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Abstract: Two multicriteria-sorting methods that generalize the relational paradigm have been
recently presented in the literature. One uses objects representative of classes, the other uses objects
in the limiting boundaries of classes; both can use either a reflexive or an asymmetric preference
relation. However, defining the parameters of relation-based methods is not straightforward. The
present work operationalizes those methods with a methodology that takes examples provided by
the decision-maker and, using an accuracy measure that specifically fits the characteristics of the
methods, exploits an evolutionary algorithm to determine the parameters that best reproduce such
examples. The assessment of the proposal showed that (i) it can achieve considerably high levels
of out-of-sample effectiveness with only a few decision examples; (ii) the inference process is more
effective learning the parameters of the method based on representative objects; (iii) it tends to be
more effective with a reflexive relation; (iv) the effectiveness decreases while increasing the number
of classes, which is not always the case when increasing the number of criteria. Theoretical properties
of the proposed methodology will be investigated in future works.

Keywords: multiple criteria analysis; ordinal classification; outranking methods; evolutionary
algorithms; preference–disaggregation analysis

MSC: 68T20

1. Introduction

For more than three decades, the multicriteria ordinal classification (also called multi-
criteria sorting) problem has captured the attention of the multicriteria decision-making
research community. In multicriteria sorting, decision actions (alternatives, objects), which
are described by multiple assessment criteria, must be assigned to predefined and ordered
classes (or categories). In this type of decision problem, we must pay attention to two
fundamental issues: (i) the way in which the preferences of the decision-maker (DM) are
modelled, and (ii) the way in which the classes are characterized.

There are three main paradigms for modelling the preferences of the decision-maker
regarding his/her preferences for an action over another:

- Using a value or utility function (the functional paradigm; e.g., [1]), such that the function
provides a numeric representation of the DM’s desirability toward the alternatives.

- Building a binary preference or outranking relation (the relational paradigm; e.g., [2]),
where the preference relation between pairs of alternatives can be determined.

- The symbolic paradigm, mainly related to the use of Rough Sets to create a system of
decision rules (e.g., [3]).
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On the other hand, classes can be characterized through reference actions, known as
profiles, in one of the following ways:

- Using limiting profiles that describe the boundaries between classes [4–13], such that
the profiles can be exploited to discern two consecutive classes (e.g., [4–13]).

- Through representative or characteristic profiles used to symbolize a typical action in
the corresponding class (e.g., [8,14–19]).

- Using assignment examples as in [3,20–24].

The profiles (either limiting or characteristic) may be seen as actions, since they are
characterized by their impacts on the criteria. The set of assignments examples provided
by the DM may not only be used to characterize classes, but also to infer the parameters of
a functional or relational decision model (e.g., [20,21]). This approach to obtain parameters
indirectly is also known as preference disaggregation analysis (PDA). PDA methods use
regression-like techniques to “learn” the decision model that represents the underlying
assignment policy, which is manifested in the assignment examples given or approved by
the DM [25].

In this paper, our interest is restricted to the relational paradigm. Within this, the most
popular multicriteria-sorting methods belong to those in the ELECTRE family. The first,
ELECTRE TRI (later renamed ELECTRE TRI-B), describes classes through a single limiting
profile. The authors in [16] proposed ELECTRE TRI-C, in which categories are described
by a single characteristic (“central”) profile. Both methods use an outranking relation to
compare actions with profiles. Subsequently, the previous ELECTRE TRIs were extended to
handle several profiles in ELECTRE TRI-nC and ELECTRE TRI-nB [11,17]. These methods
were also extended by [10].

Relational-based ordinal classification methods were recently generalized by [26,27]. Using
either a reflexive or an asymmetric general preference relation, Fernández et al. proposed
methods that characterize classes through either limiting or representative profiles. These
methods fulfill the fundamental properties previously discussed by [5] for ELECTRE TRI-B
and revisited by [16] for ELECTRE TRI-C. The proposals by [26,27] are a wide generalization
of the relational paradigm applied to ordinal classification.

Using ELECTRE methods, the direct parameter elicitation can be a difficult task [28].
Typically, the DM finds severe difficulty in defining parameter values whose meaning is
confusing to her/him. This is particularly true when setting veto thresholds, as the veto
concept is unfamiliar to most DMs. The direct elicitation task is even more complex in the
case of ordinal classification methods where categories are described by several limiting
profiles, the existence of which is subject to question in many real problems [15,16], and
where several preference-based separability conditions involving parameter values must
be fulfilled. The strong requirements in the proposal by [26] contribute to making the direct
elicitation of parameters and profiles a very big concern.

Indirect elicitation is a suitable alternative. In this approach, the DM typically uses
his/her holistic judgments to provide/accept a set of assignment examples that inherently
contain his/her underlying assignment policy. This can be less cognitively demanding for
the DM due to any of the following reasons: (i) the DM often feels more comfortable making
decision assignments than justifying/explaining them; (ii) the DM can provide decision
assignments that were previously provided/accepted by her/him; (iii) the DM can provide
assignments of a set of fictitious examples that can be easily classified; (iv) the DM can
make decision assignments on a subset of actions, for which the she/he feels comfortable.

Under some strong simplifications, the inference of outranking model parameters in
ELECTRE TRI-B was approached through classical mathematical programming techniques
in [29]. However, such an indirect way of obtaining parameter values becomes a very
complex optimization problem when veto thresholds must be inferred. These thresholds
become real-valued decision variables. Inferring all the parameters of ELECTRE-based
methods simultaneously involves addressing non-linear optimization problems with non-
convex constraints [29,30]. There are some works that have assessed the effectiveness of
different optimization methods to infer the parameters of ELECTRE-based methods simul-
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taneously (e.g., [31]); their general conclusion is that in such cases, evolutionary algorithms
should be used as in [25]. The authors in [32] proposed an evolutionary algorithm to infer
the whole ELECTRE TRI-nB model, including preference parameters and limiting profiles.
Less sophisticated heuristic approaches may be used when the preference model does
not include veto, as in [33]. A satisfiability-based approach to learn the parameters of a
non-compensatory sorting model was proposed by [34].

With respect to ELECTRE TRI-nC, obtaining representative profiles directly is less
cognitively demanding than obtaining the limiting profiles in ELECTRE TRI-nB. The same
happens when the methods with limiting and representative profiles proposed by [26,27]
are compared. As a consequence, in a direct elicitation framework, most DMs should prefer
a method based on representative profiles. However, in an indirect elicitation framework,
the cognitive effort required by the DM consists basically of the creation of the set of
assignment examples. Therefore, the DM should prefer the method that provides more
“learning” capacity. Such capacity might depend on (i) the way that it is used to characterize
the ordered classes; (ii) the number of assignment examples provided by the DM and (iii)
the type of preference relation, namely, reflexive or asymmetric, that is used to compare
actions with profiles.

Contributions

This paper presents a method to infer the parameter values and profiles of the methods
in the proposals of both [26,27]. The first of these proposals is based on limiting profiles
while the second one is based on characteristic profiles. In both cases, the outranking
relation of ELECTRE TRI is used [2]; both methods can be used with either a reflexive
preference relation or its asymmetric version. [32] The non-linear optimization problem
maximizes an agreement measure between the model and the assignment examples and is
addressed using a genetic algorithm. Variants of the genetic algorithm have been success-
fully used in several works by the authors [30–32,35], and have shown to be considerably
more effective than other metaheuristics [31] in similar contexts (that is, in terms of the
elicitation procedures of ELECTRE-inspired model parameters). Therefore, one of our main
interests in this work is to analyze if the genetic algorithm with specific characteristics for
the current problem continues to be as effective as in those works. We intend to answer the
following research questions:

(1) What are the learning capabilities of the proposal for each method, and for which of
these methods is the inference process more effective?

(2) Similarly, how does the effectiveness of the proposal behave regarding the type of
relation (reflexive or asymmetric)?

(3) To what extent is the “learned” model able to represent the underlying DM’s assign-
ment policy when new actions are classified?

(4) How does this capacity depend on the number of assignment examples provided by
the DM?

(5) How does this capacity depend on the number of classes and the number of criteria?

The first two questions are specially interesting. One could hypothesize that the
method based on limiting profiles can make the proposal to learn with higher levels of
effectiveness because of its ability to identify the boundaries of each class; however, the
experiments showed that this is not the case: the highest levels of effectiveness were
achieved in the context of the method based on characteristic profiles. Similarly, since an
asymmetric relation has more inherent information than a reflexive relation, one might
think that using the former should yield better results. However, the experiments also
showed that it was actually in the context of the reflexive relation that the proposal achieved
the best effectiveness.

In this paper, extensive computational experiments are performed to respond to the
above questions.

The structure of the paper is as follows: Section 2 provides a brief background to
the proposal, including the description of the multicriteria-sorting methods. Section 3
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explains the generalities of the proposed methodology, while Section 4 presents the details
for inferring the parameter values of the ELECTRE-based methods proposed in [26,27].
Finally, Section 5 assesses the robustness of the proposal and Section 6 concludes this paper.

2. Some Background
2.1. A Theoretical Insight

The family of ELECTRE (ELimination Et Choix Traduisant la REalité, ELimination and
Choice Expressing the REality) methods exploit the so-called outranking relation [36–38]
that represents the assertion “action x is at least as good as action y”. These family of
methods is particularly useful when the decision problem includes at least three criteria to
assess the actions and when either the actions are evaluated on an ordinal scale or there
is a lot of heterogeneity or compensation among the criteria [37]. Depending on the type
of decision problem (choosing, ranking, sorting), the family of ELECTRE methods offers
subsets of methods able to address the problem; the ELECTRE TRI methods are within the
subset of multicriteria-sorting methods.

The ELECTRE TRI methods share several consistency properties, namely, homogene-
ity, unicity, independence, monotonicity, conformity, and stability [5,16,39]. There are,
however, some important differences. ELECTRE TRI-nC and its extensions are based on
two (ascending and descending) rules, which are symmetric via the transposition operation.
Such an operation consists of simultaneously inverting the order of the categories and the
sense of preference in all the assessment criteria. According to [9,40], all relational-based
multicriteria-sorting methods should fulfill symmetry in terms of the transposition op-
eration, as carried out by ELECTRE TRI-C, ELECTRE TRI-nC and its extensions [16,39].
However, ELECTRE TRI-B and its extensions do not fulfill this symmetry property [9,40].
As [9] state, this lack of symmetry is a consequence of the way ELECTRE TRI-B defines the
categories as closed from below.

ELECTRE TRI-B and ELECTRE TRI-nB are composed of two procedures, namely,
the pseudo-conjunctive and pseudo-disjunctive rules. In the pseudo-conjunctive proce-
dure, an outranking relation S is used to compare actions against limiting profiles (xSy
denotes “action x is at least as good as action y”), while the pseudo-disjunctive procedure
uses the asymmetric preference relation P, which is the asymmetric part of S. Ref. [9]
(respectively, [12]) proposed to replace the conjoint use of the pseudo-conjunctive and
pseudo-disjunctive procedures of ELECTRE TRI-B (resp., ELECTRE TRI-nB) by descending
and ascending rules, which use S and are symmetric in terms of the transposition operation.
However, in these proposals, the limiting profiles are fictitious actions, which do not belong
to any category; to a large extent, this contradicts the conformity requirement, which states
that the limiting profiles have to be assigned to the categories to which they belong.

The conflict between conformity and correspondence through the transposition op-
eration was solved by [26]. They proposed to describe the limiting boundary Bk between
classes Ck and Ck+1 by two “layers”; namely, BUk and BLk. Ck+1 is closed from below by BLk,
while Ck is closed by BUk. Based on a general reflexive (respectively, asymmetric) binary
preference relation S (resp. P), the method in [26] fulfills the whole set of consistency prop-
erties required by [5] and is symmetric in terms of the transposition operation. However,
this theoretical advance required imposing strong conditions on the set of limiting profiles,
which constitutes the main obstacle for the method in [26].

The outranking relation of the ELECTRE family and its extensions are particular cases
of the relation on which the method in [26] is based. In the following, we call ELECTRE TRI-
nB-2 to this method when S is the outranking relation as in ELECTRE TRI-B or ELECTRE
III [2].

Regarding the relational methods that characterize classes through representative
profiles, a similar generalization was proposed by [27]. Any reflexive preference relation S
(or its asymmetric part P) can be used by two assignment rules that are equivalent through
the transposition operation. If S is the outranking relation as in ELECTRE TRI-nC, the rules
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suggest assigning actions to ranges of possible categories containing the classes suggested
by that former method.

Thus, both proposals in [26,27] fulfill the desirable properties. As discussed in the
introduction, in a direct elicitation framework, the use of “characteristic” or representative
profiles requires less effort from the DM. However, in a PDA approach, the cognitive
demand depends only on the number of assignment examples. Given several assignment
examples, it is interesting to illustrate (i) which way describing classes should be preferred
and (ii) which preference relation (S or P) provides better results.

2.2. A Brief Description of the ELECTRE TRI-nB-2

ELECTRE Tri-nB-2 is a particular case of the method proposed in [26] when S is the
outranking relation of ELECTRE TRI. The boundary Bk that separates the classes Ck and
Ck+1 is described by a set of limiting profiles bk,j (j = 1, . . . , card (Bk)), Bk = {bk,j}, and is made
up of two “layers”, called BLk and BUk, which are disjoint sets. BLk is composed of profiles
belonging to Ck+1, while BUk by other limiting profiles belonging to Ck. So, Ck+1 is closed
from below by BLk, and Ck is closed from above by BUk.

Let us denote by P the asymmetric part of S and by D the Pareto dominance relation.
In ELECTRE TRI-nB-2, the profiles should fulfill the following requirements:

i. There is no (w,z) belonging to BLk × BLk such that wPz;
ii. There is no (w,z) belonging to BUk × BUk such that wPz;
iii. There is no (w,z) in BUk × BLk fulfilling wSz;
iv. There is no (w,z) in Bk × Bh (h > k) fulfilling wSz;
v. For all z in BUk there is y in BLk−1fulfilling zSy;
vi. For all z in BLk there is y in BUk + 1 that fulfills ySz;
vii. For all z in BUk there is w in BUk + 1that fulfills wDz;
viii. For all z in BUk there is w in BUk−1that fulfills zDw;
ix. For each z in BLk there is y in BLk−1that fulfills zDy;
x. For all z in BLk there is y in BLk + 1 that fulfills yDz.

The authors in [26] proposed two assignment rules, namely, primal and dual, which
are symmetric in terms of the transposition operation; these rules should be used conjointly.
They are based on a relation S between actions and boundaries, defined as: (i) xSBk if, and
only if, there is y ∈ BLk such that xSy and there is no w ∈ Bk fulfilling wPx; (ii) BkSx if, and
only if, there is y ∈ BUk such that ySx and there is no w ∈ Bk fulfilling xPw.

The primal rule is a descending procedure that assigns the action x to Ck+1, where k is
the subscript of the first limiting boundary fulfilling xSBk. On the other hand, the dual rule
is an ascending procedure that assigns x to Cj, where j is the first subscript fulfilling BjSx.
All the categories in the range between Cj and Ck (or vice versa) are possible assignments
for x.

2.3. The Methods Based on Comparing Actions against Representative Profiles

The authors in [27] proposed alternative multicriteria-sorting methods, one based on
S and one based on P.

In both methods, each category Ck is characterized by a subset Rk of representative
profiles, rk,j, j = 1, . . . , card (Rk), which must fulfill several demands. For the S-based
method, these demands are the following:

i. For all ordered pairs (k, h) (h > k), for k = 1, . . . , M-1, for each y in Rh, there is no z in
Rk, fulfilling zSy;

ii. For all ordered pairs (k, h) (h > k), for k = 1, . . . , M-1, for each y in Rk, there is a z in
Rh, fulfilling zSy;

iii. For all ordered pairs (k, h) (k > h), for k = 2, . . . , M, for each y in Rk, there is a z in Rh
fulfilling ySz.

iv. For all ordered pairs (k, h) (h > k), for k = 1, . . . , M-1, for each y in Rk, there is a z in
Rh, fulfilling zDy;
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v. For all ordered pairs (k, h) (k > h), for k = 2, . . . , M for each y in Rk, there is a z in Rh,
fulfilling yDz.

The S-relation between actions and subsets of profiles is defined as

1. xSRk if and only if there is a y belonging to Rk, that fulfills xSy;
2. RkSx if and only if there is a y in Rk, fulfilling ySx;

Like ELECTRE TRI-nC, [27] proposed two assignment rules, which are symmetric via
the transposition operations. The descending rule finds the first subscript k for which xSRk,
and x is assigned to Ck or Ck+1. In the ascending rule, the first h such that RhSx is identified,
and then x is assigned to Ch−1 or Ch. The conjoint assignment rule suggests assigning x to a
class within the range Ch-Ck (or vice versa).

For the P-based method, the requirements are the same as above—replacing S by P,
but adding (vi). For k = 1, . . . , M, there is no pair (z, w) in Rk × Rk that fulfills zPw. This
requirement forces profiles to be central in order to achieve a good characterization of their
related category (a central profile is a characteristic action representative of a class). The
relation P between actions and subsets of profiles is defined as the relation S, but with P
instead of S. The descending and ascending rules are similar, but replacing xSRk with xPRk,
and RhSx with RhPx. The conjoint assignment rule is identical to that of the S-based method.

3. The Proposed Methodology

The proposed methodology is based on a set of reference examples. This set is built
by the decision-maker according to his/her own system of preferences/decision policy;
then, based on a given decision model able to assess xSy (from which, xPy can be derived),
the proposed methodology intends to define the model’s parameter values such that the
decision model can reproduce the reference examples as accurately as possible.

Even when this work exploits the proposed methodology in the context of the ELEC-
TRE TRI models [26,27], the methodology is general enough to work with virtually any
decision model (not only those based on ELECTRE methods) whose complexity requires
the optimization stage to be an evolutionary algorithm. Other examples of decision models
that can fulfill such a condition are those based on value functions with veto conditions
(e.g., [41]), the ELECTRE methods with interactions between criteria [42], the extended
ELECTRE method to handle reinforced preferences and counter-veto effects [43], the hi-
erarchical version of the ELECTRE methods [44], and the interval outranking approach
by [45,46].

Figure 1 shows an insight into the proposed approach.

3.1. Input Data

As shown in Figure 1, the input data of the proposed approach are composed by a
coherent family of criteria, a set of decision examples, a set of preferentially ordered classes,
and a set of (limiting or characteristic) profiles for each class.

3.1.1. A Coherent Family of Criteria

The set of criteria must be established based on three characteristics: (1) no redundancy
(each criterion is considered only once); (2) completeness (the criteria characterize all the
significant objectives for the decision problem); and (3) consistency, which involves the
DM’s preference to be consistent with the comprehensive assessment.

3.1.2. A Set of Assignment Examples

Let x and y be decision alternatives, each of them characterized by its scores on the
family of criteria. The assignment examples provided by the DM are of the form “x should
be assigned to class Ci”. These decisions may be past decisions or new easy-to-make
decisions (that can even include fictitious alternatives). In each of these situations, the
examples provide instances about the judgment policy of the DM as well as his/her system
of preferences; furthermore, the examples provided can influence the preference model
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defined by the proposal. Therefore, it is important for the DM to carefully express his/her
holistic preference on the basis of all the criteria defined in Section 3.1.1.
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3.1.3. A Sequence of Preferentially Ordered Classes

Let C1, C2, . . . , CM, be a sequence of classes such that each class denotes intensity of
preference, thus the decision alternatives assigned to Ci are not worse than those assigned
to Cj for i > j.

3.1.4. The Number of (Limiting or Characteristic) Profiles

As stated in the introduction, classes may be characterized by limiting profiles that
describe the boundaries between classes or by representative (central) profiles. Each
of these profiles is characterized through scores on the family of criteria (as decision
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alternatives). The proposal expects the DM to provide the number of profiles to be defined
by the approach.

3.2. A Genetic Algorithm to Select the Most Convenient Set of Parameter Values

A genetic algorithm is used to infer representative profiles and parameter values
compatible with the decision examples provided. The canonic version of a genetic algorithm
was used to define the most convenient parameter values. The description of this genetic
algorithm is provided in Section 4.3.

3.3. Interaction with the DM and Final Selection of the Parameter Values

Finally, the approach identifies the set of parameter values and profiles most compati-
ble with the decision examples provided by the DM; if the DM is not satisfied with this
set, then he/she should adjust the information provided as the input. This information
is always consistent, and there should always be at least one set of parameter values and
profiles compatible with the decision examples. If the DM is comfortable and approves the
recommendation, the inference process ends; otherwise, the input information should be
revised and adjusted.

4. Eliciting the Preference Models

As explained above, the proposed methodology can work with virtually any decision
model. Here, we describe the components used to infer the sets of parameter values and
profiles of either ELECTRE TRI-nB-2 or the method based on comparing actions against
representative profiles. In both cases, the outranking relation of ELECTRE TRI is used
(cf. [2]). The degree of credibility of the outranking relation, σ(x, y), is built on A × A,
where A is a set of actions described on the basis of N criteria (without loss of generality,
we assume that the performance on these criteria should be maximized). The output of
σ(x, y) denotes the degree of credibility of the assertion “x is at least as good as y” from the
perspective of the DM. The steps to calculate σ(x, y) can be followed from [2].

The relative importance of each criterion is called weight and reflects its voting power;
the weight wi of each criterion gi must fulfill wi > 0 and, for convenience, ∑wi = 1. The
procedure described in [2] to calculate σ(x, y) uses an indifference threshold, qi(gi(x)) ≥ 0,
and a preference threshold for each criterion gi fulfilling pi(gi(x))≥ qi(gi(x)). It also uses veto
thresholds, vi(gi(x)), to reflect the veto power of some criteria toward the hypothesis that
the outranking relation is met. The authors in [47] advanced this procedure to also consider
pre-veto thresholds, ui(gi(x)). For readability purposes, we use qi, pi, vi, ui to denote these
concepts. Finally, if there is enough evidence to accept that “x is at least as good as y” and
there is no enough evidence that opposes the assertion, then it is accepted that “action x
outranks action y”, which is denoted by xSy. xSy can be assessed using the outranking
relation and a credibility threshold, λ. Formally,

xSy⇔ σ(x, y) ≥ λ.

Note that these parameters depend on the decision policy of the decision-maker; thus,
decision models with different sets of parameter values can lead to different decisions. Our
proposal consists of inferring the parameter values that best restore the reference decisions
provided by the DM.

4.1. Inferring an ELECTRE TRI-nB-2 Model

According to previous discussions, the information that must be inferred to fully
operationalize the ELECTRE TRI-nB-2 method is the following:

• Weights: wi for i = 1, . . . , N;
• Veto thresholds: vi for i = 1, . . . , N;
• Pre-veto thresholds: ui for i = 1, . . . , N;
• Majority threshold: λ.
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Limiting profiles: Bk = BLk ∪ BUk, where each element in BLk and each element in BUk
are characterized by their assessments on the N criteria. The set of profiles Bk (made up by
the disjoint sets BLk and BUk) that separates the classes Ck and Ck+1, and whose cardinality
is given by the DM, must fulfill the conditions described in Section 2.2.

Let C = {C1, C2, . . . , CM} be the set of classes defined by the DM, such that Ci + 1 is
preferred over Ci, and T be the set of actions used in the decision examples provided by
the DM, such that each x ∈ T has been assigned by the DM to a class Cj ∈ C. Each of these
decision examples contains holistic information about the preferences of the DM. Therefore,
the goal of the inference process is to assign values to the parameters so the ELECTRE
TRI-nB-2 method can reproduce the decision examples.

The inferred information that is most appropriate to fit the examples provided by
the DM, nB∗in f , is the one that minimizes the number of inconsistencies with respect to
the expressed decisions. Each x ∈ T is assigned by the DM to a range of classes through
his/her own system of preferences, say nBDM; similarly, the ELECTRE TRI-nB-2 method
can use nBin f to assign each x ∈ T to a range of classes. Thus, let χDM be the set of classes
to which the DM has assigned x and let χin f be the set of inferred classes. Since x is not
necessarily assigned to only one class but to a range of classes, the so-called F1-score [48] is
exploited here. The authors in [49] use the concepts of precision, Q, and recall, R, to define
this measure: F1-score = 2QR/(Q + R). The authors in [33] use such a procedure to define
Ac

(
x, nBDM, nBin f

)
in the following non-linear optimization problem:

Maximize
wi ,vi ,ui ,λ,Bk

FB (1)

Subject to
wi > 0,

∑wi = 1,

vi > ui > pi,

0.5 < λ < 1,

Bk fulfills constraints i–x in Section 2.2.

where

i = 1, . . . , N,

FB =
Ac

(
nBDM, nBin f

)
card(T)

Ac
(

nBDM, nBin f

)
= ∑x∈D Ac

(
x, nBDM, nBin f

)
and

Ac
(

x, nBDM, nBin f

)
=

2
∣∣∣χDM ∩ χin f

∣∣∣
|χDM|+

∣∣∣χin f

∣∣∣
Note that the decision variables in Problem (1) are those listed at the beginning of

this Section.

4.2. Inferring a Model for the Representative-Profiles-Based Methods

A set of assignment examples is also used to define the information required by the
methods that use representative profiles. The information that must be inferred in this case
is the same as in the case of the ELECTRE TRI-nB-2 model except for the case of the profiles
since now the profiles that must be inferred are representative of each class.

Let W be the set of assignment examples such that each x ∈ W is assigned by the
DM to a range of elements of the set of classes C = {C1, · · · , Ck, · · · , CM}. Since both
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the DM and the method described in Section 2.3 assign each action x ∈ W to a range of
classes, the F1-score is also used in the context of representative profiles to determine the
most convenient set of profiles and parameter values, nCin f . Following the intuition of the
notation used in the previous section, the fitness function is defined as follows:

Maximize
wi ,vi ,ui ,λ,Rk

FC (2)

Subject to
wi > 0,

∑wi = 1,

vi > ui > pi,

0.5 < λ < 1,

Rk fulfills constraints i–v in Section 2.3.

where

i = 1, . . . , N,

FC =
Ac

(
nCDM, nCin f

)
card(T)

Ac
(

nCDM, nCin f

)
= ∑x∈D Ac

(
x, nCDM, nCin f

)
and

Ac
(

x, nCDM, nCin f

)
=

2
∣∣∣χDM ∩ χin f

∣∣∣
|χDM|+

∣∣∣χin f

∣∣∣
Note that the decision variables in Problem (1) are those listed at the beginning of

Section 4.1, except for Rk that substitutes Bk.

4.3. A Genetic Algorithm to Address Equations (1) and (2)

Note that the optimization problems resulting from Equations (1) and (2) are non-
linear optimization problems with non-convex constraints given that the whole sets of
parameters mentioned in Section 4.1 are being inferred simultaneously [29]. Therefore,
following evidence from other works [25,31], we use an evolutionary algorithm to address
these problems. Particularly, we use a genetic algorithm inspired by those described in
works that are similar to a certain extent [27,30–32,35]; we use similar genetic operators
with different representations of individuals.

Evidently, using a decision model different to that used here (an ELECTRE-based
decision model) implies some changes to the procedure described below; particularly,
different parameters require a different structure of the individuals.

In the case of Problem (1), the algorithm uses a real-valued vector composed of
n(3 + K(M− 1)) + 1 genes to denote each individual (where K is the number of profiles
used to separate each pair of classes and n is the number of criteria), as shown in Figure 2; in
this figure, gi(bk,j) is the impact of profile bk,j ∈ Bk on the ith criterion. In the case of Problem
(2), the algorithm also uses a real-valued vector but is now composed of n(3 + OM) + 1,
where O is the number of profiles used to characterize each class, as shown in Figure 3.
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The initial population of the genetic algorithm contains individuals that are generated
randomly but that fulfill the constraints established by the DM/analyst pair. The selection
of the parents in the algorithm is performed using binary tournament, while the crossover
is at one point of the individuals. To facilitate consistency, the genes related to the weights
form an inseparable unit. Only one offspring individual is created from each pair of parent
individuals; then, a given probability is assigned to the possible mutation of the offspring
individual. This mutation involves the random generation of a randomly selected gene (or
set of genes, in the case of the weights) in such a way that the mutated offspring fulfills the
constraints. This way, a number of offspring individuals equal to the number of individuals
in the population is generated (say, pop_size), and all the (parent and offspring) individuals
are inserted into a pool from which pop_size-1 individuals are randomly selected to create
the population in the next iteration of the algorithm. Each individual’s fitness is calculated
using Problems (1) or (2). When the stopping criterion is met, the best individuals found so
far compose the set of best solutions in the current execution of the algorithm. A centroid
of such a set is calculated using the average values of the parameters in the set. Such a
centroid is considered as the best solution when it achieves the best-known fitness value,
otherwise, the solution closest to the centroid is chosen (in terms of the Euclidean distance).
Furthermore, to ensure robustness, twenty executions of the algorithm are performed.

The control parameters of the genetic algorithm are defined following the results
of previous works by the authors [30–32,35,50]. In those works, similar optimization
problems have been addressed through the genetic algorithm; its parameters had been
previously determined using a classical configuration technique, ParamILS [51]. Assessing
the neighborhood of such values helped us to determine the specific control parameters
used in this work in preliminary experimentation. The control parameters used by the
algorithm are size of the population, number of generations, probability of crossover, and
probability of mutation. The values are, respectively, 200, 200, 60% and 2%.

This procedure is formalized in Algorithm 1.

Algorithm 1. Genetic Algorithm proposed to address Problems (1) and (2).

Require: A set of reference examples, T
Ensure: ρ f inal , individual representing the population with the best fitness values

1: i← 1
2: ρ← null
3: g← 0
4: Pg ← create-Initial-Population ()
5: for g < 200 do
6: Hg ← create-Offspring (Pg, selection, crossover, mutation)
7: Pg+1 ← generate-Population ( Pg ∪ Hg

)
8: g← g + 1
9: end for

10: bestknown ← find-Best (Pg)
11: ρ← find-Centroid (bestknown)
12: if ρ is-best (bestknown)
13: ρ f inal ← ρ

14: else
15: ρ f inal ← find-closest (ρ)

5. Assessing the Robustness of the Inference Procedure

This section details the experimentation performed to assess the robustness of the
inference approach.
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5.1. Experimental Design

The basic experimentation consists of the following steps:

1. Simulate the preference model of a decision-maker and some limiting (respectively,
characteristic) profiles that are all compatible with the model that uses limiting (respec-
tively, characteristic) actions; this way, both the parameter values of the preference
model and the set of profiles are known.

2. Use the known preference model to assign a set of reference actions to ordered classes.
3. Exploit Algorithm 1 to infer the parameter values of the preference model.
4. Simulate actions different to the ones used as reference.
5. Assign the new actions to ordered classes using the simulated preference model; also

assign them using the inferred parameter values.
6. Obtain an out-of-sample effectiveness, measuring the proportion of coincidences

between the assignments made on points 4 and 5.

To improve the soundness of the experimentation, the procedure described above is
performed twenty times and, for each of these, the experiment setup uses a wide variety of
values, as shown in Table 1.

Table 1. Configurations of the experiments.

Aspect of the Experiment’s Configuration Notation Values Used

Number of criteria N 3, 5, 7, 9
Number of classes M 2, 3, 4, 5

Number of assignment examples per class nclass 2, 4, 6
Cardinality of the set of assignment examples card(T) M · nclass

Number of out-of-sample actions nOS 400
Number of simulated decision-makers nDMs 20

Four profiles were used (per class/per boundary) in all scenarios. The mean values of
the results are used below and, since there are large numbers of experiments being carried
out, following the Central Limit theorem, it can be assumed that such mean values are
normally distributed. Therefore, two-sample t-tests with a significance level of 0.05 are
used to assess the null hypothesis of “two mean values are equal”.

5.2. Results

First, we identify the type of method (based on central or limiting profiles) that displays
higher performance using the reflexive S relation (since it presents milder requirements);
then, we make a deeper analysis of the results provided by such a method.

In Table 2, the fourth column compares the out-of-sample effectiveness of the classifi-
cation method based on central objects in terms of a different number of training objects
per class (2, 4, and 6). For each number of criteria (N) and classes (M), the effectiveness is
compared according to the number of reference objects per class. The group that showed
a statistically significant difference with respect to the others is marked in red. If there
are two rows marked in red (for example, in the row with N = 3 and M = 2), it means
that those values are better than the rest, but they do not have a significant difference
between themselves.
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Table 2. Out-of-sample effectiveness of both sorting methods using a reflexive relation S, considering
a different number of criteria, classes, and reference actions per class.

N M nclass
Effectiveness with

Characteristic Profiles
Standard
Deviation

Effectiveness with
Limiting Profiles

Standard
Deviation

3 2 2 0.9355 0.0261 0.8500 0.0559
4 0.9454 0.0197 0.8606 0.0653
6 0.9476 0.0217 0.8889 0.0495

3 3 2 0.8940 0.0421 0.7457 0.0859
4 0.9176 0.0320 0.7969 0.0672
6 0.9249 0.0311 0.8084 0.0620

3 4 2 0.8841 0.0377 0.6973 0.0921
4 0.8896 0.0415 0.7412 0.0744
6 0.9181 0.0292 0.7513 0.0729

3 5 2 0.8565 0.0490 0.6714 0.0848
4 0.8820 0.0314 0.6963 0.0811
6 0.8894 0.0316 0.7361 0.0728

5 2 2 0.9457 0.0202 0.8308 0.0602
4 0.9498 0.0179 0.8258 0.0659
6 0.9515 0.0155 0.8389 0.0566

5 3 2 0.8748 0.0306 0.7078 0.0801
4 0.8909 0.0289 0.7223 0.0792
6 0.9019 0.0238 0.7477 0.0658

5 4 2 0.8452 0.0338 0.6344 0.0716
4 0.8559 0.0280 0.6654 0.0700
6 0.8660 0.0290 0.6845 0.0708

5 5 2 0.8219 0.0393 0.5971 0.0712
4 0.8358 0.0322 0.6288 0.0740
6 0.8614 0.0318 0.6362 0.0684

7 2 2 0.9583 0.0173 0.8320 0.0650
4 0.9569 0.0259 0.8280 0.0596
6 0.9568 0.0145 0.8411 0.0576

7 3 2 0.8656 0.0365 0.6874 0.0739
4 0.8898 0.0238 0.7300 0.0683
6 0.8905 0.0231 0.7244 0.0629

7 4 2 0.8460 0.0322 0.6328 0.0697
4 0.8520 0.0260 0.6183 0.0803
6 0.8571 0.0248 0.6452 0.0934

7 5 2 0.8183 0.0290 0.5800 0.0755
4 0.8282 0.0254 0.6186 0.0696
6 0.8356 0.0220 0.5846 0.0631

9 2 2 0.9696 0.0183 0.8502 0.0649
4 0.9703 0.0140 0.8532 0.0633
6 0.9683 0.0155 0.8375 0.0640

9 3 2 0.8744 0.0277 0.6850 0.0835
4 0.8774 0.0247 0.6852 0.0709
6 0.8868 0.0216 0.6910 0.0637

9 4 2 0.8455 0.0309 0.6144 0.0764
4 0.8534 0.0244 0.6360 0.0661
6 0.8538 0.0266 0.6602 0.0787

9 5 2 0.8162 0.0297 0.5690 0.0803
4 0.8230 0.0280 0.5766 0.0761
6 0.8316 0.0264 0.6033 0.0700

The sixth column reflects the same process but for the method based on limiting
profiles. The blue color indicates the row that shows a statistically significant difference
with respect to the others.

Remarkably, all the values in column 4 are significantly higher than the corresponding
values in column 6. The method based on representative profiles is clearly superior to the
method based on limiting profiles for all N, M, and the number of training objects.
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Table 3 integrates the information considering the number of criteria N as a separation
variable. In column 2 of this table, the value that shows a statistically significant difference
with the others in the same column is marked in red. In column 4, the highest value (with a
significant difference) is marked in blue. Table 4 shows similar information in the context
of the number of classes M.

Table 3. Out-of-sample effectiveness of both types of methods regarding the number of criteria.

N Effectiveness with
Characteristic Profiles Standard Deviation Effectiveness with

Limiting Profiles Standard Deviation

3 0.9071 0.0434 0.7704 0.0992
5 0.8834 0.0517 0.7100 0.1071
7 0.8796 0.0557 0.6935 0.1166
9 0.8809 0.0602 0.6885 0.1226

Table 4. Out-of-sample effectiveness of both types of methods regarding the number of classes.

M Effectiveness with
Characteristic Profiles Standard Deviation Effectiveness with

Limiting Profiles Standard Deviation

2 0.9546 0.0219 0.8448 0.0631
3 0.8907 0.0338 0.7276 0.0826
4 0.8639 0.0374 0.6651 0.0882
5 0.8417 0.0399 0.6248 0.0894

Since it is evident that the method based on representative profiles was more effective
than the one based on limiting profiles, we proceed to deepen in the results provided by
the former.

Table 5 compares the effectiveness obtained using the method based on representative
objects first with the reflexive relation S and then with the asymmetric relation P. Only
the effectiveness in the triples (N, M, nclass) is shown in this table, where the difference
between the treatment with S and the treatment with P showed significant differences. The
treatment that was superior is marked in red.

Table 5. Comparison between the effectiveness of the method based on representative profiles using
the reflexive relation S and using the asymmetric relation P.

N M nclass Effectiveness Using S Effectiveness Using P

3 2 4 0.9355 0.9398
3 3 2 0.8940 0.9043
3 3 4 0.9176 0.9124
3 4 2 0.8841 0.8553
3 4 6 0.9181 0.9029
5 2 2 0.9457 0.9414
5 5 2 0.8219 0.8025
5 5 6 0.8614 0.8344
7 2 4 0.9569 0.9617
7 2 6 0.9568 0.9618
7 3 4 0.8898 0.8852
7 4 2 0.8460 0.8366
7 5 2 0.8183 0.8104
7 5 4 0.8282 0.8201
7 5 6 0.8356 0.8303
9 2 2 0.9696 0.9663
9 2 4 0.9703 0.9651
9 2 6 0.9683 0.9703
9 3 2 0.8744 0.8698
9 3 4 0.8774 0.8815
9 4 4 0.8534 0.8447
9 4 6 0.8538 0.8633
9 5 4 0.8230 0.8144
9 5 6 0.8316 0.8265
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Table 6 reproduces the results of Table 5 but with a focus on the number of criteria. A
significant difference is marked in red.

Table 6. Comparison of effectiveness using the reflexive relation S and using the asymmetric relation
P in the context of the number of criteria.

N Effectiveness
Using S

Standard
Deviation

Effectiveness
Using P

Standard
Deviation

3 0.9071 0.0434 0.9042 0.0451
5 0.8834 0.0517 0.8781 0.0567
7 0.8796 0.0557 0.8775 0.0604
9 0.8809 0.0602 0.8786 0.0616

Similarly, Table 7 focuses on the number of classes to compare the effectiveness of the
method based on representative profiles using the relation S and using the relation P.

Table 7. Comparison of effectiveness using the reflexive relation S and using the asymmetric relation
P in the context of the number of classes.

M Effectiveness
Using S

Standard
Deviation

Effectiveness
Using P

Standard
Deviation

2 0.9546 0.0219 0.9547 0.0212
3 0.8907 0.0338 0.8906 0.0349
4 0.8639 0.0374 0.8590 0.0382
5 0.8417 0.0399 0.8341 0.0439

5.3. Discussion

The proposed methodology is very general; it can be exploited to infer virtually any
multicriteria decision model that is complex enough that the optimization process must be
performed through metaheuristics. An important advantage of this work consists of the
practical value of the experiments. Given a multicriteria-sorting problem, the experiments
answer the following questions: which of the considered sorting methods can the decision-
maker choose? Should he/she use representative or limiting profiles to identify the classes?
Should he/she use an asymmetric preferential relation, or a reflexive relation is enough
to reach high levels of effectiveness? How many reference objects/assignment examples
should he/she provide?

The experiments assessed the robustness of the proposed methodology by using many
diverse scenarios, including the number of criteria, the number of classes, the number of
reference objects (assignment examples) per class, the decision policy of the simulated
decision-maker providing the examples, and the type of sorting method and preference
relation. It is easy for the decision-maker to provide the reference examples required by
the proposed methodology. According to the results of the experiments, only a limited
number of examples can be enough to obtain sufficiently high levels of effectiveness in the
definition of the parameter values.

It can be seen from Table 2 that, when there are only two classes and the method
based on characteristic profiles is used, then two or four objects per class is enough to
reach maximum effectiveness; so, little cognitive effort is required from the DM in this case.
However, this effect is not appreciated with the method based on limiting profiles, where,
even with the minimum number of criteria (three) and classes (two), the highest level of
effectiveness is only achieved using the maximum number of objects per class (six). It can
be seen from this table that, when there are more than two classes, increasing the number
of objects per class most of the time improves the capacity to learn the reference examples.

The range of effectiveness values in Table 2 for the method based on characteristic
profiles is 0.82–0.97, with an average value of 0.89. As expected, the lowest effectiveness
levels are seen in the highest complexities of the problem, where nine criteria and five



Axioms 2023, 12, 294 16 of 20

classes are considered; although, even in this case, increasing the number of objects per
class almost always increased the effectiveness. All this is also true for the method based
on limiting profiles, whose range of effectiveness in Table 2 is 0.57–0.89 (with significative
lower values than those produced using characteristic profiles, respectively). Another
interesting result from this table is that effectiveness seems to be more affected by the
number of classes than by the number of criteria; for example, for the method based on
reference profiles, the average effectiveness when N = 3 and M = 5 is 0.88, while the average
effectiveness when N = 5 and M < 4 is greater than 0.88. Very similar results can be seen for
the method based on limiting profiles and for other combinations of N, M. This assertion is
confirmed by Tables 3 and 4; the former shows that increasing the number of criteria does
not necessarily decrease effectiveness, while the latter clearly shows that increasing the
number of classes decreased effectiveness.

Unequivocally, Tables 2–4 show higher learning abilities when using representative
profiles over using limiting profiles, both with the reflexive relation S. This is an outstanding
result since the method based on comparing actions against representative profiles demands
the fulfillment of fewer conditions compared to those of the method based on limiting
profiles. Therefore, future works relying on the proposed inference process should follow a
methodology based on representative profiles.

Tables 5–7 show that, in most cases, the effectiveness of the method based on repre-
sentative profiles using the reflexive relation S is significatively greater than that when the
asymmetric relation P is used; this is particularly true when there are three and five criteria
(Table 6) and when there are four and five classes (Table 7).

On the other hand, it appears that using S provides higher effectiveness in the presence
of lower numbers of objects per class, since Table 5 shows that using P was better only once
when there were two objects (in the case N = M = 3); however, further experiments are
required to provide deeper insights in this regard.

6. Conclusions and Future Work

The full operationalization of recent multicriteria-sorting methods has been achieved.
These methods can use either a reflexive or an asymmetric general preference relation
and either limiting or representative profiles; furthermore, they fulfill all the fundamental
properties commonly required from multicriteria-sorting methods (see [5,16]); therefore,
they constitute some of the widest generalizations of the relational paradigm applied to
ordinal classification. However, the methods require the definition of many parameter
values (common in outranking-based methods), which is arduous work for the decision-
maker that can lead to counterintuitive results.

This paper has described a complete methodology to infer the most convenient pa-
rameter values based on sets of decision examples provided by the decision-maker. The
proposed inference methodology addresses the specific characteristics of the sorting meth-
ods through an accuracy measure that defines the effectiveness of the inference process.
The optimization of this measure is performed through evolutionary algorithms given the
non-convexity of the search space, which is caused by inferring all the parameters of the
methods simultaneously.

The main conclusion of the results is that, for all the tested scenarios in the context of
the multi-criteria aggregation of preferences from ELECTRE III, the highest effectiveness
values of the inference process were obtained when using the method based on represen-
tative profiles. Since such a method is also the one with the mildest requirements, the
decision-maker–decision-analyst pair should concentrate on this sorting method. On the
other hand, using such a method with the reflexive relation S was apparently more effective
than using it with the asymmetric relation P; however, this result was not conclusive, since
using the relation P seems to outperform the former in presence of lower numbers of classes;
so, further experiments should be performed to test this hypothesis. The good performance
of the reflexive relation regarding its asymmetric counterpart could be a result of milder
conditions. Note that the condition imposed to the method when it is using the relation P
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implies that the profiles must be central. By not constraining the method to such a condition
when it is using S, perhaps the profiles can better represent the class. Theoretical (more
than practical) studies will be performed in future work to discover the real causes.

The results shown in Table 2 indicate that, when two classes are used in the sorting
process, then only two and sometimes four objects per class are enough to reach the
highest effectiveness. However, when there are more than two classes in the problem, then,
regarding a number of criteria and a number of classes, the highest effectiveness can be
achieved with the highest number of objects per class (six). Therefore, an interesting future
research line is to determine if this is the highest achievable effectiveness, or if such an
effectiveness can be increased by increasing the number of objects per class. Of course, if the
latter is true, deciding to increase the effectiveness of the inference process is dependent on
the decision-analyst–decision-maker pair, and it should be considered that the effectiveness
of most scenarios of Table 2 is considerably high. Other results indicate that increasing
the number of classes decreased the effectiveness of the methodology, but increasing the
number of criteria does not necessarily provoke this effect.

It is important to remark that these conclusions are valid for models based on ELECTRE
III. Analyses with other ways to aggregate preferences are pending and will be addressed in
future work. More research is needed to compare our results and validate our conclusions
using other metaheuristic approaches.
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Nomenclature

A set of actions described on the basis of N assessment criteria
bk,j jth element of Bk
Bk set of limiting profiles separating classes Ck and Ck+1
BLk subset of limiting boundaries that closes Ck+1 from below
BUk subset of limiting boundaries that closes Ck from below
C collection of ordered classes
Ck kth element of C
D Pareto dominance relation

ξnB
set of models containing the information necessary to operationalize the
ELECTRE TRI-nB-2 method

ξnC
set of models containing the information necessary to operationalize the
methods that use characteristic profiles
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gi ith assessment criterion
K number of profiles used to separate each pair of classes
λ credibility threshold for the outranking relation such that xSy⇔ σ(x, y) ≥ λ

M number of classes

nBDM
assignments made by the decision-maker through his/her own system of
preferences in the context of profiles in the limiting boundaries

nBin f element of ξnB

nB∗in f
inferred information that is most appropriate to fit the examples provided by
the decision-maker in the context of profiles in the limiting boundaries

nCDM
assignments made by the decision-maker through his/her own system of
preferences in the context of profiles that characterize the classes

nCin f element of ξnC

nC∗in f
inferred information that is most appropriate to fit the examples provided by
the decision-maker in the context of profiles that characterize the classes

nclass number of assignment examples per class
nDMs number of simulated decision-makers
nOS number of out-of-sample actions
N number of assessment criteria
O number of profiles used to characterize each class
pi(gi(x)) indifference threshold of criterion gi
P asymmetric part of S
qi(gi(x)) indifference threshold of criterion gi
rk,j jth element of Rk
Rk set of representative profiles
ρ f inal individual representing the population with the best fitness values

S
outranking relation such that xSy denotes “action (or set of limiting profiles) x is
at least as good as action y (or set of limiting profiles)”

σ(x, y) degree of credibility of the outranking relation

T
set of actions used in the decision examples provided by the decision-maker in
the context of profiles in the limiting boundaries

ui pre-veto threshold of criterion gi
vi veto threshold of criterion gi
wi weight (relative importance) of criterion gi
χDM set of classes to which the decision-maker has assigned action x
χin f set of classes inferred by the proposal to assign action x
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22. Greco, S.; Mousseau, V.; Słowiński, R. Multiple Criteria Sorting with a Set of Additive Value Functions. Eur. J. Oper. Res. 2010, 207,
1455–1470. [CrossRef]
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