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Abstract: A wide range of new research articles in artificial intelligence, logic programming, and
other applied sciences are based on fixed-point theorems. The aim of this article is to present an
approximation method for finding the fixed point of generalized Suzuki nonexpansive mappings on
hyperbolic spaces. Strong and ∆-convergence theorems are proved using the Noor iterative process
for generalized Suzuki nonexpansive mappings (GSNM) on uniform convex hyperbolic spaces. Due
to the richness of uniform convex hyperbolic spaces, the results of this paper can be used as an
extension and generalization of many famous results in Banach spaces together with CAT(0) spaces.
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1. Introduction and Motivation

Metric fixed-point theory has emerged as a powerful tool to represent the virtual
space as a digital environment [1] and explore web topology [2]. New research on fixed-
point theory also emphasizes the significance of solving real-world issues. Functional
equations and iterative procedures are applicable to the solution of routing problems in
artificial intelligence. The capacitated vehicle routing problem [3] describes a technique for
selecting the optimum strategy to distribute comprehensible things from a pickup location
using a huge number of carriages with a convinced adaptive volume. It certainly meets
the claim of a network of clients spread across the globe. Conversely, communication
engineering utilizes fixed-point theory as a tool for problem-solving. The resolution of
chemical equations, genetics, algorithm testing, and control theory are additional real-
world applications. These findings present pleasant opportunities for approximating
the solutions of differential and integral equations that are both linear and nonlinear
in nature [4,5]. The theory of fixed points has become a potent and essential tool for
the study of nonlinear problems [6–9] due to its novel emergence as a confluence of
analysis [10–13] and geometry [14–17]. More specifically, the fixed-point approximation
for SKC mappings in hyperbolic spaces has remained a focal point of recent and past
research [18]. In this research, we will prove strong and ∆-convergence theorems by using
Noor iterative process for generalized Suzuki nonexpansive mappings (GSNM) on uniform
convex hyperbolic spaces. To achieve this purpose, we intend to start with the basic
definitions and preliminaries in the next section.

2. Basic Definitions and Preliminaries

A family of single-valued mappings introduced by Suzuki [19] is defined as
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Definition 1. Let us consider a Banach space B and a mapping F on the subset S of B satisfying
the following condition:

1
2
‖u− Fv‖ ≤ ‖u− v‖ =⇒ ‖Fu− Fv‖ ≤ ‖u− v‖, (1)

∀ u, v ∈ S.

This mapping works as an intermediate class of mapping between nonexpansiveness
and quasi-nonexpansiveness as given below:

Definition 2. Assume S ⊂ B, where S is nonempty and B is a Banach Space. Then F : S→ S is
nonexpansive if ‖Fu− Fv‖ ≤ ‖u− v‖ ∀ u, v ∈ S.

Definition 3. Assume S ⊂ B, where S is nonempty and B is a Banach Space. Then F : S → S
is quasi-nonexpansive if ‖Fx − ρ‖ ≤ ‖x − ρ‖ for every ρ ∈ FP(F) and ∀ x ∈ S. Here FP(F)
represents fixed point set of F.

Example 1. Let F on [0, 5] be defined by;

Fx =

{
0, x 6= 5;
1, x = 5.

Then clearly F is not nonexpansive but it satisfies condition (1).

Example 2. Let F on [0, 5] be defined by

Fx =

{
0, x 6= 5;
2, x = 5.

Then F fails to fullfill condition (1), however F is quasi-nonexpansive and FP(F) = {0} 6= φ.

Suzuki [19] conducted significant work in showing the presence of the fixed point and
convergence theorem in Banach spaces equipped with mapping a satisfying condition (1).

In [20] Dhompongsa et al. enhanced the conclusions of Suzuki [19] with different
conditions on Banach spaces and obtained a fixed point result in these spaces equipped
with mapping satisfying condition C.

Nanjaras et al. [21] rendered sundry characterization of existing fixed point results
equipped with mappings satisfying condition C in the skeleton of CAT(0) spaces. Abbas
et al. [22] also analyzed such spaces whereas the asymptotic regularity is discussed in [23].
Other related work can be found in [24–26]. There is need to generalize the result of Suzuki-
type nonexpansive mappings which were efficiently conducted by Karapınar et al. [20] in
2011 as given below.

Definition 4. Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space, equipped
with mapping F : S→ S and if

1
2

ρ(Fu,Fv) ≤ ρ(u, v)⇒ ρ(Fu,Fv) ≤ θ(u, v),

where θ(u, v) = max{ρ(u, v), ρ(u,Fu), ρ(v,Fv), ρ(u,Fv), d(v,Fu)} ∀ u, v ∈ S. Then F is
considered to be a Suzuki–Ciric mapping (SCC) [27].

Definition 5. Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space, equipped
with mapping F : S→ S and if

1
2

ρ(Fu,Fv) ≤ ρ(u, v)⇒ ρ(Fu,Fv) ≤ ν(u, v),
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where ν(u, v) = max
{

ρ(u, v), ρ(u,Fu)+ρ(v,Fv)
2 , ρ(u,Fv)+ρ(v,Fu)

2

}
∀ u, v ∈ S.

Then F is considered to be a Suzuki–KC mapping (SKC).

Definition 6. Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space, equipped
with mapping F : S→ S and if

1
2

ρ(Fu,Fv) ≤ ρ(u, v)⇒ ρ(Fu,Fv) ≤ ρ(u,Fu) + ρ(v,Fv)
2

,

∀ u, v. ∈ S.
Then F is considered to be a Kannan–Suzuki mapping (KSC).

Definition 7. Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space, equipped
with mapping F : S→ S and if

1
2

ρ(Fu,Fv) ≤ ρ(u, v)⇒ ρ(Fu,Fv) ≤ ρ(v,Fu) + ρ(u,Fv)
2

,

∀ x, y ∈ S.
Then F is considered to be a Chatterjea–Suzuki mapping (CSC).

Clearly every nonexpansive mapping is SKC, but the converse may not true [27].

Example 3. Set F on [0, 6] by:

Fx =

{
0, x 6= 6;
1, x = 6.

Clearly F is not nonexpansive but F fullfill both the SCC and SKC conditions.

Example 4. Set R on [0, 6] by:

Rx =

{
0, x 6= 6;
3, x = 6.

Clearly R does not fulfill the SKC condition, moreover R is quasi-nonexpansive and FP(R) 6= φ.

Example 5. Let the space B = {(0, 0), (0, 1), (1, 1), (1, 2)} with metric:

ρ((u1, v1), (u2, v2)) = max{|u1 − u2|, |v1 − v2|}.

Set F on B by:

F(u, v) =
{

(1, 1), i f (u, v) 6= (0, 0);
(0, 1), i f (u, v) = (0, 0).

Clearly F fullfill SKC’s condition. Assume that (u, v) = (0, 0) and (u, v) = (1, 1), then

1
2

ρ(F(0, 0),F(0, 0)) ≤ ρ((0, 0), (1, 1))

and

ν((0, 0), (1, 1)) = max{ρ((0, 0), (1, 1)),
1
2
[ρ(F(0, 0),F(0, 0)), ρ(F(1, 1),F(1, 1))],

1
2
[ρ(F(1, 1),F(0, 0)), ρ(F(0, 0),F(1, 1))]}

= 1,

thus
ρ(F(0, 0),F(1, 1)) = 1 ≤ ρ((0, 0), (1, 1)) = 1.
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Clearly SKC condition is fulfilled by other points in B.
Moreover FP(F) = {(1, 1)} 6= φ, and FP(F) is convex and closed.

This is significant to understand the different iterative process [28] adapted by several
writers [29,30] in locating fixed points of the space equipped with nonlinear mappings,
moreover solution of their operator equations.

The iteration process manufacture by Mann (see [31,32]) is explained below:
Assume S ⊂ B, where S is convex and B is Banach Space, and let F : S → S be a

nonlinear mapping, for every point u0 ∈ S, the sequence {un} in S is defined by

un+1 = (1− γn)un + γnFun = M(un, γn,F), n ∈ N,

called Mann iterative process.
It should be noted that {γn} represents a real sequence in [0, 1] which fulfills the

conditions given below:
(M1): 0 ≤ γn < 1,
(M2): limn→∞ γn = 0,
(M3): ∑∞

n=1 γn = ∞.
One can replace M3 by ∑∞

n=1 γn(1− γn) = ∞ in other applications.
The Ishikawa manufacture iteration process improves the Mann iteration process

(see [33–35]) as follows:
Setting S,B, and F as in (M), for every point u0 ∈ S, the sequence {un} in S is

defined by:
un+1 = (1− γn)un + γnF((1− αn)un + αnFun), n ∈ N,

called the Ishikawa iterative process, where {γn} and {αn} are sequences in [0, 1] which
satisfy the following conditions:
(I1): 0 ≤ γn ≤ αn < 1,
(I2): limn→∞ αn = 0,
(I3): ∑∞

n=1 γnαn = ∞.
Some authors switch condition (I1) : 0 ≤ γn ≤ αn < 1, with the general condition

(I
′
1) : 0 < γn, αn < 1, and notice that, with this switching, the iterative process defined by

Ishikawa (I) is a spontaneous generalization of the iterative process given by Mann (M).
It is perceived that, if the iterative process defined by Mann (M) is convergent, then the
iterative process defined by Ishikawa (I) through condition (I

′
1) is also convergent, with

appropriate conditions on γn and αn.
Recently, Agarwal et al. [36] broached the S-iteration process which is independent of

the above two iterative processes as follows:
For S ⊂ B, where S is convex and B is linear space, and let F : S→ S be a mapping,

for every point u0 ∈ S, the iterative sequence {un} in S is defined by the S-iteration process
is given below: {

un+1 = (1− γn)un + γnFun
vn = (1− αn)un + αnFun, n ∈ N,

where {γn} and {αn} are sequences in (0, 1) filling the condition:

∞

∑
n=0

γnαn(1− αn) = ∞.

It is perceived that both the S-iteration process and the Picard has the same rate of
convergence, which is more rapid than the iteration process defined by Mann which is
equipped with contraction mapping (see [31,36,37]).

We use the definition of a hyperbolic space given in [38–40], because the definition
given by Reich and Shafrir [41] is a bit more repressive. The hyperbolic spaces in the
Reich and Shafrir sense [41] is unbounded by taking family of metric lines M instead of
metric segments. Further related research can be seen in [42,43]. Moreover, every subset
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of hyperbolic space is hyperbolic itself by definition, which we consider, and it gives
convergence results too.

Definition 8. Consider the metric space (B, ρ) equipped with convex mapping Ω : B2 × [0, 1]
then the triplet (B, ρ, Ω) is said to be hyperbolic space if it fulfills the conditions given below:
(Ω1) : ρ(x, Ω(u, v, γ)) ≤ γρ(x, u) + (1− γ)d(x, v);
(Ω2) : ρ(Ω(u, v, γ), Ω(u, v, α)) = γ− α|ρ(u, v);
(Ω3) : Ω(u, v, γ) = Ω(v, u, 1− γ);
(Ω4) : ρ(Ω(u, w, γ), Ω(v, y, γ)) ≤ (1− γ)ρ(u, v) + γρ(w, y),
∀ u, v, x and y ∈ B and γ, α ∈ [0, 1].

Takahashi established the convex metric space [44], in which the triplet (B, ρ, Ω) fulfills
Ω1. Goebel and Kirk in [45] gave their own definition of above space, where triplet (B, ρ, Ω) fill
conditions (Ω1)–(Ω3).

Reich and Shafrir [41] and Kirk [46] manufactured their definition of hyperbolic space by using
’condition III’ of Itoh [47] which is equivalent to Ω4.

The class of hyperbolic spaces is rich in nature and contains different spaces, manifold of the
Hadamard type and convex subsets thereof. For more see [48], and the CAT(0) spaces along with Ω
as the unique geodesic path between any two points in B. Bruhat and Tits [49] show that hyperbolic
space is a CAT(0)-space if and only if it fulfills the so called CN-inequality.

Wataru Takahashi [44] introduce the notion of a convex set S of hyperbolic spaces B if it
satisfies the following condition Ω(u, v, γ) ∈ S ∀ u, vs. ∈ S and γ ∈ [0, 1]. We often use the notion
(1− µ)u⊕ µv for Ω(u, v, µ),∀ u, v ∈ B and µ ∈ [0, 1].

Assume ∀ u, v ∈ B, and µ ∈ [0, 1], and setting

ρ(u, (1− µ)u⊕ µv) = µρ(u, v)

and
ρ(v, (1− µ)u⊕ µv) = (1− µ)ρ(u, v)

which is considered to be a more general setting of a convex metric space [44,50].
A hyperbolic space (B, ρ, Ω) is uniformly convex in the sense of [37] if, for any q > 0 and

ε ∈ (0, 2], there exists δ ∈ (0, 1] such that, ∀ c, u, v ∈ B,

ρ(
1
2

u⊕ 1
2

v, b) ≤ (1− δ)q,

provided ρ(u, c) ≤ q, ρ(v, c) ≤ r, and ρ(u, v) ≥ εq.
Setting η : (0, ∞)× (0, 2]→ (0, 1] equipped with δ = η(q, ε) such that q > 0 and ε ∈ (0, 2]

then η is said to be modulus of uniform convexity. Clearly with this setting if q decreases for
stationary ε then η is monotone.

The aim of this article is to prove strong convergence and ∆-convergence of Noor
iterative process for GSNM in uniform convex hyperbolic spaces. First, we recall the notion
of ∆-convergence and a few of its primary characteristics.

Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space and let {un}
be any sequence in S. Moreover, diam(S) signify the diameter of S. Set a continuous
functional rb(., un) : B→ R+ as

rb(u, {un}) = lim
n→∞

sup ρ(un, u), u ∈ B.

The asymptotic radius of {un} is signified by rb(S, {un}) in connection with S and is
defined to be the infimum of rb(., un) over S.

Furthermore, if
rb(w, {un}) = inf{(u, {un}) : u ∈ S},

then the point w ∈ S signifies as an asymptotic center of the sequence {un} in connection
with S.
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AC(S, {un}) signifies the set of all asymptotic centers of {un} in connection with S,
which is the set of minimizers of the functional r(., {un}) and it can be empty or a singleton
or contain infinite points.

The notions rb(B, {un}) = rb({un}) and AC(B, {un}) = AC({un}), respectively, sig-
nify the asymptotic radius and asymptotic center taken in connection with B.

Clearly, for u ∈ B, rb(u, {un}) = 0 if and only if limn→∞ un = u.
Moreover, every sequence which is bounded has a unique asymptotic center in con-

nection with each closed convex subset in uniformly convex Banach spaces and even
CAT(0) spaces.

The following lemma is due to Leuştean [51] and we know that this property also
holds in a complete uniformly convex hyperbolic space.

Lemma 1 ([51]). Assume S ⊂ B, where S is nonempty. Moreover, S is also closed and convex.
Furthermore, the triplet (B, ρ, Ω) represents uniformly convex hyperbolic space, which is complete
and has η as a monotone modulus of uniform convexity. Then every sequence {un} in B, which is
bounded, has a unique asymptotic center referring to S as defined above.

Definition 9. Let B be hyperbolic space and {un} in any sequence in B. If u is the unique asymptotic
center of every subsequence {tn} of {un} then {un} is considered to be ∆-convergent to u ∈ B. In
such a case, we set ∆-limnun = u and we refer u the ∆-limit of un.

Lemma 2 ([42]). The triplet (B, ρ, Ω) represents uniformly convex hyperbolic space having η as a
monotone modulus of uniform convexity. Moreover, assume u ∈ B and {sn} be a sequence in [c, d]
with 0 < c, d < 1. If {un} and {vn} are any two sequences in B so that
lim supn→∞ ρ(un, u) ≤ e,
lim supn→∞ ρ(vn, p) ≤ e,
limn→∞ ρ(Ω(un, vn, sn), u) = e,
for some e ≥ 0, then limn→∞ ρ(un, vn) = 0.

3. Main Results

First, we will give the definition of Fej́er monotone sequences.

Definition 10. Assume S ⊂ B, where S is nonempty and B is a hyperbolic space. Moreover,
suppose that {un} be a sequence in B. Then the sequence {un} is said to be Fej́er monotone in
connection with S if ∀ u ∈ S and n ∈ N,

ρ(un+1, u) ≤ ρ(un, u).

Proposition 1 ([40]). Assume S ⊂ B, where S is nonempty and B is a hyperbolic space. More-
over, suppose that {un} be a Fej́er monotone sequence in connection with S. Then the following
conditions hold:
(1) {un} is bounded;
(2) the sequence {ρ(un, t)} is decreasing and convergent ∀ t ∈ FP(F).

We are now able to present the iterative process defined by Noor in hyperbolic spaces (see [40]):
Assume S ⊂ B, where S is nonempty, moreover S is closed and convex, and B is hyperbolic

space. Furthermore, F : S → S is a mapping. For any u1 ∈ S, the sequence {un} of the Noor
iteration process is defined by:

un+1 = Ω(un,Fvn, γn),
vn = Ω(un,Fwn, αn),
wn = Ω(un,Fun, βn), n ∈ N,

(2)

where {γn} and {αn} are real sequences such that 0 < a ≤ γn, αn and βn ≤ b < 1.
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We are able to manufacture the proof of the following lemma from the definition of
SKC mapping.

Lemma 3. Assume S ⊂ B, where S is nonempty and B is a hyperbolic space. Moreover, suppose
that F : S → S be an SKC mapping. If {un} is a sequence given by (2), then {un} is Fej́er
monotone sequence in connection with FP(F).

Proof. Let q ∈ FP(F). Then by (2), we have

ρ(wn, q) = ρ(Ω(un,Fun, βn), q)

≤ (1− βnρ(un, q) + βnρ(Fun, q)

≤ (1− βnρ(un, q) + βn[5ρ(q,Fq) + (un, q)]

≤ (1− βnρ(un, q) + βnρ(un, q)

≤ ρ(un, q). (3)

ρ(vn, q) = ρ(Ω(un,Fwn, αn), q)

≤ (1− αnρ(un, q) + αnρ(Fwn, q)

≤ (1− αnρ(un, q) + αn[5ρ(q,Fq) + (wn, q)]

≤ (1− αnρ(un, q) + αnρ(wn, q)

≤ (1− αnρ(un, q) + αnρ(un, q)

≤ ρ(un, q). (4)

ρ(un+1, q) = ρ(Ω(un,Fvn, γn), q)

≤ (1− γnρ(un, q) + γnρ(Fvn, q)

≤ (1− γnρ(un, q) + γn[5ρ(q,Fq) + (vn, q)]

≤ (1− γnρ(un, q) + γnρ(vn, q)

≤ (1− γnρ(un, q) + γnρ(un, q)

≤ ρ(un, q). (5)

∀ q ∈ FP(F), which completes the proof.

Lemma 4. Assume S ⊂ B, where S is nonempty, closed, and convex. Furthermore, the triplet
(B, ρ, Ω) represents uniformly convex hyperbolic space, which is complete, having η as a monotone
modulus of uniform convexity, and let F : S→ S be an SKC mapping. If the sequence {un} is de-
fined by (2), then FP(F) is nonempty if and only if {un} is bounded and limn→∞ ρ(un,Fun) = 0.

Proof. Suppose FP(F) is nonempty and q ∈ FP(F). Then, the sequence {un} is Fej́er
monotone with respect to FP(F) by using by Lemma 3. Furthermore, {un} is bounded and
limn→∞ ρ(un, q) by using Proposition 1.

Set limn→∞ ρ(un,Fun) = e ≥ 0. If e = 0, then clearly we have

ρ(un,Fun) ≤ ρ(un, q) + ρ(Fun, q)

≤ ρ(un, q) + 5ρ(q,Fq) + ρ(un, q)

≤ 2ρ(un, q)

Applying the limit supremum, we have

lim
n→∞

ρ(un,Fun) = 0.
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Set e > 0. Moreover, F is an SKC mapping, then

ρ(Fq,Fvn) ≤ ρ(q, vn)

and
ρ(Fq,Fun) ≤ ρ(q, un).

Therefore,

ρ(Fn, q) ≤ ρ(Fn,Fq).

≤ ρ(un, q)

for every n ∈ N. Applying the limit supremum, we get

lim sup
n→∞

ρ(Fn, q) ≤ e,

for e > 0. Further, we have
lim sup

n→∞
ρ(Fv, q) ≤ e.

Applying the limit supremum, we get

lim sup
n→∞

ρ(vn, q) ≤ e.

Since

e = lim sup
n→∞

ρ(un+1, q)

≤ lim sup
n→∞

{ρ(Ω(un,Fvn, γn), q)}

≤ lim sup
n→∞

{(1− γn)ρ(un, q) + γnρ(Fvn, q)}

≤ (1− γn) lim sup
n→∞

ρ(un, q) + γn lim sup
n→∞

ρ(Fvn, q)

we have
e ≤ ((1− αn)e + αne) = e.

Thus,
lim

n→∞
{ρ(Ω(un,Fvn, γn), q)} = e,

for e > 0. Consequently it occurs from the Lemma 3 that

lim
n→∞

ρ(Fun,Fvn) = 0.

Next,

ρ(un+1,Fun) = ρ(Ω(un,Fvn, γn),Fun)

≤ dρ(Fvn,Fun)

→ 0 as : n→ ∞.

Hence, we have

ρ(un+1,Fvn) = ρ(un+1,Fun) + (Fun),Fvn)

→ 0 as : n→ ∞.
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Notice that

ρ(un+1, q) = ρ(un+1,Fvn) + (Fvn), q)

≤ ρ(un+1,Fvn) + (Fn), q)

which produces
c ≤ lim inf

n→∞
ρ(vn, q).

From the above inequalities, we get

lim
n→∞

ρ(vn, q) = e.

Thus, we get
lim

n→∞
{ρ(Ω(un,Fun, αn), q)} = e,

which implies
lim

n→∞
ρ(un,Fun) = 0.

Conversely, assume that the sequence {un} is bounded and limn→∞ ρ(un,Fun) = 0.
Set AC(S, {un}) = u be a singleton. Then u ∈ S. Further F is an SKCmapping

d(un,Fu) ≤ 5ρ(un,Fun) + ρ(un, u),

which implies that

rb(Fu, un) = lim sup
n→∞

ρ(un,Fu)

≤ lim sup
n→∞

[5ρ(un,Fun) + ρ(un, u)]

≤ lim sup
n→∞

ρ(un, u)

= rb(u, un).

By utilizing the uniqueness of the asymptotic center, Fu = u, so u is a fixed point of F.
Consequently, FP(F) is nonempty.

Now, we are able to prove the ∆-convergence theorem.

Theorem 1. Assume S ⊂ B, where S is nonempty, closed, and convex. Furthermore, the triplet
(B, ρ, Ω) represents uniformly convex hyperbolic space, which is complete and has η as monotone
modulus of uniform convexity, and let F : S → S be a mapping such that FP(F) 6= φ. If the
sequence {un} is defined by (2), then the sequence {un} is ∆-convergent to a fixed point of F.

Proof. Suppose F is an SKC mapping. We observe that {un} be a bounded sequence.
Therefore, {un} has a ∆-convergent subsequence. We have to show that every ∆-convergent
subsequence of {un} has a unique ∆-limit in FP(F). To prove this claim, suppose s and t
be ∆-limits of the subsequences {sn} and {tn} of {un}, respectively. Since AC(S, sn) = s
and AC(S, tn) = t by using Lemma 1. Now by Lemma 3, {sn} is a bounded sequence and
limn→∞ ρ(sn,Fsn) = 0.

We have to show that s is a fixed point of F.

ρ(sn,Fs) ≤ 5ρ(sn,Fsn) + ρ(sn, s).
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Applying the limit supremum, we get

rb(sn,Fs) = lim sup
n→∞

ρ(sn,Fs)

≤ lim sup
n→∞

[5ρ(sn,Fsn) + ρ(sn, s)]

≤ lim sup
n→∞

ρ(sn, s)

= rb(sn, s).

Hence, we have
rb(sn,Fs) ≤ rb(sn, s).

By uniqueness of the asymptotic center, Fs = s.
By using same argument, we can show that Ft = t. Consequently, s and t are fixed

points of F. Now, we show that s = t. Suppose on contrary that s 6= t, moreover by the
uniqueness of the asymptotic center,

lim sup
n→∞

ρ(un, s) = lim sup
n→∞

ρ(sn, s)

< lim sup
n→∞

ρ(sn, t)

= lim sup
n→∞

ρ(un, t)

= lim sup
n→∞

ρ(tn, t)

< lim sup
n→∞

ρ(tn, s)

= lim sup
n→∞

ρ(un, s)

which is a contradiction. Therefore s = t.

Now, we will introduce the strong convergence theorems in hyperbolic spaces.

Theorem 2. Assume S ⊂ B, where S is nonempty, closed, and convex. Furthermore, the triplet
(B, ρ, Ω) represents uniformly convex hyperbolic space, which is complete and has η as the monotone
modulus of uniform convexity and let F : S → S be an SKC mapping. If the sequence {un} is
defined by (2), then the sequence {un} converges strongly to some fixed point of F if and only if

lim inf
n→∞

D(un, FP(F)) = 0,

where D(un, FP(F)) = infu∈FP(F) ρ(un, u).

Proof. Clearly the necessary condition is trivial. The proof completes only by showing
the sufficient condition. So we show that FP(F) is closed. Assume that F is SKC mapping,
moreover let {un} be any sequence in FP(F) which converges to some point u ∈ S.

ρ(un,Fu) ≤ 5ρ(Fun,Fu) + ρ(un, u) ≤ ρ(un, u).

Applying the limit, we get

lim
n→∞

ρ(un,Fu) ≤ lim
n→∞

ρ(un, u) = 0.

Since the limit is unique, we get u = Fu, which shows that FP(F) is closed.
Assume that

lim inf
n→∞

D(un, FP(F)) = 0.
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Moreover, we obtain

D(un+1, FP(F)) ≤ D(un, FP(F))

Thus, limn→∞ ρ(un, FP(F)) exists by applying Lemma 3 and using Proposition 1.
Consequently, we know that

lim
n→∞

D(un, FP(F)) = 0.

Consequently, we can set a subsequence {unk} of {un} so that

ρ(unk , qk) <
1
2k ,

for every k ≥ 1, where qk ∈ FP(F).
Applying Lemma 3, we get

ρ(unk+1 , qk) ≤ ρ(unk , qk) <
1
2k

from which we can deduce that

ρ(qk+1, qk) ≤ ρ(qk+1, unk+1) + ρ(unk+1 , qk)

<
1

2k+1 +
1
2k

<
1

2k−1 .

Thus, {qk} is a Cauchy sequence. Whereas FP(F) is closed. Then {qk} is a convergent
sequence.

Suppose limk→∞ qk = q. Then, the proof completes by showing that {un} converges
to q. In fact,

ρ(unk , q) ≤ ρ(unk , qk) + ρ(qk, q)→ 0

as k→ ∞.
We have

lim
k→∞

ρ(unk , q) = 0.

Since limk→∞ ρ(un, q) exists, the sequence {un} converges to q.

Next, we will give one more strong convergence theorem by usingTheorem 2. We call
up the definition of condition (I) broached by Senter and Doston [52].

Assume (B, ρ) be a metric space and S ⊂ B which is nonempty, be equipped with a
mapping F : S→ S . Then F is claimed to fulfill condition (I), if ∃ a nondecreasing function
f [0, ∞)→ [0, ∞) with f (0) = 0, f (t) > 0 ∀ t ∈ (0, ∞) so that

ρ(u,Fu) ≥ f (D(u, FP(F))),

∀ u ∈ S, where D(u, FP(F)) = inf d(u, q) : q ∈ FP(F).

Theorem 3. Assume S ⊂ B, where S is nonempty, closed, and convex. Furthermore, the triplet
(B, ρ, Ω) represents uniformly convex hyperbolic space, which is complete and has η as monotone
modulus of uniform convexity, and let F : S → S be an SKC mapping with condition (I) and
FP(F) 6= φ. Then, the sequence {un}, which is defined by (2) converges strongly to some fixed
point of F.

Proof. From Theorem 2, and applying Lemma 4, we have

lim
n→∞

ρ(un,Fun) = 0.
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The condition (I) gives us

lim
n→∞

ρ(un,Fun) ≥ lim
n→∞

f (D(un, FP(F))),

for f [0, ∞) → [0, ∞),which is nondecreasing with f (0) = 0, f (t) > 0 for t, such that
0 < t < ∞.

Consequently, we get
lim

n→∞
f (D(un, FP(F))) = 0.

Whereas f is a nondecreasing mapping filling f (0) = 0 for every t, such that 0 < t < ∞,
we get

lim
n→∞

D(un, FP(F)) = 0.

Which completes the proof from Theorem.

Example 6. Consider the real line R with usual metric ρ defined as ρ(u, v) = |u− v|, moreover
suppose S = [0, 4] ⊂ R. Set

Ω(u, v, γ) = γu + (1− γv),

for every u, vs. ∈ S.
Then (R, ρ, Ω) is a complete uniformly convex hyperbolic space with a monotone modulus of

uniform convexity and clearly S ⊂ R, which is nonempty closed and convex. Set a mapping F as
defined in Example 2.

Clearly F fulfills the SKC condition with 0 ∈ S as a fixed point of F. Moreover, it is noticed
that it fulfills all conditions in Theorem 2. Suppose {γn} and {αn} be constant sequences such that
γn = αn = βn = 1

2 for every n ≥ 0. We encounter the following cases for F.
Case 1: Set u 6= 4; for the sake of simplicity, we suppose that u0 = 1. Moreover, by the iterative
process defined in (Definition 10) and the definition of Ω, we get

w0 = Ω(u0,Fu0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fu0)

=
1
2
(u0 + Fu0)

and

v0 = Ω(u0,Fw0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fw0)

=
1
2
(u0 + Fw0)

and

u1 = Ω(u0,Fv0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fv0)

=
1
2
(u0 + Fv0).



Axioms 2023, 12, 271 13 of 15

Case 2: Set u = 4, for the sake of simplicity, we suppose that u0 = 4. Moreover, by the iterative
process manufactured in (Definition 10) and the definition of Ω, we get

w0 = Ω(u0,Fu0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fu0)

=
1
2
(u0 + Fu0)

and

v0 = Ω(u0,Fw0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fw0)

=
1
2
(u0 + Fw0)

and

u1 = Ω(u0,Fv0,
1
2
)

=
1
2
(u0) + (1− 1

2
)(Fv0)

=
1
2
(u0 + Fv0),

where w1 = Ω(u1,Fu1, 1
2 ); v1 = Ω(u1,Fw1, 1

2 ) and u2 = Ω(u1,Fv1, 1
2 ).

Consequently, by simple calculations, it can be seen that the sequence {un} converges to
0 ∈ FP(F).

4. Discussion

Fixed-point theorems are the foundation of numerous recent research publications
in applied sciences, logic programming, and artificial intelligence. This article’s aim is to
provide an approximate technique for determining the fixed point of generalized Suzuki
nonexpansive mappings on hyperbolic spaces. For generalized Suzuki nonexpansive
mappings (GSNM) on uniform convex hyperbolic spaces, the theorems of strong and
∆-convergence are demonstrated using the Noor iterative method. The findings of this
study can be used as an extension and generalization of numerous well-known conclu-
sions in Banach spaces along with CAT(0) spaces due to the richness of uniform convex
hyperbolic spaces.

5. Conclusions

Fixed-point theory is a tool for problem-solving in communication engineering. Addi-
tional real-world applications include genetics, testing of algorithms, control theory, and the
solving of chemical equations. These results offer interesting possibilities for approximate
solutions of linear and nonlinear differential and integral equations. We conclude our
results with some open questions and future directions:

1. Whether the condition of boundedness of sequence {un} in Lemma 4 can be relaxed?
2. Whether in Lemma 4 a convergent sequence is not enough to prove it?
3. In Theorem 1, is it possible that the conditions on S will be removed or replaced with

less strong conditions?
4. What about the proof of Theorem 2 if F is KSC mapping instead of SKC mapping?
5. What about the proof of Theorem 3 if F is CSC mapping instead of SKC mapping?
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