρ-PSO-controller via the CFE approach:

C1(s) = 14.7631 +
0.31
s0.911 + 51s0.867. (14)

Using the CFE approach turns the two operators, s0.911 and s0.8670, into the following
integer-order rational transfer functions:

s0.911 =
2.4696e + 2s5 + 2.6421e + 3s4 + 5.607e + 3s3 + 2.9951e + 3s2 + 3.3208e + 2s + 0.9999

s5 + 3.32084e + 2s4 + 2.9951e + 3s3 + 5.6074e + 3s2 + 2.6421e + 3s + 2.4696e + 2
(15)
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and

s0.867 =
1.4201e + 2s5 + 1.5719e + 3s4 + 3.4354e + 3s3 + 1.8949e + 3s2 + 2.2056e + 2s + 1
s5 + 2.2056e + 2s4 + 1.8949e + 3s3 + 3.4354e + 3s2 + 1.5719e + 3s + 1.42014e + 2

, (16)

where e here is shorthand for ×10(·). Therefore, C1(s) in (14) is transformed into the
following form:

C1(s) =

1.792e6s10 + 3.978e7s9 + 3.113e8s8 + 1.063e9s7 + 1.792e9s6 + 1.561e9s5

+ 7.168e8s4 + 1.702e8s3 + 1.982e7s2 + 9.843e5s + 1.302e4

247s10 + 5.711e4s9 + 1.056e6s8 + 7.095e6s7 + 2.075e7s6 + 2.92e7s5

+ 2.011e7s4 + 6.647e6s3 + 9.508e5s2 + 4.873e4s + 142

. (17)

This consequently yields the following closed-loop system:

H1(s) =

2.594e7s10 + 5.75e8s9 + 4.505e9s8 + 1.538e10s7 + 2.593e10s6 + 2.259e10s5

+ 1.037e10s4 + 2.463e9s3 + 2.868e8s2 + 1.424e7s + 1.884e5

247s13 + 7.599e4s12 + 5.448e6s11 + 1.2e8s10 + 1.255e9s9 + 6.899e9s8 + 1.992e10s7 + 3.068e10s6

+ 2.531e10s5 + 1.118e10s4 + 2.572e9s3 + 2.923e8s2 + 1.427e7s + 1.884e5

. (18)

• The PIγDρ-PSO-controller via Oustaloup’s approach:

C2(s) = 0.17 +
9.88342
s0.2823 + 61s0.976. (19)

In this case, we use Oustaloup’s approach to approximate the two operators, s0.2823 and
s0.976, which are in the following two forms:

s0.2823 =
3.66s5 + 133.8s4 + 667.5s3 + 514.6s2 + 61.35s + 1
s5 + 61.35s4 + 514.6s3 + 667.5s2 + 133.8s + 3.669

(20)

and

s0.976 =
89.54s5 + 1724s4 + 4538s3 + 1847s2 + 116.2s + 1
s5 + 116.2s4 + 1847s3 + 4538s2 + 1724s + 89.54

. (21)

Actually, the above two Laplacian operators can convert (19) into the following form:

C2(s) =

2.005e4s10 + 1.119e6s9 + 1.883e7s8 + 1.123e8s7 + 2.676e8s6 + 2.622e8s5

+ 1.216e8s4 + 2.898e7s3 + 3.641e6s2 + 1.93e5s + 3323

3.669s10 + 560.1s9 + 2.299e4s8 + 3.419e5s7 + 1.906s6 + 4.218e6s5

+ 3.611e6s4 + 1.227e6s3 + 1.564e5s2 + 7217s + 89.54

. (22)

Hence, the corresponding closed-loop system is in the following form:

H2(s) =

2.901e5s10 + 1.619e7s9 + 2.725e8s8 + 1.625e9s7 + 3.872e9s6 + 3.795e9s5

+ 1.76e9s4 + 4.194e8s3 + 5.268e7s2 + 2.793e6s + 4.809e4

3.669s13 + 840.6s12 + 6.621e4s11 + 2.451e6s10 + 4.674e7s9 + 4.599e8s8 + 2.16e9s7 + 4.613e9s6

+ 4.286e9s5 + 1.907e9s4 + 4.373e8s3 + 5.35e7s2 + 2.803e6s + 4.81e4

. (23)

• The PID controller via the bacteria-foraging-algorithm (BFA) approach: herein, we
implement the BFA to obtain the PID controller. The output form is as follows:

C3 = 12.7302 +
14.0836

s
+ 22.4950s, (24)
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which immediately gives the closed-loop system H3(s), which has the form:

H3(s) =
325.5s2 + 184.2s + 203.8

s4 + 76.43s3 + 435.3s2 + 184.3s + 203.8
. (25)

• The PID controller via the Ziegler–Nichols (ZN) approach: herein, we implement the
ZN algorithm to obtain the PID controller. The output is of the following form:

C4(s) = 2.5 + 0.582/s + 4.271s. (26)

This, consequently, implies the closed-loop system H4(s), which is in the follow-
ing form:

H4(s) =
61.81s2 + 36.18s + 8.422

s4 + 0.7306s3 + 171.6s2 + 36.31s + 8.422
. (27)

• The PID controller via the Cohen-Coon (CC) approach: here, we applied the CC
algorithm to obtain the PID controller. This controller has the following form:

C5(s) = 3.02 + 0.472/s + 2.81s. (28)

Therefore, the closed-loop system H5(s) is expected to be as follows:

H5(s) =
40.66s2 + 43.7s + 6.83

s4 + 76.43s3 + 150.4s2 + 43.83s + 6.83
. (29)

Table 2 presents a numerical comparison between the five methods in which the
gain of PID and FOPID is shown based on a certain transfer function of linear motion.
Table 3 draws attention to the dynamic results of the closed-loop transfer functions given in
H1, H2, H3, H4 and H5, while Figure 2 reflects the advantage and accuracy of the CFE and
Oustaloup methods as they show a clear decrease in the amount of overshoot followed by
a tendency to quickly stabilize.
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Table 2. The gains of PID and fractional-order PID controllers for linear vehicle motion.

Gains/Methods ZN CC BFA CFE Oustaloup

Proportional gain (Kp). 2.5 3.02 12.73 48 0.17
Integral gain (Ki). 0.582 0.472 14.08 24.2411 9.8834

Differential gain (Kd). 4.271 2.81 22.50 51 61
γ 1 1 1 0.9110 0.2823
ρ 1 1 1 0.7119 0.976

Table 3. Step responses of H1(s), H2(s), H3(s), H4(s) and H5(s).

Step Response H1(s) H2(s) H3(s) H4(s) H5(s)

Rise time. 0.2789 0.2443 0.7812 4.0109 3.6089
Settling time. 5.4935 5.3397 13.7308 31.669 20.479

Settling minimum. 0.9029 0.9000 0.9014 0.9001 0.9008
Settling maximum. 1.0004 1.0068 1.1513 1.2346 1.1892

Overshoot. 0.0479 0.7059 15.1346 23.4691 18.9203
Undershoot. 0 0 0 0 0

Peak. 1.0004 1.0068 1.1513 1.2346 1.1892
Peak time. 14.385 10.107 3.3052 10.4523 9.5893

3.2. Tuning the Fractional-Order PID Controller for Angular Transfer Motion

Similarly to the previous subsection, we re-execute the PSO algorithm once again, but
this time to obtain two other fractional-order PID controllers C6(s) and C7(s). This tunes
the angular transfer motion T1(s) given in (12). These controllers are given as follows:

• The PIγDρ-PSO-controller via the CFE approach:

C6(s) = 48 +
24.2411

s0.911 + 51s0.7119. (30)

The two Laplacian operators, s0.911 and s0.7119, can, therefore, be approximated using
the CFE approach as follows:

s0.911 =
2.4696e + 2s5 + 2.6421e + 3s4 + 5.6074e + 3s3 + 2.9951e + 3s2 + 3.3208e + 2s + 0.9999

s5 + 3.32.084e + 2s4 + 2.9951e + 3s3 + 5.6074e + 3s2 + 2.6421e + 3s + 2.4696 + 2
(31)

and

s0.7119 =
38.7389s5 + 4.8518e + 2s4 + 1.1765e + 3s3 + 7.2524e + 2s2 + 99.1305s + 1
s5 + 99.1305s4 + 7.2524e + 2s3 + 1.1765e + 3s2 + 4.8518e + 2s + 38.7389

. (32)

Thus, the PIγDρ-controller C6(s) is of the form:

C6(s) =

4.998e5s10 + 1.264e7s9 + 31.136e8s8 + 4.583e8s7 + 9.503e8s6 + 1.087e9s5

+ 7.179e8s4 + 2.752e8s3 + 5.861e7s2 + 6.048e6s + 2.338e5

247s10 + 2.712e4s9 + 4.466e5s8 + 2.766e6s7 + 7.592e6s6 + 1.009e7s5

+ 6.588e6s4 + 2.062e6s3 + 2.783e5s2 + 1.335e4s38.74

. (33)

This, consequently, implies the closed-loop system H6(s), which is in the
following form:

H6(s) =

6.047e4s10 + 1.53e6s9 + 1.375e7s8 + 5.545e7s7 + 1.15e8s6 + 1.316e8s5

+ 8.687e7s4 + 3.33e7s3 + 7.092e6s2 + 7.319e5s + 2.829e4

247s12 + 2.728e4s11 + 5.239e5s10 + 4.576e6s9 + 2.312e7s8 + 7.07e7s7 + 1.291e8s6

+ 1.394e8s5 + 8.95e7s4 + 3.38278s3 + 7.146e6s2 + 7.341e5s + 2.83e4

. (34)
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• The PIγDρ-PSO-controller via Oustaloup’s approach:

C7(s) = 59 +
61.8823

s0.821 + 61s0.7167. (35)

The two operators, s0.821 and s0.7167, can be approximated using Oustaloup’s approach
as follows:

s0.821 =
43.85s5 + 973.9s4 + 2957s3 + 1388s2 + 100.8s + 1
s5 + 100.8s4 + 1388s3 + 2957s2 + 973.9s + 43.85

(36)

and

s0.7167 =
27.13s5 + 663.2s4 + 2217s3 + 1146s2 + 91.53s + 1
s5 + 91.53s4 + 1146s3 + 2217s2 + 6373.2s + 27.13

. (37)

This allows (35) to be rewritten in the following form:

C7(s) =

7.522e4s10 + 3.692e6s9 + 5.935e7s8 + 3.597e8s7 + 9.902e8s6 + 1.333e9s5

+ 9.65e8s4 + 3.478e8s3 + 5.796e7s2 + 3.647e6s + 7.528e4

43.85s10 + 4987s9 + 1.424e5s8 + 1.485e6s7 + 5.704e6s6 + 8.803e6s5

+ 5.18e6s4 + 1.225e6s3 + 106724s2 + 3398s + 27.13

. (38)

Hence, the closed-loop system is in the following form:

H7(s) =

9101s10 + 4.467e5s9 + 7.181e6s8 + 4.352e7s7 + 1.198e8s6 + 1.613e8s5

+ 1.168e8s4 + 4.209e7s3 + 7.014e6s2 + 4.413e5s + 9109

43.85s12 + 5015s11 + 1.545e5s10 + 2.021e6s9 + 1.383e7s8 + 5.61e7s7 + 1.314e8s6

+ 1.672e8s5 + 1.185e8s4 + 4.236e7s3 + 7.033e6s2 + 4.418e5s + 9113

. (39)

• The PID controller via the bacteria foraging algorithm (BFA): in this part, we obtain
the following result:

C8(s) = 8.4629 +
10.5707

s
+ 13.1024 ∗ s. (40)

This leads to the following closed-loop system:

H8(s) =
1.585s2 + 1.024s + 1.279

s3 + 2.204s2 + 1.188s + 1.279
. (41)

• The PID controller via the Ziegler–Nichols (ZN) approach: in this part, we have
the following:

C9(s) = 1.94 + 1.02s + 0.9922s. (42)

This, consequently, implies the closed-loop system H9(s), which is of the
following form:

H9(s) =
0.1116s2 + 0.2347s + 0.1234

s3 + 0.7306s2 + 0.3983s + 0.1234
. (43)

• The PID controller via the Cohen–Coon (CC) approach: herein, we have

C10(s) = 2.22 + 1.01s + 0.745s. (44)

This gives the closed-loop system H8(s), which is of the following form:

H10(s) =
0.09015s2 + 0.2686s + 0.1222

s3 + 0.7091s2 + 0.4322s + 0.1222
. (45)

Regarding angular movement motion, Table 4 shows the gains of the fractional-order
PID controllers for each method, Table 5 shows their dynamic results and, finally, Figure 3
shows the effect of applying the different methods on the fractional-order PID controller
and the greater stability of the CFE and Oustaloup methods.
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Table 4. The gains of PID and FOPID controllers for vehicle angular motion.

Gains/Methods ZN CC BFA CFE Oustaloup

Proportional gain (Kp). 1.94 2.22 8.46 48 59
Integral gain (Ki). 1.02 1.01 10.57 24.2411 9.8834

Differential gain (Kd). 0.922 0.745 13.10 51 61
γ 1 1 1 0.9110 0.821
ρ 1 1 1 0.7119 0.7167

Table 5. Step responses of H6(s), H7(s), H8(s), H9(s) and H10(s).

Step Response H5(s) H6(s) H8(s) H7(s) H8(s)

Rise time. 0.2831 0.2316 1.0025 2.8371 2.6644
Settling time. 1.3539 1.2385 19.6450 26.0728 20.0318

Settling minimum. 0.9056 0.9053 0.8478 0.8669 0.8747
Settling maximum. 1.1989 1.2447 1.2566 1.2999 1.2888

Overshoot. 19.921 24.5356 25.6579 29.9886 28.8789
Undershoot. 0 0 0 0 0

Peak. 1.1989 1.2447 1.2566 1.2999 1.2888
Peak time. 0.6748 0.5863 2.8777 6.2479 6.0252
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Figure 3. Step responses of H6(s), H7(s), H8(s), H9(s) and H10(s).

4. Conclusions

In order to obtain the best performance of passenger car movement and stability on
and off the roads, along with higher flexibility on straight and angular roads according to
changing conditions and safety from sudden obstacles that appear on the roads, different
control units have been designed. In particular, different PIγDρ-controllers were estab-
lished based on the application of the PSO algorithm simultaneously with the use of two
different approximations of the fractional-order integro-differential Laplacian operators.
These approximations are Oustaloup’s approximation and the continued fractional expan-
sion (CFE) approximation. Based on the numerical results gained from several performed
comparisons, we conclude that there are significant improvements in the step responses
achieved by using PIγDρ-controllers over using PID controllers. In particular, in order
not to obtain too much overshoot, we can implement the best controller among all of the
proposed controllers, which is the PIγDρ-controller that was established by executing the
PSO algorithm through the CFE approach. On the other hand, in order to obtain the fastest



Axioms 2023, 12, 306 11 of 12

step response and fastest settling time, one may choose the PIγDρ-controller, which was
established by executing the PSO algorithm through Oustaloup’s approach. In general, the
PIγDρ-controller provides an autonomous vehicle with more stable results than that of the
PID controller.
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