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Abstract: This paper proposes a nonparametric directional dependence by using the local polynomial
regression technique. With data generated from a bivariate copula having a nonmonotone regres-
sion structure, we show that our nonparametric directional dependence is superior to the copula
directional dependence method in terms of the root-mean-square error. To validate the directional
dependence with real data, we use the log returns of daily prices of Bitcoin, Ethereum, Ripple, and
Stellar. We conclude that our nonparametric directional dependence, by using the local polynomial
regression technique with asymmetric-threshold GARCH models for marginal distributions, detects
the directional dependence better than the copula directional dependence method by an asymmetric
GARCH model.
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1. Introduction

Since the COVID-19 pandemic, chaos and uncertainty in the financial market has been
rising rapidly, resulting in investors having difficulty with the risk management of their
financial portfolios. The authors in [1] studied the relationship between cryptocurrency
price and the price of stock and gold using copulas. The copula function is useful as
it relaxes the assumptions of normality, linearity, and independence of the residuals [2].
In particular, the application of the copula method in economics and finance is explained
well in [3–12]

Gaussian copula marginal regression (GCMR) was proposed by [13], and a beta re-
gression model to analyze bounded time series was proposed by [14]. With the GCMR
method, copula directional dependence methods by asymmetric generalized autoregressive
conditional heteroskedasticity (GARCH) and stochastic volatility models were developed
by [15,16]. For the applications of the copula directional dependence model to cryptocur-
rency, the copula directional dependence using neural network models was applied to
four major cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Stella (XLM), and Ripple
(XRP) [17]. However, the copula directional dependence uses the logit function, so it has
difficulty detecting directional dependence when the data have an extremely nonlinear
pattern. The purpose of this research was to propose a versatile and flexible directional
dependence for all kinds of data patterns by using an optimized nonparametric method.

The novelty of this paper is that we are the first to apply a nonparametric method to
directional dependence. The contribution of this paper is that our proposed nonparamet-
ric directional dependence method can detect nonlinear pattern directional dependence
better than the current copula directional dependence or traditional linear regression
directional dependence.
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The remainder of this review paper is organized as follows: Section 2 describes the
copula directional dependence. In Section 3, we explain our nonparametric directional
dependence and present a numerical study. To verify the proposed directional dependence,
a real data illustration with four cryptocurrencies is given in Section 4. Finally, conclusions
are presented in Section 5.

2. Copula and Directional Dependence

A d-dimensional copula C is a multivariate joint distribution function associated with
uniformly distributed marginals. In this article, we focus on a bivariate copula (n = 2).
Let FX,Y(x, y) be the joint distribution function of a random vector (X, Y) with marginal
distributions FX and FY, respectively. According to Sklar’s theorem [2], the distribution
of FX,Y can be represented as FX,Y(x, y) = C(FX(x), FY(y)) for some copula C. Actually,
the copula C(u, v) is a joint distribution function of U = FX(X) and V = FY(Y). Let rV|U(u)
denote the conditional expectation of V given U = u. Using the regression function rV|U(u),
ref. [18] defined a directional dependence from X to Y:

ρ2
X→Y =

Var(rV|U(U))

Var(V)
= 12 Var(rV|U(U)). (1)

In a similar way, we can define a directional dependence from Y to X:

ρ2
Y→X =

Var(rU|V(V))

Var(U)
= 12 Var(rU|V(V)). (2)

Note that ρ2
X→Y is the nonparametric R-squared between U and V, which was pro-

posed in [19]. Since the influence of the marginals has been eliminated in U and V, we
can interpret ρ2

X→Y as the margin-adjusted nonparametric R-squared. The two directional
dependence measures ρ2

X→Y and ρ2
Y→X can be used to identify the stronger direction, i.e., a

larger value indicates a stronger direction of influence.
To estimate the directional dependence, ref. [15] assumed a specific parametric form

of the copula regression function. Concerning the random variables U = FX(X) and
V = FY(Y), they assumed that Vi given Ui = ui followed a beta distribution Beta(µi, κi)
with the mean parameter 0 < µi < 1 and the precision parameter κi > 0. Specifically,
the density function of Vi|Ui = ui was written as

f (vi; µi, κi) =
Γ(κi)

Γ(µiκi)Γ((1− µi)κi)
vµiκi−1

i (1− vi)
(1−µi)κi−1, (3)

where Γ(·) is the gamma function. They assumed that the mean parameter µi = E(Vi|Ui =
ui) was linked with the covariate ui through a logit function

log
(

µi
1− µi

)
= β0 + β1ui (4)

and the precision parameter κi was given as κi = 1 + exp(β0 + β1ui). They proposed to
estimate the parameters (β0, β1) using the maximum likelihood method of GCMR [13,20].
Then, the directional dependence ρ2

X→Y could be estimated as the sample variance of
µ̂i = exp(β̂0 + β̂1ui)/(1 + exp(β̂0 + β̂1ui)) divided by the sample variance of ui. ρ2

Y→X
could be estimated in a similar way. When transforming the given data (xi, yi) into uniform
data (ui, vi), the empirical distribution function was used. The approach of [15] assumed
that the regression functions defined between the transformed variables (U and V) had the
form of a logistic curve, which is monotonic and has rotational symmetry. This assumption
distorted the estimation of copula directional dependence, especially when the regression
function was not a monotonic function. In Section 3, we show through numerical studies
that their method has this issue in the estimation of the copula directional dependence
in certain cases. The authors of [15] assumed that the uniform variable V had a condi-
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tional distribution V|U = u, which followed a beta distribution Beta(µu, κu) with the mean
parameter µu = E(V|U = u) = exp(β0 + β1u)/(1 + exp(β0 + β1u)) and the precision pa-
rameter κu = 1 + exp(β0 + β1u). In our numerical study, instead of assuming a specific
form of the regression function, we simply estimate rV|U(u) = E(V|U = u) using the local
polynomial regression technique [21]. Then, we estimate ρ2

X→Y as the sample variance of
r̂V|U(ui) divided by the sample variance of ui.

3. Nonparametric Directional Dependence and Numerical Study

In our simulation, we assumed that the data were uniform, thus negating the need to
convert it to a uniform distribution. We considered two scenarios. The first one was the
case where the regression function between the transformed variables was monotonic, so
the approach of [15] was expected to work well. The second one was the case where the
regression function between the transformed variables was nonmonotonic.

In the first scenario, we generated data from an asymmetric copula distribution, which
was constructed by combining two symmetric copulas [22] as

Cα,β(u, v) = Aθ1(u
α, vβ)Aθ2(u

ᾱ, vβ̄), (5)

where 0 < α, β < 1, ᾱ = 1− α, β̄ = 1− β, and Aθ(u, v) is a Plackett copula with parameter
θ > 0 (Plackett, 1965). For the simulation, we set θ1 = 5000, θ2 = 5, α = 0.9, and β = 0.2.
Figure 1 shows the two regression functions between the transformed variables with their
best approximations using logistic curves (in terms of L2-distance). Note that both functions
are monotonic but the regression function E(U|V = V) was better approximated than the
function E(V|U = u). The directional dependence measures were ρ2

U→V = 0.1759 and
ρ2

V→U = 0.1242.
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Figure 1. Regression functions between the transformed variables with their best approximations
(dotted line) under the first scenario.

In the second scenario, we generated uniform data from a bivariate copula with a
nonmonotone regression structure referring to the work of [23]. Ref. [23] devised a method
to modify a bivariate copula family so that it had a nonmonotone regression structure
using an appropriate measure-preserving function f : [0, 1]→ [0, 1] that characterized the
dependence structure. We chose f (x) = 3xI(0 ≤ x ≤ 1/3) + (−(3/2)x + 3/2)I(1/3 ≤
x ≤ 1), where I(·) is an indicator function and modified a normal copula with parameter
ρ = 0.5. Note that the nonmonotonicity of the measure-preserving function f (x) produces
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a nonmonotone regression function. The detailed steps of the modification are described as
follows (Section 3 of [23]):

(1) Choose a measure-preserving function f : [0, 1] → [0, 1] that captures the desired
dependence structure.

(2) Choose a parametric family of copulas {Cα : α is a copula parameter} (the copulas
Cα admit densities φα).

(3) The resulting copula density function is given as pα(u1, u2) = φα( f (x1), x2) and the
corresponding distribution function is given as Dα(u1, u2) =

∫ u1
0

∫ u2
0 pα(s1, s2)ds1ds2.

Figure 2 shows the two regression functions between the transformed variables with
their best approximations using logistic curves (in terms of L2-distance). Note that the
function E(U|V = v) is monotonic but the function E(V|U = u) is not monotonic. Hence,
the function E(V|U = u) was not approximated by a logistic curve. Even the best ap-
proximation showed significant differences from the original function. The directional
dependence measures were ρ2

U→V = 0.2394 and ρ2
V→U = 0.0267. Because of the mono-

tonicity constraint, ref. [15]’s method was expected to have difficulties in estimating the
directional dependence from U to V (ρ2

U→V).
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Figure 2. Regression functions between the transformed variables with their best approximations
(dotted line) under the second scenario.

For the implementation of the copula directional dependence method by [15] (referred
to as copula DD method hereafter), we used the R package gcmr, which also supports
beta regressions. Through communication with the authors of [15], we learned that in
their simulations they set κ as a constant. Therefore, we set the precision parameter κ to
be constant as in their simulations. To implement the alternate estimation method using
the local polynomial regression, we used the normal kernel and set the degree to be one
(local linear estimator). For the bandwidth selection, we computed the plug-in-bandwidth
selector implemented in the R package locpol.

Tables 1 and 2 show the simulation results. Under the first scenario, the two methods
seemed to work well. The root-mean-square errors decreased as the sample size increased.
However, under the second scenario, the copula method did not work when estimating the
directional dependence from U to V. The reason was that the regression function could not
be approximated using logistic curves as shown in the left panel of Figure 2. The proposed
estimator did not suffer from such problems as expected.
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Table 1. Root-mean-square error of the two estimators under the first scenario.

Sample Size
U → V V → U

Nonparametric DD Copula DD Nonparametric DD Copula DD

n = 100 0.077 0.083 0.076 0.056

n = 200 0.050 0.076 0.050 0.042

n = 400 0.035 0.072 0.033 0.031

n = 800 0.025 0.071 0.023 0.025

n = 1600 0.018 0.069 0.016 0.021

Table 2. Root-mean-square error of the two estimators under the second scenario.

Sample Size
U → V V → U

Nonparametric DD Copula DD Nonparametric DD Copula DD

n = 100 0.072 0.208 0.076 0.034

n = 200 0.052 0.212 0.040 0.022

n = 400 0.038 0.213 0.025 0.017

n = 800 0.028 0.214 0.015 0.011

n = 1600 0.021 0.214 0.010 0.008

4. Real Data Illustration

We wanted to show that the nonparametric directional dependence method per-
formed better than the copula directional dependence method for financial market data.
We applied both copula and nonparametric methods for the directional dependence to
cryptocurrency data. Cryptocurrency is a digital currency that does not rely on any central
authority to uphold or maintain it. Due to advances in computer technology, such as
blockchain and cloud computing, the number of cryptocurrencies has rapidly increased.
The rise of cryptocurrencies has led to many investors including cryptocurrencies in their
financial portfolios.

Based on a high market cap and cryptocurrencies’ initial offering history, we chose
Bitcoin (BTC was created in 2009 and has a $431, 130, 583, 788 market cap), Ethereum (ETH
was created in 2015 and has a $191, 357, 725, 770 market cap), Ripple (XRP was created in
2012 and has a $19, 151, 338, 397 market cap), and Stellar (XLM was created in 2015 and
has a $2, 227, 918, 509 market cap). We collected BTC, ETH, XRP, and XLM daily prices
from 1 July 2016 to 23 June 2021 from the following website (https://coinmarketcap.com/,
accessed on 24 June 2021). We focused on the log return of the four cryptocurrency prices
(in percentages) instead of the original prices. To eliminate the serial dependence of a given
time series data, we fit the asymmetric threshold-GARCH (1,1) model to the log return data,
generated standard residuals, and then transformed them to the uniformly distributed data
using the empirical distribution function.

Using the four uniform datasets, we computed the directional dependence among
the log returns using both copula and nonparametric methods. Figure 3 compares the
violin plot pattern of the log returns of prices of BTC, ETH, XRP, and XLM (LBTC, LETH,
LXRP, LXLM). As expected, LBTC had the smallest spread compared to the log returns of
the three other cryptocurrencies (LETH, LXRP, LXLM), but LXLM had the largest spread
compared to the log returns of the other three cryptocurrencies (LBTC, LETH, LXRP).
Table 3 summarizes the descriptive statistics of the log return data of the cryptocurrencies
such as the mean, skewness, and kurtosis as well as the maximum, minimum, range,
standard deviation, and variance. Table 3 shows the average log return of ETH was the
highest among the four cryptocurrencies. In Table 3, it is recognized that the standard
deviation of LBTC was smaller than the other remaining cryptocurrencies, which means

https://coinmarketcap.com/
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that LBTC had a smaller risk than the other cryptocurrencies in terms of investment.
Moreover, the values of the kurtosis for the four cryptocurrencies were greater than three,
meaning heavy tails compared to a normal distribution. LBTC and LETH were left-skewed
while LXRP and LXLM were right-skewed. This meant that the log returns of Bitcoin and
Ethereum were more likely to decrease soon whereas the log returns of Ripple and Stellar
were more likely to increase. Table 4 shows the directional dependence (DD) computed
from the nonparametric and copula methods. We noticed the DD difference between the
two methods. Using the nonparametric DD method, we found that the DD from LBTC
to LETH was slightly higher than the DD from LETH to LBTC, but with the copula DD
method, we found that the DD from LBTC to LETH was slightly lower than the DD from
LETH to LBTC. In terms of market cap, BTC was two times bigger than ETH. In terms of
the long-term period viewpoint, it makes sense that the log returns of other altcoins and
stablecoins are more influenced by LBTC rather than the other directional case. In light of
these facts, the nonparametric DD method performed better than the copula DD method
proposed by [15].

−
50

0
50

10
0

LBTC LETH LXRP LXLM

Lo
g−

re
tu

rn
s

Figure 3. Log return violin plots of LBTC, LETH, LXRP, and LXLM.

Table 3. Summary Statistics of Log Returns (LBTC, LETH, LXRP, and LXLM).

LBTC LETH LXRP LXLM

Mean 0.213 0.277 0.242 0.260

Standard
Deviation 4.133 5.661 7.896 9.118

Sample variance 17.080 32.046 62.342 83.145

Kurtosis 11.885 8.674 34.177 16.897

Skewness −0.797 −0.418 2.135 1.133

Range 68.985 84.084 179.176 138.629

Minimum −46.473 −55.071 −69.315 −69.315

Maximum 22.512 29.013 109.861 69.315

Sum 387.253 503.490 439.491 472.758

Count 1817 1817 1817 1817
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Table 4. Directional dependence (DD) computed from the nonparametric and copula methods (the
direction is from the row to the column).

Nonparametric DD Method

Coin LBTC LETH LXRP LXLM

LBTC 0.45 0.26 0.18

LETH 0.44 0.36 0.21

LXRP 0.26 0.35 0.26

LXLM 0.18 0.23 0.27

Copula DD Method

Coin LBTC LETH LXRP LXLM

LBTC 0.39 0.21 0.14

LETH 0.4 0.29 0.18

LXRP 0.22 0.3 0.23

LXLM 0.14 0.17 0.21

5. Conclusions

In this paper, we proposed an improved directional dependence by using a nonpara-
metric method to rectify the issues of copula directional dependence used by [15]. Even
though the computation time for our proposed method was longer than the current method,
our proposed directional dependence did not require any assumptions and improved the
accuracy of the proposed estimator in terms of root-mean-square error. Based on only
two exemplifications, we also showed the performance of the nonparametric directional
dependence method was superior to the copula directional dependence method with both
simulated data and real data. In fact, the superiority of the nonparametric directional
dependence method was not general in this paper. Thus, we need to consider the detailed
general cases of the nonparametric directional dependence method in future studies. Our
nonparametric directional dependence method will be useful in many research areas such
as bioinformatics, economics, engineering, finance, geology, and neuroscience to see the
directional dependence among many variables. In an era of big and complex data, our non-
parametric directional dependence can be a good solution to reduce the level of uncertainty,
which has been an issue in our society.
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