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Abstract: Many isothermal dissipative continuum problems can be formulated in a variational setting
using the concept of “standard dissipative continua”. A major advantage of this approach is that
complex problems can be cast into a compact, thermodynamically consistent formulation based
on a single space–time continuous functional together with a corresponding variational principle.
Formulating the problem in terms of a functional provides an immediate avenue for performing
spatial and temporal discretization, which are the prerequisites for a numerical solution. Within the
present contribution, a novel systematic approach to standard dissipative formulations is proposed,
with the main goal being the development and implementation of generic procedures and algorithms
for the formulation as well as the computational solution of a subset of isothermal dissipative
continuum problems. In order to demonstrate the capabilities of the approach, its application to
example problems is discussed.
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1. Introduction

Starting from classical continuum theories, recent decades have seen substantial de-
velopments towards the modeling of nonlinear dissipative multi-physics phenomena.
Examples include electromechanical coupling in ferroelectric materials [1], magnetoelec-
tromechanical coupling in multiferroic materials [2] as well as electrochemomechanical cou-
pling in batteries [3] and hydrogels [4]. Although most continuum concepts are, in principle,
readily extended to account for such multiphysics effects, the formulation of thermodynam-
ically consistent theories and their solution by numerical methods becomes an increasingly
tedious task as the number of coupled physics and, therefore, unknown variables increases.
This is particularly of concern for:

1. The model formulation in terms of a number of partial differential (or differential
algebraic) equations, which may often be combined in many different ways to form a
final set of space–time continuous equations;

2. The mathematical analysis of the space–time continuous equations, e.g., with regard
to the well posedness of the problem and stability properties;

3. The development of consistent, robust and efficient spatial and temporal discretiza-
tion schemes;

4. The numerical solution of the space–time discrete problem.

An established approach to reduce the mentioned difficulties is to formulate contin-
uum models in terms of variational principles based on a single functional of the unknowns
instead of partial differential equations, so that the solution of the problem furnishes an
extremum or a saddle point of the functional. This approach often provides a compact state-
ment of the problem, which clearly exposes its structure, and thereby facilitates the mathe-
matical analysis as well as the development of robust and efficient discretization and numer-
ical solution procedures. The latter has, e.g., been demonstrated by Simo and Honein [5],
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Ortiz and Stainier [6], and Hackl and Fischer [7] in the context of plasticity and viscoplas-
ticity, by Yang et al. [8] in the context of thermomechanically coupled problems, and by
Carstensen et al. [9] and Ortiz and Repetto [10] in the context of micro-structure formation.
Of particular interest in this regard is the concept of “standard dissipative continua” (see,
e.g., Halphen and Nguyen [11], Germain et al. [12]), which effectively involves minimum
or saddle point formulations, with thermodynamic consistency being ensured by choosing
a so-called dissipation functional to satisfy certain conditions. Examples illustrating the
wide applicability of this concept are, e.g., the early work of Biot [13] on fluid transport
in porous media as well as a multitude of contributions covering the homogenization
of inelastic micro-structures [14,15], gradient-enhanced plasticity [16–20], rate-dependent
ferroelectricity [21], magnetostriction with hysteresis [22], electro-magneto-mechanics [2],
fluid transport in porous media [23], Cahn–Hilliard-type and classical diffusion [24,25],
and fracture in lithium-ion batteries [26].

Regardless of whether differential (algebraic) equations or a functional together with
a variational principle are chosen as the point of departure, the mere implementation
effort required to obtain validated numerical software remains a substantial obstacle,
especially in the case of multiphysics problems. Due to this aspect, many sophisticated
continuum formulations are often only demonstrated for highly simplified situations (e.g.,
one-dimensional problems), while their application to real-world examples remains elusive.
This aspect provides the main motivation for the present contribution. In particular,
a systematic approach to standard dissipative formulations is proposed, which covers
the steps from problem formulation in the space–time continuous setting through its
discretization to implementation.

The plan of the paper is as follows: Firstly, the standard dissipative space–time
continuous problem formulation is formalized without reference to particular physics.
Secondly, simple approaches for the spatial and temporal discretization of the space–time
continuous problem are described. Thirdly, a preliminary implementation based on the
open source finite element library deal.II (Alzetta et al. [27], Bangerth et al. [28]) is briefly
discussed. Finally, the usefulness of the approach is shown by the application to two
multiphysics examples. The first example addresses the buckling behavior of a viscoelastic
dielectric elastomer subjected to an electric voltage, while the second example concerns
the swelling/shrinking of a hydrogel upon a change of exterior ion concentrations. Both
examples include numerical convergence studies with regard to spatial and temporal
discretization in order to show that the expected numerical properties indeed translate to
practical computations.

2. Formalization of the Space–Time Continuous Problem

In this section, a generic formulation for standard dissipative continua is proposed,
with the scope being limited to isothermal problems with elliptic or parabolic structure. It
is emphasized in this context that more general standard dissipative formulations than the
one presented below are possible. However, certain simplifications are unavoidable in view
of implementation aspects. The proposed formulation essentially represents a trade-off
between the generality of the formulation and complexity of the implementation into
numerical software. Furthermore, it is remarked that most of the theoretical developments
are, at least as far as the general ideas are concerned, in some form already available in
the pertinent literature. Here, the intended contribution is to compile the theory in a form
suitable for subsequent implementation.

The contents of this section are summarized as follows: Firstly, the computational
domain including subdomains, boundaries and interfaces is described together with the
notation required for bookkeeping purposes. Secondly, the notions of “generalized fields”
and “dependent fields” are introduced, and the form of the functionals considered in
this work is specified. Despite the fact that these aspects are of subordinate importance
from a physical standpoint, they are indispensable with regard to the desired problem-
independent implementation of the approach into computer code. Thirdly, the unknowns
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involved in the statement of the problem are grouped into several categories based on
their role in the variational formulation. Fourthly, the space–time continuous incremental
potential is introduced, followed by a statement of the space–time continuous incremental
variational principle assumed in the present work. Finally, ways to systematically reduce
the number of unknowns involved in the problem formulation are described.

2.1. Computational Domain

The Euclidean d-space Rd with d = 2 or d = 3 is considered for a range of time
T = [t0, te), with t0 and te being the initial and the final times, respectively. In what
follows, X ∈ Rd denotes a spatial location and t ∈ T an instant of time. As illustrated in
Figure 1,Rd is assumed to be split into (i) the “environment” Ω0; (ii) the bounded domain
Ω, which is further subdivided into NΩ “domain portions” Ωα labeled by α; and (iii) the
bounded, sufficiently smooth d− 1 dimensional interface Σ, which is further subdivided
into NΣ “interface portions” Σγ labeled by γ. It is generally assumed that the boundary
of each domain portion Ωα is a part of Σ. This means that ∂Ωα ∩ Σ = ∂Ωα. Moreover, it
is understood that Ω and Σ have no points in common, i.e., Σ ∩Ω = ∅. In the sequel,
the union of Σ and Ω will be referred to as the “computational domain”. This computational
domain is generally assumed to be kept fixed. This means that it does not change with
time. Together with the interface Σ, a piece-wise continuous unit normal field N(X) is
introduced. Using this unit normal field, the ‘+’ and ‘−’ sides of the interface at a location
X ∈ Σ are defined such that N(X) points from the − to the + side.

Figure 1. Domain under consideration.

Remark 1.

• An interface portion Σγ need not necessarily be aligned with an interface between different
domain portions Ωα or an interface between a domain portion Ωα and the environment Ω0.
This means that a “slit” within a domain portion is permissible, as can be seen in the interface
portion Σ1 in Figure 1.

• A more complete description would also involve lower-dimensional entities (lines, line portions,
and points in three dimensions; points in two dimensions). However, these are firstly rarely
relevant to practical examples, and secondly, these are more difficult to implement. Therefore,
they are ignored below.

• The introduction of different domain and interface portions concerns in particular multiphysics
phenomena, with different physics being operative in different regions, and, possibly, combined
with interfacial effects.

• Keeping the domain of computation fixed does not imply that a Lagrangian or Eulerian
viewpoint is adopted. In fact, even arbitrary Lagrangian Eulerian formulations are possible.

2.2. Generalized Fields, Dependent Fields and the Form of Functionals

Before discussing the standard dissipative formulation considered in this work,
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(i) the notions of “generalized fields” and “dependent fields” are introduced, and
(ii) the form a functional can take within this work is narrowed down.

2.2.1. Generalized Fields

A generalized field G = G(X, t) comprises:

1. A number of NG,Ω time-dependent scalar fields, which are formally defined on the
entire computational domain, but which may only be non-zero on Ω. These fields
are collected in the vector GΩ = GΩ(X, t) and will be referred to as “domain-related
fields”. The latter may represent, e.g., mechanical displacements, velocities, pressures,
electric fields, etc.

2. A number of NG,Σ time-dependent scalar fields, which are formally defined on the
entire computational domain, but which may only be non-zero on Σ. These fields
are collected in the vector GΣ = GΣ(X, t) and will be referred to as “interface-related
fields”. The latter may represent, e.g., curvatures, electrical surface charges, interfacial
reaction rates, etc.

3. A number of NG,C time-dependent scalars. These scalars are collected in the vector
GC = GC(t); and they may represent quantities such as integral electric currents,
displacements and rotations of rigid domain portions, etc.

With these definitions,

G =

GΩ

GΣ

GC

 (1)

is as a vector of dimension NG = NG,Ω + NG,Σ + NG,C.
The derivative of G with respect to X, i.e., the gradient, is introduced according to

∇G =

∇GΩ

∇ΣGΣ

0

, (2)

with ∇Σ indicating the surface gradient, and ∇GΩ = 0 if X ∈ Σ and ∇ΣGΣ = 0 if X ∈ Ω.
It is noted that ∇G may be interpreted as an NG × d matrix.

The derivative of G with respect to t, i.e., the rate, is denoted by

Ġ =

ĠΩ

ĠΣ

ĠC

. (3)

Two generalized fields A and B may be concatenated to form a single generalized
field C. In this case, it is understood that the components are rearranged such that the
domain-related fields, the interface-related fields and the scalars are contiguous again. This
means that:

C =

(
A
B

)
=



AΩ

BΩ

AΣ

BΣ

AC

BC

 =

CΩ

CΣ

CC

. (4)

This procedure can be applied recursively to concatenate more than two generalized fields.

Remark 2. Vector/tensor fields are considered to be represented by an appropriate number of scalar
fields, with the individual scalar fields typically representing vector/tensor coordinates with regard
to a particular basis system.



Axioms 2023, 12, 267 5 of 33

2.2.2. Dependent Fields

For each generalized field G, a number of Ng,Ω “domain-related dependent fields” and
a number of Ng,Σ “interface-related dependent fields” are introduced. These dependent
fields are collected in the vectors gΩ and gΣ, respectively. In this section, the convention
will be followed that upper case letters denote generalized fields, while the corresponding
lower case letters denote the associated dependent fields.

The purpose of the dependent fields is the introduction of variables, in terms of
which the functionals governing the standard dissipative formulation can be conveniently
expressed without direct use of spatial derivatives. A typical example for a dependent
field is the mechanical strain field, which is used to introduce the strain energy density in
continuum mechanics.

The dependent fields gΩ and gΣ are assumed to be linearly related to the generalized
field G. In particular,

(gΩ)λ =
NG,Ω

∑
ε=1

[
aG,Ω

λε (GΩ)ε + bG,Ω
λε · (∇GΩ)ε

]
+

NG,C

∑
ι=1

cG,Ω
λι (GC)ι + dG,Ω

λ (5)

if X ∈ Ω and (gΩ)λ = 0 otherwise, with aG,Ω
λε , cG,Ω

λι and dG,Ω
λ being constants, bG,Ω

λε constant
vectors of dimension d, and (Y)λ denoting the component λ of a vector Y. Similarly,

(gΣ)ν =
NG,Σ

∑
η=1

[
aG,Σ

νη (GΣ)η + bG,Σ
νη · (∇ΣGΣ)η

]

+
NG,Ω

∑
ε=1

[
aG+

νε (GΩ|+)ε + bG+
νε · (∇GΩ|+)ε

]
+

NG,Ω

∑
ε=1

[
aG−

νε (GΩ|−)ε + bG−
νε · (∇GΩ|−)ε

]
+

NG,C

∑
ι=1

cG,Σ
νι (GC)ι + dG,Σ

ν

(6)

if X ∈ Σ and (gΣ)ν = 0 otherwise, with aG,Σ
νη , aG+

νε , aG−
νε , cG,Σ

νι and dG,Σ
ν being constants,

and bG,Σ
νη , bG+

νε , bG−
νε constant vectors of dimension d. In the latter equation as well as in

the following, the notation |+/− indicates that reference is made to the limit value as points
X ∈ Σ are approached from the + and the − side of the interface Σ, respectively.

Remark 3.

• The restriction of gΩ and gΣ to a dependence on first spatial derivatives of the generalized field
G may seem rather limiting. However, the formulation to be described does enable the effective
incorporation of higher-order derivatives through the introduction of auxiliary quantities.
In fact, including higher spatial derivatives would, in a finite element context, require higher-
order continuous finite elements; and the latter are rarely used in practice due to the superiority
of mixed formulations eliminating the higher spatial derivatives through auxiliary quantities.

• The choice of the dependent fields is usually subject to a substantial degree of freedom and will
typically be determined by what is most convenient for the definition of the governing functionals.

• The constants and constant vectors appearing in (5) and (6) may be made dependent upon X
without affecting the discussion below. Furthermore, nonlinear dependencies of the dependent
fields on the generalized fields and derivatives thereof may be allowed for . However, such
dependencies are omitted here as they have not yet been implemented (nonetheless, they can be
incorporated through constraints, which can be implemented using Lagrangian multipliers).



Axioms 2023, 12, 267 6 of 33

2.2.3. Form of Functionals

Let H[Aα; Bβ, t] be a functional of a number of generalized fields Aα indexed by α and
a number of generalized fields Bβ indexed by β, with the semicolon indicating that the
quantities to the right are regarded as parameters when the variations of the functional H
are computed. In the sequel it is assumed that every such functional is of the specific form

H[Aα; Bβ, t] =
∫

Ω
hΩ(aα,Ω; bβ,Ω, X, t)dV +

∫
Σ

hΣ(aα,Σ; bβ,Σ, X, t)dS

+ hC(Aα,C; Bβ,C, t), (7)

where dV is the volume element, dS the interface element, and hΩ, hΣ and hC are functions.

Remark 4. The previous assumption regarding the form of a functional will eventually ensure that
the incremental variational principle to be stated below implies a set of partial differential (algebraic)
equations and equations without spatial dependency (which may, however, involve integrals).

2.3. Unknown Variables

Conceptually, three different types of unknowns are considered, leading to the defini-
tion of the three following generalized fields:

1. A generalized “state variable” Q, which is used to describe the state within the
computational domain. Q may, besides classical “thermodynamic state variables”,
also comprise a number of “auxiliary state variables”, which will be used in the usual
way as Lagrangian multipliers enforcing constraints on the admissible thermodynamic
states (incompressibility constraints, electroneutrality constraints, etc.). In particular,
Q is assumed to be of the format

Q =

(
U
P

)
, (8)

where U comprises the thermodynamic state variables, while P comprises the auxiliary
state variables/Lagrangian multipliers. Q is subject to an initial condition of the form

Q(X, t0) = Q0(X), (9)

where Q0 may need to satisfy certain consistency requirements as will be remarked later.
2. A generalized “process variable” V, which may be interpreted as an auxiliary quantity

used to constrain the ways the thermodynamic state can change in that only certain
combinations of the rates Q̇ and V̇ are admissible. V is, without loss of generality,
subjected to the initial condition

V(X, t0) = V0(X) = 0. (10)

3. A generalized Lagrangian multiplier M, which will be used to actually incorporate
constraints for Q̇ and V̇.

Remark 5.

• The explicit distinction between state variables and process variables appears to be a feature dis-
tinguishing the present standard dissipative formulation from what is available in the literature
to date, although it is acknowledged that, e.g., the works of Biot [13] and Miehe et al. [23,24,25]
implicitly contain such a distinction. Physically, the introduction of process variables may,
e.g., be motivated by the following two simple examples: (i) diffusion processes, in which molar
concentrations are changed by species fluxes; and (ii) chemical reactions, in which the amounts
of the substances involved are changed by chemical reaction processes.
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• Ultimately, only the rate of the process variable, V̇, will enter the formulation. Hence, it would
seem more natural to directly introduce the rate as an unknown. However, the viewpoint
adopted here proves beneficial from the implementation point of view.

2.4. Space–Time Continuous Incremental Potential

The space–time continuous problem formulation in terms of an incremental variational
principle (herein, the term “incremental” refers to a formulation in terms of rate-type
quantities, and does not refer to a time-discrete formulation as it is often the case in the
literature) is based on

1. A Helmholtz free energy functional Ψ[Q]. Specifically, the Helmholtz free energy
functional is assumed to be of the form

Ψ[Q] = ΨU[U] + ΨP[P, U], (11)

with ΨP being linear in its first argument. In general, Ψ will be assumed to be Fréchet
differentiable. It is remarked in this context that the constraints for the thermodynamic
states U are obtained by requiring the first variation of ΨP with respect to P to be zero;
and ΨU represents the physical Helmholtz free energy for all thermodynamic states
consistent with these constraints.

2. A power functional P[U̇, V̇; U, t] accounting for the influence of the environment on
the computational domain under consideration. P is assumed to be linear in the pair
(U̇, V̇).

3. A dissipation functional ∆̊[U̇, V̇; U, t], which is related to the description of dissipa-
tive effects. It is assumed that ∆̊ is (i) non-negative; (ii) convex in the pair (U̇, V̇);
and (iii) satisfies the condition ∆̊[0, 0; U, t] = 0. The latter conditions are, within the
standard dissipative framework, sufficient for the satisfaction of the second law of
thermodynamics as will be remarked later.

4. A Lagrangian multiplier functional L[M, U̇, V̇; U, t] incorporating constraints for U̇
and V̇. L is assumed to be of the form

L = L1[M, U̇, V̇; U, t] + L2[M; U, t], (12)

where L1 is bilinear with regard to M and the pair (U̇, V̇) and L2 is linear in M.

Finally, the space–time continuous incremental potential

Π[Q̇, V̇, M; Q, t] = Ψ̇[Q, Q̇] + Γ[U̇, V̇, M; U, t] (13)

is introduced, where

Γ[U̇, V̇, M; U, t] = −P[U̇, V̇; U, t] + ∆̊[U̇, V̇; U, t] + L[M, U̇, V̇; U, t]. (14)

2.5. Space–Time Continuous Incremental Variational Principle

Using the previously introduced functionals, the space–time continuous incremental
variational principle now requires that Q̇, V̇, M furnishes a stationary point of Π at every
instant of time. This means that the problem can be formulated as

Find the unknowns (Q, V, M) such that Q(X, t0) = Q0, and V(X, t0) = 0, and

0 = δΠ[Q̇, V̇, M, δQ̇, δV̇, δM; Q, t]

= δΨ[Q, δQ̇] + δΓ[U̇, V̇, M, δU̇, δV̇, δM; U, t]
(15)

for all [δQ̇, δV̇, δM] and all t ∈ (T \ t0),

where the notation is used here and henceforth that the first variation of a functional
I[x1, . . . , xn; y1, . . . , yn] is δI[x1, . . . , xn, δx1, . . . , δxn; y1, . . . , yn].
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Remark 6.

• Equation (15) may be seen as an extension of Biot’s equation, cf. Equation (2.14) in Biot [29]
and Equation (2.14) in Biot [30].

• For the general case, partial differential algebraic equations are involved and, therefore, (15)
cannot generally be used as a “point-wise” equation to determine the rates Q̇, V̇ based on the
current thermodynamic state Q. Rather, neighboring instants of time need to be taken into
consideration by differentiating the equations implied by (15) with respect to time. This aspect
becomes particularly evident when considering the example of elasticity (which does not involve
dissipative processes). In this case, (15) implies the mechanical equilibrium condition, which
only involves the mechanical displacement and not the rate of the mechanical displacement.
Therefore, differentiation with respect to time is necessary in order to obtain an equation in
the rates.

• In order for the problem to be well posed, further conditions need to be satisfied. Although a
general discussion of this aspect without reference to a particular problem appears to be difficult,
a few further remarks are made in the following:

– The constraints represented by the functionals ΨP and L must be consistent in that they
are neither redundant nor contradictory.

– Non-convex ΨU and/or domains of admissible thermodynamic states may be a severe
issue with regard to unique solvability and stability, as can be seen in the discussion in
Abed-Meraim and Nguyen [31].

– The initial conditions need to be consistent in that Q0 must be such that a stationary
point of Π exists at t = t0.

• The problem formulation in terms of the first variation of Π implies the assumption of sufficient
regularity of the functionals involved. This becomes a crucial aspect in the case of problems
including rate-independent processes. In this case, the dissipation functional ∆̊ contains
contributions which are positively homogeneous of degree one in the rates. The associated
non-differentiability of ∆̊ invalidates (15), and hence it may appear that the formulation
cannot be used for these cases. However, the situation can be remedied by employing the
techniques of convex analysis and, in particular, replacing regular differentiation by the use
of subdifferentials (as can be seen, e.g., in Rockafellar [32], pp. 213 ff.), thus extending the
formulation to rate-independent processes.

• The above formulation in terms of an incremental variational principle is motivated by the
description of reversible isothermal processes, in which case the concepts of equilibrium ther-
modynamics apply and the free energy of the system under consideration is minimized at all
times. In order to account for the actual dissipative nature of the problem under consideration,
“generalized dissipative forces” are included into the formulation, which are mathematically
characterized by the Fréchet derivative of ∆̊ with respect to U̇ and V̇. These generalized dissi-
pative forces may be interpreted as those external loads, which would have to be applied by an
external agency at a certain instant of time t to bring the system instantaneously into equilib-
rium. This approach is abstract in that these external loads are fictitious and cannot be applied
in reality. However, accepting the approach based on the experience that it has been succesfully
applied to a wide range of problems in the past, the situation is formally transformed from a
problem of non-equilibrium thermodynamics into one of equilibrium thermodynamics, so that
the well-known concepts of equilibrium thermodynamics can be used, and a mathematically
sound formulation results, as can also be seen in Germain et al. [12]. Moreover, by ensuring
that δ∆̊(U̇, V̇, U̇, V̇; U, t) ≥ 0 for any choice of (U̇, V̇), it is guaranteed that the generalized
dissipative forces are always associated with a negative power (i.e., a positive dissipation), such
that the second law of thermodynamics is satisfied a priori and need not be discussed further.
The assumptions made above (∆̊ is non-negative, convex with respect to the pair (U̇, V̇) and
satisfies the condition ∆̊[0, 0; U, t] = 0) indeed imply that δ∆̊(U̇, V̇, U̇, V̇; U, t) ≥ 0 .

2.6. Reduced Space–Time Continuous Incremental Variational Principles

In the following, two straightforward possibilities to reduce the set of unknown
variables are described. It is emphasized that further possibilities exist, which are not
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discussed here. Furthermore, it is noted that the space–time discretization methods as
well as the implementation discussed in the next sections are equally applicable to both,
the original and the reduced formulations.

2.6.1. Reduction of the Set of Process Variables and Lagrangian Multipliers

The introduction of the generalized process variable V and the generalized Lagrangian
multiplier M often leads to an excessive number of unknown fields. However, in many
cases, it is possible to systematically eliminate V and M, or rather subsets thereof, be-
fore actually numerically solving the problem. In particular, the space–time continuous
incremental functional Π only depends on V̇, but not on V itself. Furthermore, Π depends
on V̇ and M only through the contribution Γ. Thus, a reduced functional

Γred[U̇, V̇0, M0; U, t] = inf
V̇1

sup
M1

Γ[U̇, V̇, M; U, t] (16)

may be introduced by joint partial minimization and maximization, where

V =

(
V0

V1

)
M =

(
M0

M1

)
. (17)

Then, δΓ can be replaced by δΓred in (15) to obtain an equivalent formulation in the reduced
set of variables (Q, V0, M0).

Remark 7. The selection of the variables V0 and M0 typically depends on the properties of the
dissipation functional ∆̊. However, numerical considerations (e.g., with respect to the choice of finite
elements) may also be important in this regard.

2.6.2. Reduction of the Set of State Variables

Another possibility to reduce the set of variables exists if certain state variables factor
into Ψ, while Γ is independent of these variables. In order to discuss this case, it is
assumed that

Q =

U1

U0

P0

 =

(
U1

Q0

)
, (18)

and that Γ neither depends on U1 nor on U̇1, meaning that there exists a functional Γred

such that
Γ[U̇, V̇, M; U, t] = Γred[U̇0, V̇, M; U0, t]. (19)

Then, if Ψ is additionally convex in U1, a reduced thermodynamic potential

Ψred[Q0] = inf
U1

Ψ[Q] (20)

may be introduced; and δΨ and δΓ can be replaced by δΨred and δΓred in (15) to obtain an
equivalent formulation in the reduced set of variables (Q0, V, M).

Remark 8. Using this approach, the linearity of Ψ with regard to P may be lost, which does,
however, not have consequences for the applicability of (15).

3. Space–Time Discrete Formulation

The spatial discretization of the fields involved in Q, V and M is assumed to be
performed using the finite element method in this work. In this regard, standard methods
can be used, which will not be further discussed here. However, it is pointed out that
the satisfaction of the inf− sup condition is typically the most difficult part of spatial
discretization if the variational problem to be solved is of saddle point type, see, e.g.,
Bathe [33] and Auricchio et al. [34].
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With regard to temporal discretization, a number of simple and straightforward-to-
implement one step schemes have been discussed and analyzed in a somewhat narrower
context in a previous work [35]. These methods can be readily extended to the current
formulation; and for the self-containedness of the present work, these will be briefly
described below, although the reader is referred to [35] for details.

In the following, it is assumed throughout that the time interval [t0, te] is divided
by the discrete time points tn = t0 + n∆t, where n = 0, 1, . . . N and ∆t = (te − t0)/N
(however, the formulations are not restricted to uniform time increments). The numerically
approximated values of Q, V and M at time tn are denoted by Qn, Vn and Mn, respectively;
and the initial values at time t0 are given by Q0(X) and V0(X) = 0.

3.1. Variationally Consistent Method

The “variationally consistent method” is based on a straightforward discretization
of the space–time continuous incremental functional Π. In particular, a time-discrete
counterpart ∆Πn→n+1 of Π is introduced according to

∆Πn→n+1[Qn+1, Vn+1, Mn+1] = Ψ[Qn+1]−Ψ[Qn]

+ ∆tΓ
[

Un+1 −Un

∆t
,

Vn+1 −Vn

∆t
, Mn+1; Un, tn+1

]
. (21)

Then, the stationary point of ∆Πn→n+1 is searched during each time step to obtain Qn+1,
Vn+1 and Mn+1 based on the solution of the previous time step. The corresponding
stationarity condition leads to the time-discrete variational formulation

Find the unknowns (Qn+1, Vn+1, Mn+1) such that

0 = δΨ[Qn+1, δQn+1] + δΓ
[

Un+1 −Un

∆t
,

Vn+1 −Vn

∆t
, Mn+1,

δUn+1, δVn+1, ∆tδMn+1; Un, tn+1

] (22)

for all (δQn+1, δVn+1, δMn+1) and all n ∈ {0, 1, . . . N − 1},

which is a consistent approximation of (15). According to the analysis in [35], the method
represents a first-order accurate time integrator, provided that the the problem is suffi-
ciently regular.

Remark 9. As a result of discretizing Π, the variational structure of the space–time continuous
problem is preserved, which makes the method particularly attractive from the mathematical point of
view. This concerns, e.g., the fact that the resulting finite element systems are symmetric.

3.2. The α-Family

The “α-family” is based on the introduction of a real parameter α ∈ [0, 1], where α = 0
corresponds to a forward Euler type scheme, α = 1/2 to a Crank–Nicolson type scheme,
and α = 1 to a backward Euler type scheme. Moreover, the following quantities are defined:

Qα
n = (1− α)Qn + αQn+1 (23)

Mα
n = (1− α)Mn + αMn+1 (24)

tα
n = (1− α)tn + αtn+1. (25)

Then, the time-discrete version of (15) reads
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Find the unknowns (Qn+1, Vn+1, Mα
n) such that

0 = (1− α)δΨ[Qn, δQn+1] + αδΨ[Qn+1, δQn+1]

+ δΓ
[

Un+1 −Un

∆t
,

Vn+1 −Vn

∆t
, Mα

n, δUn+1, δVn+1, ∆tδMα
n; Uα

n, tα
n

] (26)

for all (δQn+1, δVn+1, δMα
n) and all n ∈ {0, 1, . . . N − 1}.

For a sufficiently regular problem, the method is second-order accurate for α = 1/2 or oth-
erwise first-order accurate [35]. However, the method is non-convergent for α < 1/2 if the
system of equations implied by (15) is of differential algebraic nature. Furthermore, no as-
sociated time-discrete incremental potential exists for the method if Γ exhibits a parametric
dependence on U, so that the finite element systems are unsymmetric in this case.

3.3. The Modified α-Family

The “modified α-family” is a “predictor-corrector” method. In particular, the quantities
Q̂n+1, V̂n+1, M̂α

n are introduced, which are “predictions” of Qn+1, Vn+1 and Mα
n. During

the predictor step, the problem

Find the unknowns (Q̂n+1, V̂n+1, M̂α
n) such that

0 = (1− α)δΨ[Qn, δQ̂n+1] + αδΨ[Q̂n+1, δQ̂n+1]

+ δΓ
[

Ûn+1 −Un

∆t
,

V̂n+1 −Vn

∆t
, M̂α

n, δÛn+1, δV̂n+1, ∆tδM̂α
n; Un, tα

n

] (27)

for all (δQ̂n+1, δV̂n+1, δM̂α
n)

is solved. Based on the resulting predicted values, the time-discrete problem is then

Find the unknowns (Qn+1, Vn+1, Mα
n) such that

0 = (1− α)δΨ[Qn, δQn+1] + αδΨ[Qn+1, δQn+1]

+ δΓ
[

Un+1 −Un

∆t
,

Vn+1 −Vn

∆t
, Mα

n, δUn+1, δVn+1, ∆tδMα
n; Ûα

n, tα
n

] (28)

for all (δQn+1, δVn+1, δMα
n) and all n ∈ {0, 1, . . . N − 1}, where Ûα

n = (1− α)Un +
αÛn+1.

For many (but not all) cases, the method provides the same accuracy as the α-family, while
retaining the symmetric and variational structure, so that corresponding time-discrete
incremental potentials exist for both steps.

4. Implementation

In order to show the feasibility of the approach, the space–time discrete formulation
described above has been preliminarily implemented in two and three dimensions for
both sequential and distributed memory parallel computations. In particular, the open
source C++ libraries GalerkinTools and IncrementalFE have been developed. The library
GalerkinTools allows for the definition of weak forms corresponding to functionals of the
generic form (7) (in fact, the library covers slightly more general weak forms including those
unsymmetric weak forms required for the α-family of methods for temporal discretiza-
tion). Furthermore, GalerkinTools provides methods for the automatic assembly of the
corresponding finite element systems based on the functionalities of the open source finite
element library deal.II (Alzetta et al. [27], Bangerth et al. [28]). In addition, interfaces for
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the solution of the resulting linear systems of equations are included. For this purpose, the
unsymmetric sparse direct UMFPACK solver (Davis [36]), the symmetric and unsymmetric
sparse direct PARDISO solvers (Schenk and Gärtner [37,38], Karypis and Kumar [39]),
the symmetric and unsymmetric sparse direct MUMPS solvers (Amestoy et al. [40,41])
and the symmetric sparse direct MA57 solver (HSL, a collection of Fortran codes for large-
scale scientific computation, see http://www.hsl.rl.ac.uk/ (accessed on 5 January 2023))
can currently be used. Based on the library GalerkinTools, the library IncrementalFE then
encapsulates the special functionality required for the solution of problems formulated
within the standard dissipative framework. In particular, this involves functionalities
for the definition of the functionals Ψ and Γ, together with the temporal discretization
schemes described in the previous section. Furthermore, IncrementalFE implements a
simple Newton–Raphson scheme, optionally combined with a line search, to solve the
nonlinear finite element problems arising in each time step. For details regarding the func-
tionalities and implementation of the libraries GalerkinTools and IncrementalFE, the reader
is referred to the documentation bundled with these libraries. However, the general se-
quence of steps needed to define and solve a particular problem is briefly described in
the following:

1. Setup of the finite element mesh, which corresponds to the definition of the computa-
tional domain. During this step, the domain Ω is first meshed using either the built-in
functionalities of deal.II or by importing a mesh from an external mesh generator.
Subsequently, the domain is partitioned into domain portions by assigning “material
IDs” to the individual cells of the mesh. This is followed by the definition of the inter-
face Σ based on faces of the previously defined volume-related cells, which also goes
along with the definition of the − and + sides of the interface as well as a partitioning
of the interface by assigning “material IDs”. As a final step of mesh generation, local
mesh refinement may be performed.

2. Definition of the unknowns Q, V and M of the problem and the corresponding finite
element spaces. During this step, the domain-related unknown fields, the interface-
related unknown fields and the scalars are defined. This includes the definition of the
finite elements to be used for the discretization of the domain-related and interface-
related unknowns as well as Dirichlet-type constraints. Furthermore, for each un-
known field, the domain portions and interface portions, respectively, are defined
where the respective field may be non-zero. In order to allow for the use of vector-
valued finite elements, several unknown fields of a particular type may be defined
at once.

3. Definition of the domain-related dependent fields qΩ, vΩ, mΩ and the interface-
related dependent fields qΣ, vΣ, mΣ based on the previously defined unknowns Q,
V and M according to Equations (5) and (6), respectively.

4. Definition of Ψ and Γ as functionals of the form (7). It is noted in this context that the
definition of the integrals over Ω and Σ, respectively, may be split into several integrals,
which are summed up subsequently. This split (i) facilitates the re-usability of the
implementation of certain terms (e.g., a Neo-Hookean strain energy density) and thus
makes the definition of Ψ and Γ “modular”; (ii) allows for using different numerical
quadrature schemes for different terms; and (iii) allows for a better structuring of the
problem, which can be internally exploited by the library GalerkinTools to determine
which entries in the finite element system matrix are non-zero. The actual definition
of a single integral typically involves (i) the implementation of the integrand (which
is expressed in terms of the dependent fields relevant to the integral) and its first and
second derivatives; (ii) the specification of domain and interface portions, respectively,
where the integrand is non-zero; (iii) the definition of the quadrature scheme to be
used for evaluating the integral; (iv) the definition of the temporal integration scheme
to be used (in fact, one may use different schemes for different terms, although this
has not been discussed above); and (v) the definition of parameters (particularly
constitutive parameters).

http://www.hsl.rl.ac.uk/
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5. Solving the problem. Currently, time-stepping needs to be implemented manually,
although single time steps are automatically handled by the library IncrementalFE.

Remark 10.

• The entire problem definition is facilitated by the use of C++ as an object-oriented language.
As a result, e.g., each unknown field is a separate object, which leads to a rather natural
structuring of the code in that it closely resembles the underlying mathematical statement of
the problem under study in terms of formulae.

• Typically, the most time-consuming step of the problem definition is, besides in some cases
the mesh generation, the implementation of the integrands for the definition of Ψ and Γ.
However, due to the mentioned modular design, the implementation of certain integrands can
be re-used. This does, in principle, allow for a library of integrands covering a multitude of
situations. Furthermore, automatic differentiation schemes may be used in order to simplify
the implementation of the first and second derivatives of the integrands, which are required for
the solution of the problem.

• The library GalerkinTools also allows for the definition of “hidden variables” for each integrand,
so that, in principle, classical rate-independent plasticity approaches are covered. For example,
for the variationally consistent method, the latter may easily be achieved by locally “pre-
minimizing” the time-discrete incremental potential ∆Πn→n+1 with respect to the plastic
deformation variables. However, proper testing of classical plasticity approaches is yet to be
performed. Therefore, a discussion of these is not included in the present contribution.

• Implementation-wise, the main difficulties are the definition of functionals of the generic
form (7) and the assembly procedures for the associated finite-element systems. These func-
tionalities are provided by GalerkinTools; and, on this basis, the implementation of particular
temporal discretization schemes and iterative algorithms for the solution of the nonlinear
problems arising in each time step is straightforward. Hence, the library IncrementalFE is
rather slim; and if temporal discretization schemes and/or iterative algorithms other than
those discussed in this work need to be considered, these can be implemented with little effort
(provided that the temporally discretized versions are compatible with the assumed form for
functionals). The same applies to the use of other linear solvers than those mentioned above,
and, in particular, iterative linear solvers.

5. Examples

In this section, (i) the buckling behavior of a viscoelastic dielectric elastomer subjected
to an electric voltage, and (ii) the swelling/shrinking of a hydrogel subjected to a change
in exterior ion concentrations are discussed as examples. It is emphasized that the main
objective is to demonstrate the feasibility and practicability of the approach, and not to give
a detailed exposition of particular physical effects. Therefore, the statement of the problems
will be kept concise; and a discussion of the differential (algebraic) equations implied by
the formulations is omitted.

It is emphasized that the discussion of the example problems mostly follows the
sequence of steps described in Section 4, which highlights the systematic approach to
standard dissipative problems proposed in this work. The equations are written using the
symbolic vector/tensor notation; and it is tacitly assumed that each vector/tensor field is
represented by an appropriate number of domain-related/interface-related scalar fields,
which embody vector/tensor coordinates with regard to the standard basis ofR3.

Moreover, it is noted that both example problems have been chosen to be axisymmetric
in order to reduce the computational cost and, therefore, facilitate numerical convergence
studies. Despite this fact, the problems will be described in the fully three-dimensional
setting for the sake of simplicity. The steps necessary for reduction to the axisymmetric
setting should be sufficiently obvious and are, therefore, not described in detail.
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5.1. Example 1: Buckling of a Viscoelastic Dielectric Elastomer

The first example problem is illustrated in Figure 2. A circular disc of incompressible
viscoelastic dielectric elastomer with radius L and thickness H is considered. The constitu-
tive behavior is assumed to be described by the relations proposed by Hong [42]. The radial
displacement is constrained to zero on the entire lateral surface of the disc. Furthermore,
the average axial displacement is constrained to zero on the lateral surface. The latter
constraint was chosen instead of a homogeneous constraint on the entire surface in order
to avoid stress/strain singularities, which would complicate the convergence studies due
to the need for excessive local mesh refinement. The bottom surface and the top surface
are assumed to be electrodes, with a transient voltage U(t) applied across these electrodes.
As a result of Maxwell stress, the disc shrinks in the axial direction; and due to the in-
compressibility of the material, this leads to buckling and large deformations of the disc
in the axial direction. In order to induce the “imperfection” needed for a well-defined
buckling behavior, the gravitational acceleration g is taken into account and assumed to
point downwards in the figure. Fringing fields at the edges of the electrodes are neglected
for simplicity.

Figure 2. Illustration of example problem 1.

5.1.1. Computational Domain

The computational domain Ω shown in Figure 2 represents the reference configuration
of the disc, which is assumed to be stress-free. It is noted that this reference configuration
is not actually assumed at any instant of time due to the action of the gravitational accelera-
tion. The in-plane Cartesian coordinates in Figure 2 are X1 and X2, while the out-of-plane
coordinate is X3. If a radial coordinate R and an axial coordinate Z of a cylindrical coordi-
nate system are introduced as shown in the figure, the body occupies the region described
by 0 ≤ R ≤ L and −H/2 ≤ Z ≤ H/2. The lateral surface of this disc is Σ1, the bottom
surface Σ2 and the top surface Σ3.

5.1.2. Unknown Variables
State Variables

The thermodynamic state variables

u :

{
Ω× T → R3

(X, t) 7→ u(X, t)
(29)

D :

{
Ω× T → R3

(X, t) 7→ D(X, t)
(30)

Ui :

{
Ω× T → R6

(X, t) 7→ Ui(X, t)
(31)

are introduced together with the corresponding initial conditions

u(X, t0) = u0(X) (32)

D(X, t0) = D0(X) (33)

Ui(t0) = I, (34)
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with I being the identity tensor of rank 2. The thermodynamic state variables have the
following significance:

• u is the mechanical displacement field. It describes how the placements of material
points in the reference configuration are mapped onto their placements in the current
configuration. In particular, x(X, t) = X + u(X, t), with x(X, t) being the placement of
the material point X at time t.

• D is the referential electric displacement field.
• Ui is the (symmetric) inelastic stretch tensor.

The thermodynamic state variables are supplemented by the auxiliary state variables

ϕ :

{
Ω× T → R
(X, t) 7→ ϕ(X, t)

(35)

p :

{
Ω× T → R
(X, t) 7→ p(X, t)

(36)

pi :

{
Ω× T → R
(X, t) 7→ pi(X, t)

(37)

luZ :

{
T → R
t 7→ luZ (t)

(38)

together with the corresponding initial conditions

ϕ(X, t0) = ϕ0(X) (39)

p(X, t0) = p0(X) (40)

pi(X, t0) = pi
0(X) (41)

luZ (t0) = luZ
0 . (42)

The auxiliary state variables have the following significance:

• ϕ is the electric scalar potential, which acts as a Lagrangian multiplier enforcing the
condition that there is no free space charge density in the interior of the domain.

• p is a pressure type variable, which acts as a Lagrangian multiplier enforcing the
condition that the elastomer does not exhibit any overall local volume change.

• pi is a further pressure type variable, which acts as a Lagrangian multiplier enforcing
the condition that the elastomer does not exhibit any inelastic local volume change.

• luZ is used to constrain the average axial displacement of the disc on the lateral surface
Σ1 to zero.

The practical determination of the initial values u0(X), D0(X), ϕ0(X), p0(X), pi
0(X)

and luZ
0 will be discussed later.

Process Variables and Lagrangian Multipliers

For this first example, neither process variables nor Lagrangian multipliers are needed.

Dirichlet Constraints

The state variables u and D are constrained by the Dirichlet conditions

u ·N = 0 on Σ1 (43)

D ·N = 0 on Σ1. (44)

5.1.3. Dependent Fields

Here and in the following, only those dependent fields are listed explicitly, which are “non-
trivial” in that they are not equal to an unknown field itself or the gradient/divergence/curl
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of an unknown field (the divergence actually involves three unknown scalar fields in
three dimensions since a vector field is formally represented by an appropriate number of
scalar fields; and the curl involves three unknown scalar fields and three dependent fields).
In particular, the only non-trivial domain-related dependent fields used below represent
the mechanical deformation gradient

F = ∇u + I, (45)

where the latter equation must be expanded into coordinate-wise relations in order to be con-
sistent with the generic form of domain-related dependent fields according to Equation (5).

5.1.4. The Functionals

As noted above, the functionals describing the variational problem are chosen such
that the constitutive behavior of the viscoelastic dielectric elastomer is described by the
constitutive model of Hong [42].

Helmholtz Free-Energy Functional Ψ

The Helmholtz free energy functional Ψ[Q] = ΨU[U] + ΨP[P, U] is composed of
the contributions

ΨU[U] =
∫
Ω

{
1
2ε

D · F> · F ·D +
µe

2

[
tr
(

F> · F
)
− 2 ln(J)− 3

]
+

µi

2

[
tr
(

Ui−1 · F> · F ·Ui−1
)
− 2
(

J − Ji
)
− 3
]
+ ρ0g(u)Z

}
dV (46)

and
ΨP[P, U] =

∫
Ω

[
−ϕ∇ ·D + p(1− J) + pi

(
1− Ji

)]
dV −

∫
Σ1

luZ (u)Z dS. (47)

In these equations, J = det F, Ji = det Ui, (u)Z is the axial displacement, g is the gravita-
tional acceleration, ρ0 is the mass density of the elastomer in the reference state, ε is the
permittivity of the material and µe and µi are elastic constants.

Power Functional P

The power functional takes the form

P[U̇, V̇; U, t] = −
∫
Σ3

U(t)Ḋ ·N dS. (48)

In the following, the ramp loading

U(t) = Ue
t− t0

te − t0
(49)

with the maximum voltage Ue will be considered.

Dissipation Functional ∆̊

For the dissipation functional, the form

∆̊[U̇, V̇; U, t] =
∫
Ω

ηtr(d · d)dV (50)

is assumed, where η is the viscosity and d = sym
(

F ·Ui−1 · U̇i · F−1
)

is the inelastic stretching.
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5.1.5. Reduced Formulations
Variant 1: Vector Potential Formulation

A first possibility to reduce the set of variables is to express D in terms of a vector
potential A according to

D = −∇×A. (51)

By doing so, D becomes a dependent field, while

A :

{
Ω× T → R3

(X, t) 7→ A(X, t)
(52)

becomes a state variable. As a consequence of the identity∇ · (∇×A) = 0, the Lagrangian
multiplier term−ϕ∇ ·D drops out in (47), such that ϕ is no longer required as an unknown
variable. Furthermore, the Dirichlet constraint D ·N = 0 on Σ1 is transformed to

A = ASN× e2 on Σ1, (53)

where e2 is the unit normal vector in the axial direction, and

AS :

{
T → R
t 7→ AS(t)

(54)

is another state variable. For details regarding this boundary condition, the reader is
referred to [43]. In general, gauging is required for the uniqueness of the vector potential
in three dimensions, as can also be seen in [43]. However, for the axisymmetric case
considered herein, gauging can be achieved by requiring that only the circumferential
component of A is non-zero, which is assumed henceforth.

Variant 2: Scalar Potential Formulation

Another possibility is to apply the procedure described in Section 2.6.2 to eliminate
D. A technical difficulty occurring in this context is that the normal electric displacement
D ·N on the surfaces Σ2 and Σ3 cannot be eliminated. To resolve this issue, the additional
state variable

ω :

{
(Σ2 ∪ Σ3)× T → R
(X, t) 7→ ω(X, t)

(55)

is introduced, which represents D ·N. Then,

ΨU,red[U] =
∫
Ω

{
− ε

2
∇ϕ · F−1 · F−> · ∇ϕ +

µe

2

[
tr
(

F> · F
)
− 2 ln(J)− 3

]
+

µi

2

[
tr
(

Ui−1 · F> · F ·Ui−1
)
− 2
(

J − Ji
)
− 3
]
+ ρ0g(u)Z

}
dV, (56)

ΨP,red[P, U] =
∫
Ω

[
p(1− J) + pi

(
1− Ji

)]
dV −

∫
Σ1

luZ (u)Z dS−
∫

Σ2∪Σ3

ϕω dS, (57)

and
P[U̇, V̇; U, t] = −

∫
Σ3

U(t)ω̇ dS, (58)

while ∆̊ remains unchanged. In this formulation, ω̇ acts as a Lagrange multiplier enforcing
the boundary conditions
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ϕ = 0 on Σ2 (59)

ϕ = U(t) on Σ3. (60)

By imposing the latter conditions directly as Dirichlet constraints for ϕ, the state variable ω
is eliminated from the set of unknown variables.

5.1.6. Normalization

In order to improve the conditioning of the finite element system matrices and to
remove units from the simulations, it is advantageous to normalize the equations. Here,
the normalization proposed by Hong [42] is used:

X̃ =
X
H

, t̃ =
tµi

η
, ∇̃( ) = ∇( )H, ˜̇( ) = ˙( )

η

µi ,

ũ =
u
H

, D̃ =
D
√

µε
, Ũi = Ui, Ã =

A
H
√

µε
,

ϕ̃ =
ϕ

H

√
ε

µ
, p̃ =

p
µ

, p̃i =
pi

µ
, l̃uZ =

luZ

µ
,

t̃0 =
t0µi

η
, t̃e =

teµi

η
, Ũe =

Ue

H

√
ε

µ
,

H̃ = 1, L̃ =
H
L

,

µ̃e =
µe

µ
, µ̃i =

µi

µ
, ε̃ = 1, η̃ =

µi

µ
, ρ̃0 g̃ =

ρ0gH
µ

,

(61)

where µ = µe + µi.

5.1.7. Parameters

The parameters used in the numerical example below are listed in Table 1.

Table 1. Parameters used for example 1.

Quantity Value

t̃0 0
t̃e 2.25
Ũe 0.45

L̃ 30

µ̃e 0.5
µ̃i 0.5
η̃ 0.25

ρ̃0 g̃ 1 · 10−5

5.1.8. Spatial Discretization, Temporal Discretization

The α-family with α = 1/2 is used for temporal discretization. The spatial discretiza-
tion is done in the two-dimensional axisymmetric setting, thus reducing the number of
scalar fields required for the representation of u and D to two each, and for Ui to four. In the
case of the vector potential A, only a single scalar field is required since only the circumfer-
ential component is non-zero. The particular quadrilateral finite elements employed for the
analysis are compiled in Table 2. In this table, the nomenclature of the deal.II library [44] is
used. It is noted that the use of the pair RT1 −DGQ1 for D− ϕ is empirical since the usual
proof of stability cannot be readily extended to the axisymmetric case. In contrast, positive
results concerning the stability of the pair Q2 − P1 for u− p for the axisymmetric Stokes
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problem are available in the literature [45]. Moreover, it is noted that the support points of
the elements used for Ui and pi have been chosen to coincide with the quadrature points;
and, as a consequence, these variables become “local” variables similar to the plastic strain
in classical elastoplasticity (in fact, these variables can be eliminated at the quadrature point
level, although this was not performed herein).

Table 2. Finite elements used for example 1.

Variable Finite Element

u Q2
D RT1
Ui DGQ2
A Q2
ϕ DGQ1 (Q2 for scalar potential formulation)
p DGP1
pi DGQ2

5.1.9. Initial Values

As mentioned earlier, the initial values for the state variables and auxiliary state
variables need to be determined before the calculation. Due to the action of the gravita-
tional acceleration, the initial state is inhomogeneous and must, therefore, be determined
numerically. This has for simplicity been achieved by taking a very small time step of
1 · 10−8 t̃e with α = 1 before the actual computation, such that any increments in Ui remain
negligibly small. A more rigorous approach would be to explicitly constrain U̇i to zero for
determining the initial values. This has, however, not been implemented yet.

5.1.10. Example Calculations and Results

The implementation of the constitutive equations and the numerical procedures were
first validated against the results obtained by Hong [42], as can be seen in Appendix A.
Subsequently, spatial and temporal convergence studies have been performed for the
formulations in terms of D− ϕ (“mixed formulation”), A (“vector potential formulation”)
and ϕ (“scalar potential formulation”). The starting point for these simulations is to take
Nt = 16 equally spaced time increments for the entire simulation together with a coarse
finite element mesh consisting of five rectangular cells in the radial direction and a single
rectangular cell in the axial direction, see Figure 3 for an illustration of the coarse finite
element mesh. Then, the number of time increments is increased to Nt = 16 · 2mt

, where mt

is the refinement cycle. Similarly, the finite element mesh is uniformly refined mh times
(in this work, the term “uniform refinement” refers to splitting a rectangular cell into
four equally shaped rectangular cells by introducing new vertices at the midpoints of the
edges and at the center of the cell). In particular, calculations with mt = 0, 1, . . . , mt,max

(mt,max = 6) and mh = 0 were performed to study the convergence behavior in time;
and calculations with mh = 0, 1, . . . , mh,max (mh,max = 6) and mt = 0 were performed to
study the spatial convergence behavior. For the finest mesh with mh = 6, this results
in 1,231,108 degrees of freedom for the scalar potential formulation, 1,395,075 degrees
of freedom for the mixed formulation, and 1,231,109 degrees of freedom for the vector
potential formulation. However, it is emphasized that the computational cost cannot be
directly related to the number of unknowns, since the system structure as well as the linear
solver employed also play a major role in this regard; and the study of these aspects is
beyond the scope of the present contribution.
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Figure 3. Coarse finite element mesh in the reference configuration together with radial inelastic
stretch in the deformed configuration at t = te (result obtained with mt = 0 and mh = 6).

With regard to the convergence behavior in time, the error emt is, for each mt =
0, 1, . . . , mt,max − 1, evaluated according to

emt =
∥∥∇̃ũmt − ∇̃ũmt,max

∥∥
L2 . (62)

For simplicity, no other unknowns are included into the error. However, it has also been
checked that the other unknowns show the expected convergence behavior.

An analogous approach is utilized to assess the spatial convergence behavior. In par-
ticular, the error emh is, for each mh = 0, 1, . . . , mh,max − 1, evaluated according to

emh =
∥∥∇̃ũmh − ∇̃ũmh,max

∥∥
L2 . (63)

The deformed shape of the disc is shown in Figure 3 together with the radial inelastic
stretch. It can be noticed that substantial inelastic deformation of approximately 10% takes
place at the lateral surface of the body. Figure 4 shows the results of the convergence
studies. In particular, Figure 4a shows the temporal convergence behavior, while Figure 4b
shows the spatial convergence behavior. It is seen that in both cases the expected rates of
convergence of kt = 2 and kh = 2 are observed for all three formulations, which confirms
the validity of the approach. It is interesting that all three formulations essentially exhibit
the same convergence behavior, a fact which is likely to be attributed to the relatively
simple electric field distribution in the disc.
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Vector pot.
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Figure 4. Convergence results for example 1: (a) temporal convergence; and (b) spatial convergence.
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5.2. Example 2: Swelling/Shrinking of a Hydrogel

The second example problem is illustrated in Figure 5. A circular cylinder of hydrogel
material with radius H and height H is considered. The hydrogel is assumed to consist
of a polymeric backbone material with charged groups attached to it, and an electrolyte
composed of water and the ions of a fully dissociated monovalent salt. The polymeric
backbone material and water are assumed to be incompressible, and the volume change
associated with a change in the concentrations of cations and anions is neglected. It is
further assumed that there are no voids in the hydrogel and, hence, the volume fractions of
polymeric backbone material and water must locally add up to 1. The constitutive behavior
of the hydrogel is assumed to be described by the relations proposed by Acartürk [4],
with the simplification of local electroneutrality (i.e., the local net space charge density is
assumed to be zero). The displacement is fixed to zero at the center of the bottom surface
of the cylinder, while all other surfaces are mechanically free. No matter is allowed to
flow across the bottom and lateral surfaces. In contrast, water and ions may be exchanged
across the top surface, which is in contact with an external electrolytic solution. The latter
is composed of water and a fully dissociated monovalent salt of the same type as in the
hydrogel, with a prescribed transient homogeneous molar concentration of both cations
and anions, of c̄ext(t). Starting from equilibrium, the external ion concentration is changed
and the response of the hydrogel in terms of swelling/shrinking deformation and change
in local water and ion concentrations is tracked.

Figure 5. Illustration of example problem 2.

5.2.1. Computational Domain

The computational domain Ω shown in Figure 5 represents the reference configuration
of the cylinder, which coincides with the configuration at the initial time t = t0. The in-plane
Cartesian coordinates in Figure 2 are again X1 and X2, while the out-of-plane coordinate is
X3. In terms of the radial coordinate R and the axial coordinate Z of a cylindrical coordinate
system, the body occupies the region described by 0 ≤ R ≤ H and 0 ≤ Z ≤ H. The lateral
surface of the cylinder is Σ1, the bottom surface Σ2, and the top surface Σ3.

5.2.2. Unknown Variables
State Variables

The thermodynamic state variables
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u :

{
Ω× T → R3

(X, t) 7→ u(X, t).
(64)

cH2O :

{
Ω× T → R
(X, t) 7→ cH2O(X, t)

(65)

ci :

{
Ω× T → R
(X, t) 7→ ci(X, t)

(66)

are introduced, where i ∈ {A+, B−}. The corresponding initial conditions read

u(X, t0) = 0 (67)

cH2O(X, t0) = cH2O
0 (68)

ci(X, t0) = ci
0, (69)

with cH2O
0 and ci

0 being constants since the initial state is homogeneous. The thermodynamic
state variables have the following significance:

• u is the mechanical displacement field.
• cH2O is the referential molar concentration of water (with regard to the total volume in

the reference state).
• ci are the referential molar concentrations of the A+ and B− ions (with regard to the

total volume in the reference state).

These thermodynamic state variables are supplemented by the auxiliary state variables

p :

{
Ω× T → R
(X, t) 7→ p(X, t)

(70)

ϕ :

{
Ω× T → R
(X, t) 7→ ϕ(X, t)

(71)

together with the corresponding initial conditions

p(X, t0) = p0 (72)

ϕ(X, t0) = ϕ0, (73)

where p0 and ϕ0 are constants. The auxiliary state variables have the following significance:

• p is a pressure type variable, which acts as a Lagrangian multiplier enforcing the
condition that the volume fractions of water and polymeric backbone material must
add up to 1 everywhere.

• ϕ is the electric scalar potential, which enforces the local electroneutrality condition.

It is noted that the constants cH2O
0 , ci

0, p0, and ϕ0 cannot be chosen independently.
Rather, they are interrelated through the assumption that the initial state at time t = t0
is equilibrated.

Process Variables

The process variables involved in the problem are

IH2O :

{
Ω× T → R3

(X, t) 7→ IH2O(X, t)
(74)

Ii :

{
Ω× T → R3

(X, t) 7→ Ii(X, t)
(75)
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These have the following significance:

• IH2O is the time-integrated referential flux of water in the hydrogel.
• Ii are the time-integrated referential fluxes of the ionic species i ∈ {A+, B−}.

Lagrangian Multipliers

The Lagrangian multipliers

ηH2O :

{
Ω× (T \ t0)→ R
(X, t) 7→ ηH2O(X, t)

(76)

ηi :

{
Ω× (T \ t0)→ R
(X, t) 7→ ηi(X, t)

(77)

ϕs :

{
Σ3 × (T \ t0)→ R
(X, t) 7→ ϕs(X, t)

(78)

are introduced. These have the following significance:

• ηH2O and ηi are used to incorporate the respective balance equations for water and
the ionic species A+ and B−.

• ϕs is used to ensure that no net charge flows locally across Σ3. It is noted in this
context that the assumption of no local net charge flow implies a certain behavior of
the external solution bath. Other assumptions are possible (e.g., no global net charge
flow), however, these are in any case only an approximation to the real behavior; and
for the proper resolution of the behavior at the boundary, the exterior solution bath
needs to be explicitly modeled.

Dirichlet Constraints

The unknowns u, IH2O, Ii and ηB− are subject to the following Dirichlet type constraints

u = 0 at X = (0, 0, 0) (79)

IH2O ·N = 0 on Σ1 ∪ Σ2 (80)

Ii ·N = 0 on Σ1 ∪ Σ2 (81)

ηB− = ηB−
0 at X = (0, 0, 0). (82)

Here, ηB− is constrained to the arbitrary constant ηB−
0 at the origin in order to ensure the

uniqueness of the involved scalar potential type quantities, which are only determined up
to a constant by the model.

5.2.3. Dependent Fields

As before, only the “non-trivial”-dependent fields are listed; and the mechanical
deformation gradient

F = ∇u + I (83)

is the only field of this type.

5.2.4. The Functionals
Helmholtz Free Energy Functional Ψ

The part ΨU of the Helmholtz free energy functional is assumed to take the form

ΨU[U] =
∫
Ω

ψel(F)dV +
∫
Ω

cH2Oψfl
(

ci

cH2O

)
dV, (84)
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with the first integral representing the elastic-free energy contribution of the polymeric
backbone and the second integral the free energy contributions of the fluid. In particular,

ψel =
µ

2

[
tr
(

F> · F
)
− 2 ln(J)− 3

]
+ λ(1− n0)

2
(

J − 1
1− n0

− ln
J − n0

1− n0

)
, (85)

ψfl = ∑
i

ci

cH2O RT
[

ln
(

ci

cH2O

)
− 1
]

(86)

are assumed. Here, J = det F again, λ and µ are Lamé’s constants, n0 = 1− cH2O
0 VH2O

m is
the volume fraction of polymeric backbone material in the reference state, where VH2O

m
denotes the molar volume of water, R is the gas constant and T is the temperature.

The part ΨP of the Helmholtz free energy functional reads

ΨP[P, U] =
∫
Ω

p
(

n0 + cH2OVH2O
m − J

)
dV +

∫
Ω

Fϕ

(
∑

i
zici + zC−cC−

)
dV, (87)

where the first integral enforces the condition that the volume fractions of fluid and poly-
meric backbone material add up to 1, and the second integral incorporates the electroneu-
trality condition. In the latter term, F is Faraday’s constant, zi and zC− are the respective
charges of the ionic species A+, B− and the charged groups C− attached to the backbone
polymer in multiples of the elementary charge, and cC− is the (constant) referential molar
concentration of the charged groups.

Power Functional P

For the power functional, the form

P[U̇, V̇; U, t] =
∫
Σ3

[
µ̄H2O(t) İH2O ·N + ∑

i
µ̄i(t) İi ·N

]
dS (88)

is assumed, where

µ̄H2O(t) = 2RT
c̄ext(t)

VH2O
m

(89)

µ̄i(t) = −RT ln

(
c̄ext(t)

VH2O
m

)
. (90)

For the purposes of this example, the ramp function

c̄ext(t) = c̄ext
0 +

(
c̄ext

e − c̄ext
0
) t− t0

te − t0
(91)

is used for c̄ext(t), where c̄ext
0 is the initial concentration of ions in the external solution at

time t = t0, and c̄ext
e the final concentration at time t = te.

Lagrangian Multiplier Functional L

The Lagrangian multiplier functional is assumed to take the form

L[M, U̇, V̇; U, t] =
∫
Ω

ηH2O
(
−∇ · İH2O − ċH2O

)
dV

+
∫
Ω

∑
i

ηi
(
−∇ · İi − ċi

)
dV

+
∫
Σ3

Fϕs ∑
i

zi İi ·N dS.

(92)
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where the first two integrals incorporate the respective balance equations for water and the
two ion species, and the third integral enforces the condition that the local net charge flow
across Σ3 is zero.

Dissipation Functional ∆̊

For the dissipation functional, the form

∆̊[U̇, V̇; U, t] =
∫
Ω

δ̊
(

İH2O, İi; F, ci, cH2O
)

dV (93)

is assumed. In this relation,

δ̊ =
cH2OVH2O

m

J

[
∑

i

RT
2Dici

(
İi − ci

cH2O İH2O
)
· F> · F ·

(
İi − ci

cH2O İH2O
)

+
RT

2DH2OcH2O İH2O · F> · F · İH2O
]

(94)

is the local dissipation function, where Di are the respective diffusivities of the ionic species
in water, and DH2O is a material parameter characterizing the Darcy type “resistance”
associated with the motion of water through the polymeric backbone material.

For later use, the dual local dissipation function is introduced according to

φ(∇ηH2O,∇ηi; F, ci, cH2O)

= − inf
İH2O,İi

[
∇ηH2O · İH2O + ∑

i
∇ηi · İi + δ̊

(
İH2O, İi; F, ci, cH2O

)]

=
J

cH2OVH2O
m

[
∑

i

Dici

2RT
∇ηi · F−1 · F−> · ∇ηi +

DH2OcH2O

2RT

×
(
∇ηH2O + ∑

i

ci

cH2O∇ηi

)
· F−1 · F−> ·

(
∇ηH2O + ∑

i

ci

cH2O∇ηi

)]
. (95)

5.2.5. Reduced Formulation

By using the procedure described in Section 2.6.1, the variables IH2O and Ii can be
eliminated on Ω. This leads to the reduced sets of variables

V0 =

(
IH2O
N
Ii
N

)
M0 = M, (96)

where

IH2O
N :

{
Σ3 × T → R
(X, t) 7→ IH2O

N (X, t)
(97)

Ii
N :

{
Σ3 × T → R
(X, t) 7→ Ii

N(X, t)
(98)

represent IH2O ·N and Ii ·N, respectively, on Σ3. The corresponding reduced functional is
obtained from Equation (16) using the dual local dissipation function (95). It reads

Γred[U̇, V̇0, M0; U, t] =−
∫
Ω

(
ηH2O ċH2O + ∑

i
ηi ċi

)
dV

−
∫
Ω

φ(∇ηH2O,∇ηi; F, ci, cH2O)dV
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−
∫
Σ3

[
ηH2O − µ̄H2O(t)

]
İH2O
N dS

−
∫
Σ3

∑
i

[
ηi − Fϕszi − µ̄i(t)

]
İi
N dS. (99)

Similarly to example 1, IH2O
N and Ii

N can be eliminated by imposing appropriate Dirichlet
conditions for ηH2O and ηi. However, due to the involvement of ϕs in these conditions,
the resulting equations are more complicated to implement and hence, IH2O

N and Ii
N are

kept as variables.

5.2.6. Normalization

All quantities are normalized using the reference values c∗ = 1 mol/L,
D∗ = 1 · 10−4 cm2/s, R∗ = 8.3144 J/(mol K), T∗ = 298 K, F∗ = 96, 485.33 C/mol and
L∗ = 1 mm. In particular, the normalized quantities are

X̃ =
X
L∗

, t̃ =
tD∗

L∗2 , ∇̃( ) = ∇( )L∗, ˜̇( ) = ˙( )
L∗2

D∗
,

ũ =
u
L∗

, c̃H2O =
cH2O

c∗
, c̃i =

ci

c∗
, p̃ =

p
R∗T∗c∗

, ϕ̃ =
ϕF∗

R∗T∗
,

ĨH2O =
IH2O

c∗L∗
, Ĩi =

Ii

c∗L∗
, ĨH2O

N =
IH2O
N

c∗L∗
, Ĩi

N =
Ii
N

c∗L∗
,

η̃H2O =
ηH2O

R∗T∗
, η̃i =

ηi

R∗T∗
, ϕ̃s =

ϕsF∗

R∗T∗
,

t̃0 =
t0D∗

L∗2 , t̃e =
teD∗

L∗2 , ˜̄cext
0 =

c̄ext
0
c∗

, ˜̄cext
e =

c̄ext
e
c∗

,

H̃ =
H
L∗

,

c̃H2O
0 =

cH2O
0
c∗

, c̃i
0 =

ci
0

c∗
, p̃0 =

p0

R∗T∗c∗
, ϕ̃0 =

ϕ0F∗

R∗T∗
,

µ̃ =
µ

R∗T∗c∗
, λ̃ =

λ

R∗T∗c∗
, ṼH2O

m = VH2O
m c∗, ñ0 = n0,

z̃i = zi, z̃C− = zC− , c̃C− =
cC−

c∗
, D̃H2O =

DH2O

D∗
, D̃i =

Di

D∗
,

R̃ =
R
R∗

, F̃ =
F
F∗

, T̃ =
T
T∗

.

(100)

5.2.7. Parameters

The set of parameters used below is listed in Table 3. The constitutive parameters have
been taken from Table 5.1 in Acartürk [4] and normalized. It is noted in this context that
some of the parameters are defined differently in the latter work than in the present work,
so that some conversion between the parameters is involved. This applies in particular to
DH2O, which is equal to RTkF/(γFRVH2O

m ) in the work of Acartürk [4] (the quantities kF

and γFR are defined in [4]).
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Table 3. The parameters used for the hydrogel example.

Quantity Value

t̃0 0
t̃e 5

˜̄cext
0 0.9

˜̄cext
e 0.1

H̃ 1

c̃H2O
0 41.509
c̃A+

0 0.75415
c̃B−

0 0.60415
p̃0 0.011077
ϕ̃0 −0.11088

µ̃ 0.040360
λ̃ 0.016144

ṼH2O
m 0.018069
ñ0 0.25

z̃A+ 1
z̃B− −1
z̃C− −1
c̃C− 0.15

D̃H2O 14.673
D̃A+ 0.05
D̃B− 0.08

R̃ 1
F̃ 1
T̃ 1

The initial values appearing in Table 3 were computed from the condition that the
initial state is an equilibrium state, which leads to the following equations

cH2O
0 =

1− n0

VH2O
m

(101)

cA+

0 = −1
2

zC−cC−

zA+ +
1

2|zA+ |

√(
zC−cC−

)2 − zA+zB−
(

2c̄ext
0 cH2O

0 VH2O
m

)2
(102)

cB−
0 = −1

2
zC−cC−

zB−
+

1
2|zB− |

√(
zC−cC−

)2 − zA+zB−
(

2c̄ext
0 cH2O

0 VH2O
m

)2
(103)

p0 =
RT

VH2O
m

(
cA+

0 + cB−
0

cH2O
0

− 2VH2O
m c̄ext

0

)
(104)

ϕ0 =
RT

FzA+ ln

(
c̄ext

0 cH2O
0 VH2O

m

cA+

0

)
. (105)

The corresponding normalized values given in Table 3 are subject to rounding. However,
in the simulations, values accurate to within numerical accuracy have been used. This also
applies to λ̃, µ̃ and D̃H2O.

5.2.8. Spatial Discretization and Temporal Discretization

Again, the α-family with α = 1/2 is used for temporal discretization, and the spatial
discretization is performed in the two-dimensional axisymmetric setting. The particular
quadrilateral finite elements employed for the analysis are compiled in Table 4. No elements
are given for IH2O and Ii in this table because only the reduced formulation is considered
in the numerical example below. It is noted that there are no interface terms coupling
the unknowns associated with the discontinuous finite elements of type DGP1 between
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neighboring cells. This means that the unknowns associated with these elements are local to
the cell and can be eliminated with little cost by the direct linear solver. Another possibility
would be to use discontinuous Lagrange elements of type DGQ2 for cH2O, ci and ϕ with
the support points coinciding with the quadrature points. However, to fully benefit from
this approach where the respective unknowns are local to the quadrature points, changes
to the implementation would be necessary, which have not been implemented yet.

Table 4. Finite elements used for example 2.

Variable Finite Element

u Q2
cH2O, ci, p, ϕ DGP1

IH2O
N , Ii

N Q2
ηH2O, ηi Q2

ϕs Q2

5.2.9. Example Calculations and Results

The implementation of the constitutive equations and the numerical procedures was
first validated against a result obtained by Acartürk [4], as can be seen in Appendix B.
Subsequently, spatial and temporal convergence studies have been performed for the
reduced formulation. In the latter case, the starting point is to take Nt = 4 equally
spaced time increments for the entire simulation together with a coarse finite element
mesh consisting of a single cell. With regard to the definition and evaluation of errors,
exactly the same approach as in Section 5.1.10 is used. However, for this example, the
convergence behavior in time is studied with mt,max = 8 and mh = 3, while the spatial
convergence study is conducted with mh,max = 7 and mt = 2. In the latter case, this results
in 577, 033 unknowns for the finest mesh with mh = 7.

The deformed shape of the hydrogel cylinder is shown in Figure 6 together with the
cation concentration c̃A+

and the outline of the undeformed cylinder; whilst Figure 7a,b
show the results of the temporal and spatial convergence study, respectively. The expected
rates of convergence of kt = 2 and kh = 2 are clearly observed as for the first example.

Figure 6. Deformed shape of the hydrogel cylinder at time t̃e together with cation concentration c̃A+

and outline of the undeformed shape (result obtained with mt = 2 and mh = 7).
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Figure 7. Convergence results for example 2: (a) temporal convergence, (b) spatial convergence.

6. Concluding Remarks

In the present contribution, a systematic approach to the thermodynamically consis-
tent modeling of isothermal dissipative continuum problems using the concept of standard
dissipative continua is proposed and applied to two example problems. The formula-
tion does explicitly allow for different spatial regions, which are associated with different
physics, as well as for the description of interfacial processes, which may be coupled to the
physics in the volume. An important conceptual feature of the approach is the distinction
between state variables, process variables and Lagrangian multipliers. While the state
variables have the usual significance in that they describe the thermodynamic state of
the system under consideration, the process variables are used to constrain the ways in
which the thermodynamic state can change; and the latter constraints are incorporated
with the help of the Lagrangian multipliers. Due to the variational structure of the formu-
lation, a systematic elimination of variables is possible under certain circumstances, thus
reducing the number of unknown variables, which is an important aspect for numerical
solution procedures.

The variational approach is also beneficial in view of the temporal and spatial dis-
cretization of the space–time continuous problem. With regard to temporal discretization, it
is, at least for a certain class of problems, possible to use generic discretization approaches
with known convergence properties. Similarly, when using the finite element method for
spatial discretization, much of the classical theory applies.

Albeit a large amount of formalization is clearly involved in the presented formulation,
it is expected that the associated systematic approach substantially reduces the time penalty
associated with implementing complex multiphysics models. At the same time, it likely
reduces the potential for error both, during the formulation of multiphysics models as well
as during the implementation into program code. In particular, it appears possible to solve
a large class of problems using a single, well-tested implementation.

Some of the above aspects were demonstrated by considering two example problems.
In this context, it was empirically shown that optimal rates of convergence in space and
time can be achieved. For the purposes of this work, the example problems were kept
simple. However, applications to more complex problems will be described in forthcom-
ing contributions.
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Appendix A. Validation of the Implementation for Example 1

In order to verify the correct implementation of the constitutive relations for example
1, some results were compared to those obtained by Hong [42], with Figure A1 showing
a representative example. In particular, a laterally free plate of viscoelastic dielectric
elastomer is considered, with the fringing fields neglected. An electric voltage is applied
across the electrodes on the bottom and top faces of this plate. The resulting nominal
electric field in the plate is Ẽ = ϕ̃/H̃, with H̃ = 1 being the normalized thickness of the
plate. The nominal electric field is increased at a rate of dẼ/dt̃ = 0.2 until instability takes
place. The material parameters used by Hong [42] coincide with the parameters given in
Table 1 (note that the definition of the viscosity used by Hong [42] differs by a factor of 2
from the one used in the present work). For the comparisons, the total time interval was
split into 1024 equally spaced time increments, and the α-family with α = 1/2 was used
for temporal discretization. Since the fields are homogeneous, the use of a single finite
element is sufficient. Figure A1 shows the results for the total lateral stretch λ and the
inelastic lateral stretch λi. It is seen that the results obtained with all three formulations
are indistinguishable; and these results are consistent with the results of Hong [42], which
confirms the correct implementation for at least the case of homogeneous uniaxial fields.
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Figure A1. Comparison between the present formulation and the results obtained by Hong [42].

Appendix B. Validation of the Implementation for Example 2

In order to verify the correct implementation of the constitutive relations for example 2,
an example problem described by Acartürk [4] is considered. The problem involves a block
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of hydrogel material with a width of 0.2 mm and a height of 1 mm in a plane strain setting.
The normal mechanical displacement is constrained to zero on the lateral surfaces of the
block as well as on its bottom surface, while the top surface is mechanically free. No
matter is allowed to flow across the lateral surfaces and the bottom surfaces, while the top
surface is in contact with a solution bath in the same way as shown in Figure 5. The ion
concentration is linearly ramped from ˜̄cext = 0.9 to ˜̄cext = 0.1 between time t̃0 = 0 and
t̃1 = 0.5. Subsequently, the external ion concentration is kept constant until the end of the
simulation at time t̃e = 200. In the present work, the calculation was performed with 80
finite elements in the axial direction. For the time stepping, an initial grid was created with
8 equally spaced time increments for the linear ramp and another 8 time increments for the
subsequent step with constant external concentration. In the case of the latter, no equal time
increment spacing was chosen. Rather, the time increment size was increased by a factor of
3 between subsequent time increments. For the actual computation, this initial temporal
grid was uniformly refined six times, thus resulting in 1024 time increments in total.
The resulting numerical solution is compared to the variant (SIb) discussed in Acartürk [4].
For this variant, the net electric current is constrained to zero; and for the particular
one-dimensional problem with a monovalent salt considered herein, this is equivalent
to the requirement of local electroneutrality used in this work. It is noted in this context
that a number of different formulations were discussed by Acartürk [4], which should
theoretically be equivalent. However, different results were obtained by Acartürk [4]; and
this suggests that there are either errors in the implementation or other numerical issues
for some of the formulations. The choice to consider the variant (SIb) for comparison
is motivated by the fact that the results of this variant agree very well with the results
of the present formulation. In particular, Figure A2 shows a comparison of the normal
displacement ũZ of the top surface of the hydrogel block over time. Excellent agreement
is evident for this case. Figure A3 shows comparisons for the cation concentrations (with
regard to the actual volume of the electrolyte) at different instants of time. Again, good
agreement is observed.
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Figure A2. Comparison of the results for the normal displacement of the top surface of the hydro-
gel block [4].
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Figure A3. Comparison of the results for the cation concentration along the axial coordinate Z̃ at
different times [4].
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